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Sparse Approximation-Based Maximum Likelihood
Approach for Estimation of Radiological

Source Terms
Taewook Lee, Member, IEEE, Puneet Singla, Member, IEEE, Tarunraj Singh, Member, IEEE, and Ajith Gunatilaka

Abstract—A computationally efficient and accurate method is
presented for identifying the number, intensity and location of
stationary multiple radiological sources. The proposed method
uniformly grids the region of interest resulting in a finite set of
solutions for the source locations. The resulting problem is a sparse
convex optimization problem based on L1-norm minimization.
The solution of this convex optimization encapsulates all informa-
tion needed for the estimation of source terms; the values of the
nonzero elements of the solution vector approximates the source
intensity, the grid points corresponding to the nonzero elements
approximates the source locations, and the number of nonzero
elements is the number of sources. The accuracy limited by the
resolution of the grid is further improved by making use of the
maximum likelihood estimation approach. The performance of
sparse approximation based maximum likelihood estimation is
verified using real experimental data acquired from radiological
field trials in the presence of up to three point sources of gamma
radiation. The numerical results show that the proposed approach
efficiently and accurately identifies the source terms simultane-
ously, and it outperforms existing methods which have been used
for stationary multiple radiological source terms estimation.

Index Terms—Maximum likelihood estimation, parameter esti-
mation, radiation monitoring, radioactive materials.

I. INTRODUCTION

I N RECENT years, the threats from chemical, biological,
radiological and nuclear (CBRN) incidents have increased

[1]. They include lost or stolen radioactive material, and covert
release from unknown locations. Furthermore, covert trans-
fer of radiological material can use air, water and land based
vehicles, consequently mandating the development of technol-
ogy to detect the sources in real-time. In an incident, between
May 1996 and April 1997, many servicemen were exposed to
radiation caused by 137Cs and 60Co [2] at the Lilo Training
Detachment of Frontier Troops, which is located 25 km east of
Tbilisi, the capital of Georgia. Eleven soldiers were accidentally
overexposed to radiological radiations and showed symptoms
for clinical manifestation of radiation effects mainly of the skin.

Manuscript received December 26, 2013; revised August 06, 2014; accepted
January 17, 2016. Date of current version April 15, 2016.

T. Lee, Engineer, Member IEEE, is with Samsung, Korea (e-mail:
twlee2@buffalo.edu).

P. Singla and T. Singh are with the Dept. of Mechanical & Aerospace
Engineering, University at Buffalo, Buffalo, NY-14260 (e-mail: psingla@
buffalo.edu, tsingh@buffalo.edu).

A. Gunatilaka is with the Land Division, Defence Science and Technology
Group, 506 Lorimer Street Fishermans Bend, VIC 3207, Australia (e-mail:
Ajith.Gunatilaka@dsto.defence.gov.au).

Digital Object Identifier 10.1109/TNS.2016.2520255

Some of the victims were reported to suffer from “chronic radi-
ation disease from uneven external fractionated irradiation.”
These sources were later (September 1997) found in different
parts of the grounds of the Lilo Centre, including the scrapyard
and the soccer field. A coat pocket of a uniform was the location
of a source with the highest dose rate.

The risk of exposure to radiological materials has increased
in recent years, and the exposure has led to increased radiation-
caused critical illness or even death. There have been 99
accidents at nuclear power plants from 1952 to 2009, total-
ing 20.5 billion in property damages (defined as incidents that
either resulted in the loss of human life or more than 50,000 of
property damage) [3], [4]. Fifty-seven accidents have occurred
since the Chernobyl disaster, and almost two-thirds (56 out of
99) of all nuclear-related accidents have occurred in the USA.
More broadly, this threat also potentially exists due to chemi-
cal, biological and nuclear incidents. During the deliberate or
unintentional release of toxic material, the number of contam-
inated civilians could exponentially increase depending on the
large quantities, high intensities and long period of release time
of the toxic materials. Consequently, when hazardous materi-
als such as radiological sources are released and detected, rapid
and accurate response for the isolation of the hazardous materi-
als is required. This is accomplished by identifying the number
of sources and characterizing the location and intensity of the
sources. Furthermore, the uncertainties associated with the esti-
mates of the source parameters are required to be determined in
order to reduce false alarms.

The challenge of identifying the source parameters and esti-
mating the uncertainties associated with the calculated source
parameters is relevant due to the absence of densely sited sen-
sors which can only measure the intensity of the sources in
the region of interest. Furthermore, when there exists two or
more sources, the mean radiation count at a sensor is the sum of
mean radiation counts due to all sources. Hence, sensor models
that mathematically approximate a relation between the sen-
sor measurements and the source parameters are necessary and
these models result in uncertainties associated with the esti-
mates of the source parameters. When the mapping between the
sensor measurements and the source parameters is non-linear
and involves probabilistically-modeled background radiation,
it poses a unique challenge for the radiological source terms
estimation.

Many methods have been exploited for the radiological
source term estimation, including least squares approaches [5],
[6], [7], heuristic optimization methods [8] such as genetic
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algorithms and simulated annealing, and Bayesian methods
such as particle filters [9], [10]. The least squares approach
or other gradient based optimization methods use the residues
(error between the measurement and the predicted measure-
ment) to modify the source parameters by solving the problem
until the residues are reduced to within a specified tolerance.
The resulting non-convex optimization problem is convention-
ally solved based on a selected gradient based optimization
algorithm. A drawback of these approaches, which is com-
mon to all gradient based approaches used to solve non-convex
optimization problems, is that the solution can converge to
local minima rather than the global minima, depending on
the initial estimate of the source parameters. Heuristic opti-
mization methods such as genetic algorithm and simulated
annealing do not require gradient information, thus they are
more likely to converge to global minima than gradient based
optimization algorithms. However, these methods are compu-
tationally expensive and consequently are poor choices for
real-time applications. Furthermore, they have the tendency to
fit the noise present in sensor data and also do not provide any
measure of confidence in their estimates.

An alternative to simply fitting the measurement data is to
exploit sensor noise characteristics. A simplistic probabilistic
approach is to provide source estimates which maximizes the
likelihood probability of measurement data. This leads to the
well-known Maximum Likelihood Estimation (MLE) approach
which leads to a nonlinear optimization problem [9], [11].
Like the least square approach and the heuristic optimization
algorithms, the MLE just provides a point estimate for source
parameters and does not provide any information regarding the
confidence in those estimates. The Bayesian methods such as
the particle filter use the Bayes’ rule where a prior distribution
is combined with the information contained in the measure-
ments to give a posterior probability density function (pdf). In
Refs. [9], [12], [11], the authors have discussed the application
of sequential Monte Carlo method for the radiological source
parameter estimation. In particular, the Importance Sampling
with Progressive Correction (ISPC) algorithm has been pro-
posed for radiological source term estimation. The ISPC is a
class of particle filtering [13] and a Bayesian technique which
assumes that a prior distribution is available for source param-
eter estimation. Our knowledge of the likelihood function is
then combined with the prior information to yield the posterior
probability density function (pdf). In general, the prior infor-
mation is assumed to be available for the source parameters,
and all information about the source parameters is contained in
the posterior pdf of the parameters. However, computation of
the posterior mean to obtain the estimates of the parameters
is difficult and hence it is necessary to consider approxima-
tions. This is a common problem which arises in Bayesian
framework based estimation and many numerical methods exist
for approximating the posterior mean. Ristic et al., [9] have
proposed using one such method named ISPC for the radi-
ological source parameters estimation. The basic idea is that
approximation of the posterior mean via ISPC involves draw-
ing samples of the parameter vector from an importance density
which is a known density from which random samples can be
drawn, and approximating the integral by a weighted sum of

the samples. The importance density can be simply replaced
by the prior. However, it has been suggested that the straight-
forward use of the prior as the importance density would not
work well because it can be expected that the prior will often
be far more diffuse than the likelihood [9]. As a result many,
or even all, samples will be drawn in undesirable parts of the
parameter space and estimates of the source parameters will be
poor. Instead it is proposed to use a multi-stage procedure in
which samples are obtained from a series of posterior distribu-
tions which becomes progressively closer to the true posterior
distribution. The idea is that the posterior distribution approx-
imations used in the early stages should be simpler to obtain
samples from than the true posterior distribution.

Although these approaches have been successful in esti-
mating source parameters, a major drawback of all these
approaches is that they are not directly conducive to the deter-
mination of the number of sources. Assuming different number
of sources, they seek the most suitable candidate which max-
imize the likelihood of measurements. Under a certain model
selection criterion such as Bayesian Information Criterion
(BIC) [14], [15], assumed different number of sources are com-
pared to choose the best match to the measurement by solving
numerous optimization problems. Ristic et al., have proposed
the use of model selection criterion for estimating the num-
ber of sources along with their location and intensities [9].
The main idea of their approach is to exhaustively compare
different models of possible numbers of sources while mak-
ing use of model selection criterion such as the BIC. Many
model selection criteria have been proposed in the literature
[16], and selection of the best model depends on the criterion
used. All model selection criteria are a compromise between
model complexity and the model accuracy. Here, model com-
plexity is given by the number of independent parameters in
the model which are proportional to the number of sources.
The exhaustive comparison-based multiple source estimation
method needs to solve a parameter estimation problem under
each and every hypothesis and then choose the best hypoth-
esis under a model selection criterion. This is not suited for
large numbers of sources and generally require a good a-priori
information on the number of sources.

In conclusion, the radiological source term estimation prob-
lem deals with the following three factors: (1) a nonlinear
sensor model which involves probabilistically-modeled back-
ground radiation, (2) sensor measurements which are random
variables and obey a Poisson distribution, (3) characterization
of the uncertainties associated with the sensor model. These
problems require development of accurate and computationally
efficient methods which can identify the radiological source
parameters such as the number, location and intensities of the
sources and characterize the uncertainties associated with the
estimates of the source parameters.

The goal of the proposed source term estimation algorithm
is to accurately determine the number of sources and pre-
cisely estimate other source parameters such as locations and
intensities and characterize the uncertainties associated with
these estimates. Sparse Convex Optimization Problem based
Maximum Likelihood Estimation (SCOPMLE) makes use of
sparse approximation tools to determine the number of sources
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which serves as the initial guess for the source intensity and
locations when solving the maximum likelihood problem, to
obtain an accurate estimate of the source intensity and loca-
tion with the associated confidence quantification. The main
idea is to discretize the space where radiation sources poten-
tially exist which is tantamount to asserting that the sources
have to lie at the vertices of the grid. Since the location of
grid points (potential source locations) is prescribed, the only
unknown in the nonlinear sensor model is the source strength
which appears linearly, transforming the problem into a linear
one in source intensity [17], [18]. The number of sources along
with the source parameters such as source location and intensity
are inferred from the intensity distribution which has a sparse
property assuming that the number of sources is less than the
number of grid points (potential sources). The sparse convex
optimization is a pre-processing step which exploits L1-norm
minimization to determine the number of sources and estimates
of the other source parameters. The subsequent maximum like-
lihood estimation process refines the solution to develop a
more precise estimate of the source locations and intensities.
A key advantage of the proposed method is that it handles
model selection and parameter estimation at the same time as
identifying the number of sources along with source locations
and intensities. Both numerical simulations and experiment
data are used to show the efficacy of the proposed ideas and
the results obtained are compared against those obtained by
conventional maximum likelihood algorithm and ISPC based
sequential Monte Carlo method. In all the considered cases, the
proposed approach was able to find the global maximum which
maximizes the probability of matching the observed set of data.

The structure of paper is as follows: first a model for radi-
ological sensor is presented followed by the description of the
details of the proposed source identification approach. Finally,
experimental results are presented to illustrate the efficacy of
the proposed ideas.

II. PROBLEM FORMULATION

The goal of the source term estimation algorithm is to pro-
vide estimates for source parameters: location, intensity and the
number of sources along with associated uncertainty bounds.
There are different ways to represent uncertainty associated
with source parameter estimates such as worst-case scenarios
attempting to provide bounds using interval analysis, methods
based on fuzzy set theory, evidence theory, which tries to create
upper and lower bounds on the likelihood of events, and prob-
abilistic or stochastic models, which offer mathematically the
richest structure. Probabilistic means of representing uncertain-
ties have been explored extensively and provides the greatest
wealth of knowledge which is exploited in this work [19], [20],
[21]. The first step in source term estimation is to develop a
mathematical model relating the measured quantities to source
parameters.

A. Sensor Model

A Geiger-Müller counter is a radiation sensor and is cho-
sen to be used as a sensor model [9] in this research work.

According to the sensor model, the mean radiation count at
location (xj , yj) due to Ns number of point sources is given
as:

bj =

Ns∑
k=1

ωk

(xk − xj)
2
+ (yk − yj)

2 + ω0 (1)

where, xk and yk are the unknown coordinates of the kth point
source location and ωk represents the unknown intensity of
the kth point source. ω0 is the mean background radiation due
to environmental effects present at the sensor location in the
absence of actual radiation source and is assumed to be constant
over the domain of interest. The actual sensor measurement zij
at sensor location (xj , yj) is assumed to obey a Poisson distri-
bution [22], [23], whose variance is equal to the mean radiation
count. Note that the superscript i is an index to reflect multi-
ple measurements collected at the same location. Assuming the
radiation measurements are independent random variables, the
joint likelihood function at the jth location can be written as:

L(zj |bj) =
m∏
i=1

e−bj
b
zi
j

j

zij !
(2)

where m is the total number of sensor readings at location
(xj , yj). Notice that the true radiation count bj due to Ns num-
ber of sources is both the mean and variance of this Poisson
distribution.

Given the sensor model and the radiation dose measure-
ments, the goal of the point source term estimation problem
is to identify the source parameter vector denoted as θk =
[xk, yk, ωk]

T , k = 1, . . . , Ns, and the number of sources, Ns

from bj , j = 1, . . . ,M , where M is the number of sensors
located in the region of interest.

III. SPARSE CONVEX OPTIMIZATION PROBLEM BASED

MAXIMUM LIKELIHOOD ESTIMATION (SCOPMLE)
APPROACH

As discussed in Section I, many algorithms have been pro-
posed in the literature for the radiological source estimation.
Most existing multiple source estimation methods [9], [11]
assume that the number of sources is known and the source
estimation is then essentially a parameter estimation problem,
generally formulated as a maximum likelihood estimation prob-
lem or a Bayesian estimation problem as discussed in the
previous section. When multiple sources are to be identified in
the absence of the exact prior information on the number of
sources, the number of sources needs to be determined along
with source locations and intensities, which poses a unique
challenge for source estimation algorithms. In this section, an
approach is developed to estimate the number of sources along
with the source intensity and location. Sparse approximation
formulation is exploited to determine the number of unknown
sources. The proposed work is an extension of our prior work
presented in [17], [18]. First, the key idea is explained by
assuming that perfect radiation count measurements are avail-
able at the sensor location. Later, the basic idea is extended to
the case of imperfect measurements assuming the measurement
distribution to be Poisson distribution.
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A. Perfect Measurements

The main idea is to discretize the space where the radiation
sources potentially exist. The motivation is that the source loca-
tions xk and yk can only take on a finite set of known values and
the sensor model of Eq. (1) is a linear model in source intensity.
Let us consider the potential radiation sources to be located on
a two-dimensional grid consisting of a total of N node points,
(xG

k , y
G
k ), k = 1, . . . , N . One choice of (xG

k , y
G
k ) is a fine grid

over the region of interest. The grid need not be uniform, so
another choice would be a fine mesh in regions of particular
interest, such as densely populated areas, and a coarser mesh
over other regions. Prior knowledge about the source distribu-
tion, if available, greatly reduces the number of grid points.
Assuming the radiation source to lie on grid node, (xG

k , y
G
k ),

the true radiation count given by Eq. (1) as a function of ωk

yields:

bj =
N∑

k=1

ωkakj(x
G
k , y

G
k , xj , yj) + ω0,

akj =
1

(xG
k − xj)

2
+ (yGk − yj)

2 , j = 1, 2, · · · ,M (3)

where M is the number of sensors, and ω0 is background radia-
tion measured in the absence of any radiological source, and the
only unknowns in the above equation are ωk. Since bj is linear
in the source intensity, Eq. (3) can be rewritten as:

b = AΩ+ ω0 (4)

where, b = {b1, b2 · · · , bM}T is a M × 1 vector of sensor
observations and A is given as:

A =

⎡
⎢⎢⎣

1
(xG

1 −x1)
2+(yG

1 −y1)
2 · · · 1

(xG
N−x1)

2+(yG
N−y1)

2

...
. . .

...
1

(xG
1 −xM )2+(yG

1 −yM )2
· · · 1

(xG
N−xM )2+(yG

N−yM )2

⎤
⎥⎥⎦

(5)

The observation matrix A is M ×N fully determined by sen-
sor locations and the grid locations and ω0 is a vector of
dimension M × 1 with every element being ω0. This discretiza-
tion process allows for direct estimation of the source intensity
distribution on grid points. The sources can now be fully repre-
sented by an N × 1 vector Ω = {ω1, ω2, · · · , ωN}T , such that
the element ωi indicates the intensity of a potential source at
(xG

i , y
G
i ). By definition, ωi ≥ 0 and an actual source is located

at (xG
i , y

G
i ) only when ωi exceeds a certain threshold. The

number of the elements in Ω exceeding the threshold is the
number of point sources over the region (Ns). In a case of real
incident there are likely to be a very limited number of dis-
crete sources, many fewer than the available spatial grid points,
i.e., N is much greater than number of sources Ns. Hence,
the great majority of components ωi will be equal to zero or
in other words, Ω is a sparse vector. In the case of a widely
distributed source the assumption of sparsity would not hold.
The present methods are limited to discrete sources, in which
a single spatially compact source, or small number, are to be
detected.

It should be noted that size of A is M ×N with N > M
in general and hence Ω cannot be uniquely determined from
b. There are an infinite number of Ω which satisfy Eq. (4).
The best solution then should be the one that achieves the
best tradeoff between the sparsity of Ω and the magnitude of
the residual vector AΩ− b− ω0, which is characterized by a
selected norm. With the sparsity of Ω and the measure of resid-
uals defined, the following sparse optimization problem can be
defined to estimate the source parameters:

min ‖Ω‖0 (6)

subject to AΩ = b− ω0 (7)

Ω ≥ 0 (8)

where ‖ · ‖0 refers to the 0-norm which is the total number of
nonzero elements in the vector. Note that the 0-norm minimiza-
tion problem is a non-convex optimization problem. However,
it has been shown that one can approximate the solution to this
sparse approximation problem by a sequence of convex prob-
lem [24], [25]. The L1-norm also produces relatively sparse
vectors when minimized, and is convex. In order to apply the
powerful tools of convex analysis, therefore, the minimization
problem to be addressed is formulated as follows:

Ω̂ = min
Ω

‖DΩ‖1 (9)

subject to AΩ = b− ω0 (10)

Ω ≥ 0 (11)

In the original L1-norm minimization problem in [26], the
matrix A in the constraint Eq. (10) is assumed to be a matrix
of unit column vectors. The normalized version of A is used
in the problem definition, given by Â = AD−1, where D is
the diagonal matrix of the 2-norms of the columns of A. This
sparsity-seeking property is of interest in various applications;
compressed sensing, error correction, image processing, and so
on [26], [27], [28]. Furthermore, an iterative L1-norm mini-
mization, originally proposed in [26], can be used to get closer
to actual 0-norm solution. The basic idea of this approach is
that the algorithm consists of solving a sequence of weighted
L1-norm minimization problems where the weights used for
the next iteration are computed from the value of the current
solution [29]. The algorithm is presented in Table I. In step
3, ε is a small positive number introduced to avoid “divide
by zero” problem in practice. Each iteration of the algo-
rithm simply requires solving L1-norm minimization problem,
and hence, it can be implemented readily using convex opti-
mization tools. In [29], it has been shown that this iterative
approach outperforms L1-norm minimization in the sense that
fewer measurements are needed for an exact sparse solution.
Nonetheless, note that there is no absolute guarantee that the
sparsest solution can be found by using this iterative scheme
but it helps improve the sparsity of the solution. This approach
has recently been used for the design of over-complete code
books for communication systems [26] and in our prior work
[18], we make use of these tools to find unknown source
parameters.
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TABLE I
RE-WEIGHTED L1-NORM MINIMIZATION ALGORITHM

B. Imperfect Measurements

In this section, this sparse approximation scheme is extended
for the realistic scenario where measurement distribution func-
tion is assumed to be Poisson distribution. Given a sample of
m measured values zij , i = 1, . . . ,m, at each sensor location
(xj , yj), the maximum-likelihood value of the mean radia-
tion count bj , is computed. Furthermore, the variance of the
estimates for bj is computed to express the confidence associ-
ated with the estimate of bj . Later on, the iterative L1-norm
minimization approach is modified to make use of mean and
variance estimates for bj .

Assuming the radiation measurements are independent ran-
dom variables, the joint density of the measurement vector
zj = [z1j , . . . , z

m
j ]T conditional on the parameter vector θ can

be written as Equation (2). The MLE estimate represented by
b̂j corresponds to the value of the mean radiation count at sen-
sor location which maximizes the likelihood function L(zj |bj).
Since the likelihood function is positive and involves exponen-
tial of a quantity, the MLE problem is equivalent to maximizing
the log-likelihood function, log[L(zj |bj)]:

b̂j = argmax
bj

log [L (zj |bj)] (14)

= argmin
bj

{− logL (zj |bj)}

= argmin
bj

{
m∑
i=1

(
bj − zij log bj + log zij !

)}

Taking the first derivative of cost function and equating it to
zero yields the following solution for b̂j :

b̂j =
1

m

m∑
i=1

zij (15)

Notice that b̂j is an unbiased estimator for bj , i.e., E[b̂j ] = bj .
Furthermore, the confidence in this estimate can be expressed
by computing the variance associated with b̂j :

σ2
j = E

[(
b̂j − bj

)2]
= E

⎡
⎣
(

1

m

m∑
i=1

(
zij − bj

))2
⎤
⎦ =

bj
m

(16)

It should be mentioned that this variance is also equal to the
Cramèr-Rao bound and hence the MLE estimate for bj is an
optimal estimate. As expected, the variance in the estimate of
bj decreases by increasing the number of observations, i.e.,
b̂j becomes a more efficient estimate of bj as the number of
observations increases. It should be noted that we assume sta-
tionarity of the background which can be violated if there is a
precipitation event during the measurement, or if the duration of
measurment is very long. Now the observation error constraint
of Eq. (10) can be replaced by the following constraint:

‖AΩ− b̂‖22 ≤ C‖Σ‖22 (17)

where,

b̂ =

{
1

m1

m1∑
i=1

zi1,
1

m2

m2∑
i=1

zi2, · · · ,
1

mM

mM∑
i=1

ziM

}
(18)

Σ = {σ2
1 , σ

2
2 , · · · , σ2

M}T (19)

where mj represents the number of measurements of the jth

sensor. C is greater than one and represents how much error one
can tolerate in observation satisfaction. This plays an important
role since a lower value of C will correspond to over-fitting
imperfect observations and higher value of C will correspond
to large error in explaining sensor observations. Furthermore, it
is expected that the value of the variance ‖(ÂΩ̂− b̂)‖22 would
be large when the true sources are not located at any grid points
which can be addressed by picking a larger value for C. Now,
the optimal estimate Ω̂ is defined as the solution to the following
L1 norm minimization problem:

minimize ‖DΩ‖1
subject to

‖AΩ− b̂‖22 ≤ C‖Σ‖22
0 ≤ Ω (20)

which will be referred to as SCOP (Sparse Convex
Optimization Problem). As discussed earlier, the sparsity of
the solution to the problem given by Eq. (20) can be enhanced
using an iterative re-weighting scheme as described in Table I.
The minimization problem is solved iteratively using the prob-
lem formulation given by Eq. (20), with the new cost function
given by

Ω̂(l+1) = argmin
Ω

N∑
i=1

Ω̂i

Ω̂
(l)
i + ε

(21)

where Ω̂(l+1) is the optimal estimate in the (l + 1)th iteration,
Ω̂

(l)
i is the ith element of the optimal estimate from the (l)th

iteration, and ε is a small positive number introduced to avoid
the “divide by zero” problem. Since the optimizer will never
return an exact zero for non-existing source at grid points, ε is
also used as the threshold to identify the existence of a source.

C. Reducing Estimation Errors by Maximum Likelihood
Estimator

There is no absolute guarantee that the sparsest solution can
be found by using the iterative re-weighting scheme, and the
accuracy of estimation is limited by the resolution of the grid.
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In other words, the grid points defined as “true sources” may
not be located at the true source locations. A maximum like-
lihood estimator is further used to reduce the error between
the estimated parameters and the true parameters. Maximum
likelihood estimation (MLE) yields estimates for the unknown
quantities which maximize the probability of obtaining the
observed set of data.

The MLE estimate represented by θ̂ corresponds to the
value of the parameter vector θ = [θ1,θ2, · · · ,θNs

]T being
estimated which maximizes the likelihood function of Eq. (2).
Since the likelihood function is positive and involves exponen-
tial of a quantity, the MLE problem is equivalent to maximizing
the log-likelihood function, log[L(z|θ)]:
θ̂MLE = argmax

θ̂
log[L(z|θ)] = argmin

θ̂
{− logL(z|θ)}

(22)

subject to source strengths being non-negative, i.e.,

ωk ≥ 0, k = 1, 2, · · · , Ns (23)

It should be noticed that the constraint equation is imposed for
better conditioning of the MLE problem. Ideally, one can solve
for θ̂ by equating the first derivative of MLE cost-function to
zero and verifying that the second derivative is negative at the
optimal solution. However, due to the nonlinear nature of result-
ing equations and the non-negativity constraint of Eq. (23) on
the source strength, the MLE problem is solved with the help of
numerical methods such as MATLAB built-in routine fmincon.
In [9] and [11], the MLE approach has been used to find esti-
mates for source parameters assuming the number of sources
to be known. It is well known that the MLE problem leads to
nonlinear system of equations to be solved which are very sen-
sitive to initial guess for source parameter values. Instead of
randomly choosing the initial searching points which may result
in wrong estimates, it is proposed here to choose the sparse
solution obtained by solving the problem of Eq. (20) as the ini-
tial values to find the parameters which maximize the likelihood
function given by Eq. (2).

D. Cramér-Rao Bound

In addition to the point estimates, one is also interested in
obtaining some measure of confidence in those point estimates.
Generally, the variance or covariance matrix is used as a mea-
sure of confidence for point estimates. However, in the absence
of a closed-form solution for the resulting MLE problem, a
closed-form expression for the covariance matrix does not exist.
In this section, the concept of Cramèr-Rao bound is discussed
which can be used to provide a lower bound on the covariance
matrix of any unbiased estimator. This can be useful for the
investigation of the quality of a particular estimator such as a
maximum likelihood estimator and particle filtering.

The Cramér-Rao bound (CRB) states that the inverse of the
Fisher information matrix is a lower bound on the expected
errors between estimated states and true states. For an unbiased
estimator θ̂ of θ, the CRB is given by [30]:

E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ F−1 (24)

where F is the Fisher information matrix which is usually
derived from the information metric [30] and measures the
amount of information the measurement vector z carries about
the unknown parameter vector θ. It is defined as:

F = −E

{
∂2

∂θ∂θT
log[L(z|θ)]

}
(25)

with the likelihood function L(z|θ) given by Eq. (2).
Expanding the log likelihood function yields:

log[L(z|θ)] =
M∑
j=1

m∑
i=1

log

(
e−bj(θ)

bj(θ)
zi
j

zij !

)

=

M∑
j=1

m∑
i=1

(
log(e−bj(θ)) + zij log(bj(θ))

− log(zij !)
)

(26)

Since the last term is independent of θ, it can be written as a
constant K:

log[L(z|θ)] = K +

M∑
j=1

m∑
i=1

{
zij log(bj(θ))− bj(θ)

}
(27)

Now, computing the derivative of log[L(z|θ)] yields:

∂ log[L(z|θ)]
∂θ

=

M∑
j=1

m∑
i=1

[
zij

1

bj(θ)

∂bj(θ)

∂θ
− ∂bj(θ)

∂θ

]
(28)

∂2 log[L(z|θ)]
∂θ∂θT

=

M∑
j=1

m∑
i=1

[
zij

−1

(bj(θ))
2

∂bj(θ)

∂θT

∂bj(θ)

∂θ

+
zij

bj(θ)

∂2bj(θ)

∂θ∂θT
− ∂2bj(θ)

∂θ∂θT

]
(29)

Making use of the gradient operator ∇θ � ∂/∂θ, we can
rewrite the aforementioned relations as:

∂2 log[L(z|θ)]
∂θ∂θT

=

M∑
j=1

m∑
i=1

[
∇θ∇T

θ bj(θ)

(
zij

bj(θ)
− 1

)

−∇θbj(θ)∇T
θ bj(θ)

zij
b2j (θ)

]
(30)

Substituting Eq. (30) into Eq. (25) leads to

F = −E

⎡
⎣ M∑
j=1

m∑
i=1

{
∇θ∇T

θ bj(θ)

(
zij

bj(θ)
− 1

)

− ∇θbj(θ)∇T
θ bj(θ)

zij
b2j (θ)

}]
(31)

Since E[zij ] = bj(θ), the first term in the braces becomes zero
and it results in

F =

M∑
j=1

m∑
i=1

∇θbj(θ)∇T
θ bj(θ)

bj(θ)
(32)
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Fig. 1. Aerial image of the site where the field trial was conducted with Sources marked as grey stars.

TABLE II
RADIOLOGICAL SOURCE LOCATIONS

Finally, the required partial derivatives are given as:

∂bj(θ)

∂xk
=

2ωk(xj − xk)

((xj − xk)2 + (yj − yk)
2
)
2 (33)

∂bj(θ)

∂yk
=

2ωk(yj − yk)

((xj − xk)2 + (yj − yk)
2
)
2 (34)

∂bj(θ)

∂ωk
=

1

(xj − xk)
2
+ (yj − yk)

2 (35)

The theoretical CRB are computed as the square-root val-
ues of diagonal elements of F−1 (which correspond to the
lower bounds of estimation error standard deviations) for real
experimental data.

IV. NUMERICAL RESULTS BASED ON REAL

EXPERIMENTAL DATA

In this section, real experimental data is considered to illus-
trate the performance of the proposed sparse approximation
based MLE algorithm and its performance is compared with
both the conventional MLE and ISPC algorithms. The exper-
imental data was acquired during radiological field trials in

TABLE III
RADIOLOGICAL SOURCE INTENSITIES

TABLE IV
TEST 1: INITIAL ESTIMATE FOR SOURCE PARAMETERS

TABLE V
TEST 2: INITIAL ESTIMATE FOR SOURCE PARAMETERS

the presence of up to three stationary sources of gamma radi-
ation as described in Ref. [11], [12]. The number of sources
is assumed to be known a-priori for the implementation of the
conventional MLE and ISPC algorithms, however one can iden-
tify them using the exhaustive model order selection methods as
explained in Ref. [9].



1176 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

Fig. 2. Test 1: Performance of MLE for four different initial guesses (a) Initial Guess 1: MLE converged (b) Initial Guess 2: MLE converged (c) Initial Guess 3:
MLE converged (d) Initial Guess 4: MLE diverged outside the area shown.

Fig. 3. Test 2: Performance of MLE for four different initial guesses (a) Initial Guess 1: MLE Converged (b) Initial Guess 2: MLE Converged (c) Initial Guess 3:
MLE Converged to local minima (d) Initial Guess 4: MLE Converged to local minima.
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Fig. 4. Test 1: A single run of ISPC (a) Stage 1, (b) Stage 3, (c) Stage 5, and (d) Stage 7.

Fig. 5. Test 2: A single run of ISPC (a) Stage 2, (b) Stage 5, (c) Stage 7, and (d) Stage 9.
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Fig. 6. Test 3: A single run of ISPC (a) Stage 3, (b) Stage 5, (c) Stage 7, and (d) Stage 12.

Fig. 7. Test 1: Performance of SCOPMLE (a) 1st iteration, (b) 2nd iteration, (c) 4th iteration, and (d) SCOPMLE.
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Fig. 8. Test2: Performance of SCOPMLE (a) 1st iteration, (b) 2nd iteration, (c) 4th iteration, and (d) SCOPMLE.

Fig. 9. Test3: Performance of SCOPMLE (a) 1st iteration, (b) 2nd iteration, (c) 4th iteration, and (d) SCOPMLE.
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A. Experimental-Data Details

Radiation dose measurements at spatially distributed sen-
sors were collected with one (Test 1), two (Test 2) and three
(Test 3) radiation point sources, respectively. The aerial image
of the site where the field trial was conducted is shown in
Fig. 1; the grey star indicates source locations, and the num-
bered white grid point marked with a cross indicates the sensor
locations. Note that a single sensor mounted on a cart was
moved from location to location, which precludes modeling
detector-to-detector variations. The measurement dose rate was
converted to measurement count with a conversion factor of
1/0.21, which accounted for the efficiency of the sensor. More
details of the data collection and processing is provided in
the paper [31]. Sixty independent count dose measurements at
each sensor location were collected with time interval of one
second. In the absence of any sources present, radiation dose
measurements were collected in order to measure the back-
ground radiation level which obeys Poisson distribution with
mean 0.9 counts [11],i.e., ω0 ≈ 0.9. The locations and inten-
sities of the true radiological sources in the field trials are
given in Tables II and III, respectively. Although the sources
are typically characterised in terms of their activity in GBq, in
this work, for simplicity, we represent the strength of a radi-
ation point source by the expected count rate at a distance
of 1 meter from the source. Based on this characterization,
the strengths of the three radiation sources calibrated in this
manner were 9105, 1868 and 467, for Sources 1, 2, and 3,
respectively.

B. Conventional MLE

The conventional MLE estimates were obtained numerically
for all three test cases by making use of the procedure listed in
Ref. [11]. The MATLAB function fmincon is used to solve the
resulting optimization problem. Since in nonconvex optimiza-
tion problems the solution can converge to local minima based
on the initial estimate for the source parameters, it is required
to run MLE with different initial estimate to verify its perfor-
mance. Four different initial estimates are selected and they
are given in Tables IV and V. The corresponding results are
obtained via 100 Monte Carlo runs executed in MATLAB. The
randperm command is used to select 20 unique samples by a
random permutation of the 60 samples collected at each sensor
location without replacement, for the Monte Carlo runs, and
are shown in Fig. 2 and 3 for Test 1 and Test 2, respectively;
the dots indicate the sensor locations, the grey stars mark the
true source locations and squares indicate the estimated source
locations by the MLE algorithm. The MLE converged to the
true solution for Test 1 when initialized with the first three ini-
tial guesses listed in Table IV, but diverged when initial guess
4 was used. The MLE converged to the true solution for Test 2
with the first guess, converged close to the truth for the second
and to local optima when initialized with the three and fourth
initial guesses listed in Table V. For Test 3, the scenario with
three sources, MLE diverged on every single run to a location
outside the search area of interest and the results are not shown.
In the presence of three sources, the MLE diverges on every
single run which is consistent with results reported in Ref. [11].

In conclusion, when the initial guess is reasonably close to the
truth, the algorithm converges to the truth, and its convergence
properties deteriorate as the number of sources increases and
the initial guess is not close to the truth.

C. Importance Sampling with Progressive Correction (ISPC)

Assuming that the prior knowledge of where the sources
potentially exist is available, the prior probability mass func-
tion π0(θ) for the source location is assumed to be a uniform
distribution. The value of the samples for the source inten-
sity is drawn from a Gamma distribution with shape parameter
k = 1.5 and scale parameter v = 8000 [11]. This Gamma dis-
tribution supports that the initial source intensity value can be
drawn from [0,∞), and it is broad enough to cover all likely
non-negative source intensity values.

ISPC is initialized by drawing random samples in 3Ns

dimensional parameter space from π0(θ). The number of sam-
ples is set to N = 2500Ns [11], and the expansion factors are
evenly distributed on a log scale as discussed in Ref. [12]. The
following termination criterion for ISPC proposed in Ref. [11]
has been used:

Ns∑
i=1

√
σ2
xi

+ σ2
yi

≤ 2.5Ns (36)

A single run of ISPC for Test 1, Test 2 and Test 3 is shown
in Figs. 4, 5 and 6, respectively. A unique color is assigned to
random particles associated with each source sampled from the
random distribution π0(θ). The different color blobs illustrate
the agglomeration of these particles over the true source loca-
tion, as the algorithm progresses. From these figures, it is clear
that samples converge to the true source locations as number
of iterations increases. Especially, the result for Test 3, with
three sources present, indicates that ISPC is a suitable algo-
rithm to identify three sources parameters, while MLE diverges.
These results are once again consistent with results reported in
Ref. [11].

From these results, it is clear that the ISPC algorithm works
well in estimating the unknown source parameters and one can
also compute the corresponding posterior density function asso-
ciated with those estimates. However, the particle filter based
approach is not suitable for estimating the number of sources
present when only radiation counts are provided. One generally
needs to depend upon exhaustive model selection criteria like
Bayesian information criteria to guess the number of sources
which can be computationally very expensive.

D. Sparse Convex Optimization Problem based Maximum
Likelihood Estimation (SCOPMLE)

This section describes the paradigm where the SCOP solu-
tion is generated using the approach outlined in Table I. This
solution forms the initial guess for a MLE and the combination
of SCOP and MLE is what will be referred to as SCOPMLE. A
uniform 50× 50 grid of potential source locations is generated
over the region of interest for Test 1, Test 2, and Test 3. The grid
is assumed to be fine enough to cover the region with sufficient
resolution. No grid point is located at a sensor location in order
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TABLE VI
TEST 1: SCOPMLE VS. MLE VS. ISPC

TABLE VII
TEST 2: SCOPMLE VS. MLE VS. ISPC

TABLE VIII
TEST 3: SCOPMLE VS. MLE VS. ISPC

to avoid the singularity problem of the sensor model given by
Eq. (1). The matrix A in Eq. (20) is M ×N , i.e., 73× 2500,
78× 2500 and 75× 2500 for Test 1, Test 2 and Test 3, respec-
tively and is fully determined by the grid points and the sensor
locations. The diagonal matrix D with the diagonal elements
given by the L2-norms of the matrix A is then easily obtained,
and its size is N ×N , i.e., 2500× 2500.

Based upon our experience, the value of C is set to be 54 and
is fixed for each test. And the value of the threshold ε in the iter-
ative re-weighting scheme of Eq. (21) is set to be 1 and hence
only ωk > 1 count/sec at a distance of 1 meter, is considered
to be sources. For implementation, CVX for MATLAB [32],
a package for solving convex optimization problems is used.
Among many different exit conditions in the use of CVX, only
“Solved” condition is accepted. During iterative L1-norm min-
imization, the value of the cost function (costF) is computed,
and the following termination criteria is implemented:

|costF (l + 1)− costF (l)| < (Δ = 0.00005) (37)

where costF (l + 1) and costF (l) are values of the cost func-
tion in the (l + 1)th iteration and in the (l)th iteration, respec-
tively.

Figs. 7, 8, and 9 illustrate the number of sources and their
locations as the number of iterations are increased in the pro-
posed re-weighted L1-norm minimization for Test 1, Test 2,
and Test 3, respectively. It is clear from these results the sparse
convex optimization problem (SCOP) accurately identifies the
number of sources in each test case and provides a reasonable
estimate of source location. Furthermore, source parameter esti-
mates along with one σ bounds for different algorithms are
provided in Tables VI, VII, and VIII for Test 1, Test 2 and
Test 3, respectively. From these results it is clear that the SCOP

accuracy, which is limited by resolution of the grid, is highly
improved by making use of the maximum likelihood approach
and using SCOP estimates as initial guess. It is also clear that
SCOPMLE provides consistent estimates for uncertainty asso-
ciated with source parameter estimates. For all the three test
cases, the true source parameters lie inside one σ box around
SCOPMLE estimates. In this sense, the proposed approach
even outperforms ISPC. Graphically, σ ellipse bounds in 3-
dimensional space which captures the true source parameters
(represented by the oval ellipsoid located away from the center
of the σ box) are shown in Fig. 10.

Finally, the execution time of SCOPMLE is compared to
that of MLE and ISPC in the MATLAB environment on a
laptop computer (Windows 7 Home Premium, 2.2 GHz Intel
processor, 4 GB RAM). The MATLAB function TICTOC is
used to get the execution times of different algorithms imple-
mented and the results are given in Table IX. The execution
time of MLE, ISPC and SCOPMLE is mainly determined
by the initial estimate, the number of samples and the grid
size, respectively. It can be seen that the execution time for
SCOPMLE is the shortest compared to the other methods. MLE
does not converge in the presence of three sources, and the exe-
cution time for ISPC increases dramatically with the number of
sources, mainly because high-dimensional space requires high
number of samples. SCOPMLE does not scale the grid size
for each Test and performs with good balance between accu-
racy and computational efficiency for radiological source term
estimation.

V. PERFORMANCE STUDY

It is evident that numerous physical experimental parameters
such as SNR, number of sensors, relative location of sensors,
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Fig. 10. σ ellipse bounds (a) Test 1: Source 1, (b) Test 2: Source 1, (c) Test 2: Source 2, (d) Test 3: Source 1, (e) Test 3: Source 2, and (f) Test 3: Source 3.

etc., and algorithmic parameters such as convergence thresh-
old, grid size, etc., influence the performance of any source
estimation algorithm. In this section we evaluate the impact
of source strength threshold ε, mean background noise and
signal-to-noise ratio (SNR) on the performance of the proposed
SCOPMLE algorithm. The impact of grid size on the perfor-
mance of the SCOPMLE is also evaluated. The results of these
tests are described in this section.

The source strength threshold variable ε is used to assert the
existence or non-existence of a source at a grid location, and
is deemed an important variable that can impact the perfor-
mance of the SCOPMLE in correctly identifying the number of
sources. Numerical studies conducted by varying ε from 10−3

to 102 revealed that the algorithm consistently identified the

TABLE IX
EXECUTION TIME (SEC): SCOPMLE VS. MLE VS. ISPC

same number of sources, and has no impact on the estimate of
the source parameters. This was due to the fact that the L1 norm
minimization problem reduced the source strength at most of
the grid point to the machine numerical precision of zero. The
following subsections describe the performance of SCOPMLE
when the mean background noise is assumed to be unknown
and the impact of SNR.
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TABLE X
SOURCE PARAMETER ESTIMATION WITHOUT ANY KNOWLEDGE OF MEAN BACKGROUND NOISE
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Fig. 11. Test 1: Effect of SNR on source Location and Strength assuming a constant background count of 0.9.(a) Source Location Error vs. Mean Strength of
sensors (b) Source Strength Error (%) vs. Mean Strength of sensors (c) Distribution of Sensor readings vs. # of Sensors.

VI. ESTIMATION OF BACKGROUND NOISE

To study the robustness of the proposed SCOPMLE algo-
rithm with respect to the background noise strength, the mean
background noise is assumed to be completely unknown and is
estimated along other source parameters. Assuming the mean
background noise to be constant over the domain of interest as
depicted by sensor model of Eq. (1), the mean background noise
is appended as additional variable to unknown source parame-
ter vector, Ω. Ideally, we can estimate the background at each
sensor location. It will, however, increase the number of vari-
ables and one potentially would need to increase the grid points.
Table X summarizes the estimated value of different source
parameters along with associated uncertainty for all the three
test cases. The mean background noise is estimated to be 0.38,
0.21 and 0.32 in case of Test Case 1, Test Case 2, and Test
Case 3, respectively. The three tests were carried out on dif-
ferent days. Timing of the tests is what we posit is the reason
why the estimated background turned out to be different for the
three cases. Although the estimated mean background noise is
almost one third of the measured background noise, the true
source parameters lie inside one σ box around SCOPMLE esti-
mates. Furthermore, the source parameter estimate are found to
vary less than 1% when the mean background noise is varied
from 0.1 to 1.0. The negligible variations in estimates of source
parameters with respect to variations in assumed mean back-
ground noise can be attributed to high signal-to-noise ratio for
the collected measurement data. In the next section, we study
the effect of signal to noise ratio on the performance of the
SCOPMLE algorithm.

A. Effect of Signal to Noise Ratio on the Source Parameter
Estimation

To evaluate the performance of the combination of the sparse
convex optimization approach which helps identify the num-
ber of sources and location of the sources and the Maximum
Likelihood Estimator which takes the output of the sparse con-
vex optimization as the initial guess, a series of tasks were
performed. Starting with the inclusion of all sensors, the source
parameter estimation problem was solved. The following iter-
ate involved dropping the sensor with the largest signal to noise
ratio and the source parameters were estimated with a smaller
set of sensors. This was repeated until the mean of the remain-
ing sensors had a sensor count rate was about 2 which is nearly
twice the background count rate of 0.9.

Fig. 11(a) illustrates the norm of the error in estimated loca-
tion of the source for the single source case. It can be seen that
the error in the estimated location of the source degrades as
the mean source strength decreases. The error is smaller than
2 meters for all scenarios where the mean of the sensor count
rate was greater than 2. Similarly, Fig. 11(b) illustrates the per-
cent error in the estimate of the source strength. It can be seen
that there is a linear degradation (on the log scale) in the esti-
mate of the source strength as the mean of the sensor count
rate decreases. The error in the source strength estimates for
all sensor suites where the mean of the sensor count rate was
greater than 2, ranged between 3 to 30%. To clearly commu-
nicate the impact of dropping sensors with the largest SNR, a
box and whisker chart is presented in Fig. 11(c). The abscissa
corresponds to the number of sensors included in the source
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Fig. 12. Sensor Layout (a) Mean Count = 13.0847, Max Count Rate = 66.7833 (b) Mean Count = 9.6227, Max Count Rate = 37.9833 (c) Mean Count =
6.7030, Max Count Rate = 18.3667 (d) Mean Count = 3.049, Max Count Rate = 6.9000 (e) Mean Count = 3.5560, Max Count Rate = 8.000

(f) Mean Count = 1.6115, Max Count Rate = 2.2833.

estimation task. The ordinate represents the distribution of the
sensor count rates. This chart clearly illustrates that the perfor-
mance degradation shown in Figs. 11(a) and 11(b) results from
inclusion of sensors, which are farther away from the source
and fewer of them. It should be noted that Figs. 11(a) and 11(b)
do not capture the impact of the relative location of the sen-
sors, which play a critical role in the localization of the sources.
Since the measurement model is a function of the distance of
the source from the sensor, the layout of the sensors in rela-
tion to the location of the source plays an important role in the
ability to localize the source.

Fig. 12 illustrates the sensor layout for six cases ranging from
including all sensors to the sensor set when the source local-
ization problem results in erroneous estimates of the source.
Information about the mean of the sensor reading and the maxi-
mum count rate is also provided since this can be used to gauge
the average location of the sensor set and the closest sensor
location to the source. It can be seen in Fig. 12(a)–(d), that the
source is accurately localized. However, in Figs. 12(e) and (f), it
can be seen that the sensor set is smaller and located far from the
source. It can also be noted that the sensors are in two clusters,
which do not provide enough information to discriminate the
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Fig. 13. Test1: Sensor Readings (a) 72 Sensor Readings, (b) 32 Sensor Readings, and (c) 16 Sensor Readings.

source location resulting in a degradation in the performance
of the source localization algorithm. For the last case shown in
Fig. 12(f), the closest sensor is 65 meters away from the source,
while for the case where all the sensor data was used, which
corresponds to the case shown in Fig. 12(a), the closest sensor
location was 12 meters.

Fig. 13 shows the spatial variation of the magnitude of sen-
sor readings corresponding to three different cases of sensor
layouts of Figs. 12(a), 12(d) and 12(f). The x- and y-axis are
indices, which correspond to a uniform increment of the sensor
locations over a 190× 105 meter region. From Figs. 13(a), it
can be noted that the maximum sensor count is 66.78, while in
Figs. 13(b) and 13(c) the maximum sensor counts are 6.9 and
2.2833, respectively. Fig. 13(b) illustrates that despite weaker
readings and fewer sensors compared to the case illustrated in
Fig. 13(a), the proposed algorithm localized the source well.
Fig. 13(c) corresponds to sensor layout illustrated in Fig. 12(f)
where the estimated source parameters did not converge to the
truth.

It should be noted that, as shown in Fig. 11(c), the
SCOPMLE approach performed reasonably well in the face
of simultaneous reduction in the number of sensors and with

the resulting sensor suite being located further away from
the source. This study concurrently studied the effect of
SNR and number of sensors on the ability of the algorithm
to correctly identify the number of sources and the source
parameters.

The final set of tests involved comparison of the discretiza-
tion of the spatial domain of interest. The grid size is corre-
lated to number of potential source locations in the L1 norm
optimization problem. The finer the grid size, better is the
initial condition for the maximum likelihood estimator part
of SCOPMLE. Smaller grid size is also associated with an
increased computational cost of the optimization algorithm.
Figs. 14(a) and (b) illustrate the source location error and the
source strength respectively. Since the benefit of the smaller
grid size is noticeable when the sensors are located far from the
source, only the results corresponding to fewer sensors located
farther away from the source are presented in Fig. 14. The dia-
monds and the grey asterisx correspond to the results from a
coarser and finer gridding of the spatial domain respectively. It
should be noted the significant improvement is the estimate of
the source strength when fewer sensors which are farther from
the source are used to estimate the source parameters.
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Fig. 14. Test1: Impact of Grid Size (a) Source Location Error and (b) Source Strength Error.

VII. CONCLUSIONS

In this paper, a computationally efficient method for the
estimation of multiple source parameters such as the num-
ber of sources, source locations and intensities was presented.
Multiple source term estimation problems pose a unique chal-
lenge when the number of sources is unknown. The main con-
tribution of the proposed methodology is that it exploits sparse
approximation tools in conjunction with maximum likelihood
approach to accurately estimate the number of sources along
with other source parameters. The main idea of the proposed
approach is to discretize the region of interest where the sources
potentially exist and estimate the two-dimensional source inten-
sity distribution directly. First, the discretization procedure
brings high efficiency due to the fact that the nonlinear obser-
vation model is made formally linear in source intensity and
sparse approximation tools based upon recursive L1-norm min-
imization is used to provide good estimates for the source
intensity. Although the discretization procedure results in large-
scale optimization problem, it is solved efficiently by making
use of recent advances in convex optimization. A key advantage
of the proposed approach is that it handles the model selec-
tion problem and the parameter estimation at the same time.
Finally, the maximum likelihood estimator is used to further
refine the accuracy of the provided estimates. The maximum
likelihood estimates guarantee an excellent performance when
initially chosen search points are close to the optimal solution.
Selecting the source parameters obtained by solving the recur-
sive L1-norm minimization problem as the initial guess, results
in the maximum likelihood estimator improving the accuracy,
which was limited by the resolution of the grid. In addition to
this, the proposed approach provides uncertainty bounds asso-
ciated with the source parameter estimates while incorporating
sensor model errors. The performance of the proposed algo-
rithm is compared against conventional maximum likelihood
estimator and important sampling with progressive correction
by making use of three different datasets corresponding to
real experiments involving three sources of different strengths.

The results presented illustrate that the proposed approach per-
forms well in providing estimates of source parameters along
with the uncertainties associated with these estimates. To eval-
uate the impact of the SNR, a series of problems were solved
where the strongest sensor reading was eliminated from the
data set, which resulted in fewer sensor reading with smaller
SNRs. It was shown that the source strength estimates and
the source location estimate errors grew monotonically with
smaller SNRs.
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