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ABSTRACT 
 

Spacecraft need specific attitude control methods that depend on the mission type 

or special tasks. The dynamics and the attitude control of a spacecraft with a shifting 

mass distribution within the system are examined. The behavior and use of conventional 

attitude control actuators are widely developed and performing at the present time. 

However, the advantage of a shifting mass distribution concept can complement 

spacecraft attitude control, save mass, and extend a satellite’s life. This can be adopted in 

practice by moving mass from one tank to another, similar to what an airplane does to 

balance weight. Using this shifting mass distribution concept, in conjunction with other 

attitude control devices, can augment the three-axis attitude control process. Shifting 

mass involves changing the center-of-mass of the system, and/or changing the moments 

of inertia of the system, which then ultimately can change the attitude behavior of the 

system. 

This dissertation consists of two parts. First, the equations of motion for the 

shifting mass concept (also known as morphing) are developed. They are tested for their 

effects on attitude control by showing how shifting the mass changes the spacecraft’s 

attitude behavior. Second, a method for optimal mass redistribution is shown using a 

combinatorial optimization theory under constraints. It closes with a simple example 

demonstrating an optimal reconfiguration. 

The procedure of optimal reconfiguration from one mass distribution to another to 

accomplish attitude control has been demonstrated for several simple examples. Mass 

shifting could work as an attitude controller for fine-tuning attitude behavior in small 
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satellites. Various constraints can be applied for different situations, such as no mass shift 

between two tanks connected by a failed pipe or total amount of shifted mass per pipe 

being set for the time optimum solution. Euler angle changes influenced by the mass 

reconfiguration are accomplished while stability conditions are satisfied. In order to 

increase the accuracy, generally, more than two control systems are installed in a satellite. 

Combination with another actuator will be examined to fulfill the full attitude control 

maneuver. Future work can also include more realistic spacecraft design and operational 

considerations on the behavior of this type of control system. 
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NOMENCLATURE 

d radius of the imaginary sphere of the satellite system 

�  displacement vector from the origin center-of-mass to the new center-of-mass 

dm a small mass element in a body 

f(x) objective function 

h altitude of a satellite 

mi mass of fuel in each tank (kg) 

n mean motion of the orbital reference frame 

�  position vector of the mass element dm or the control mass 

��  position vector of the composite mass center of the mass center of body G 

��  position vector of the mass center of body G 

�  state vector 

�  control vector 

�  observation vector 

�  latitude of a satellite 

	  longitude of a satellite 


  angular velocity vector of a satellite with respect to the inertial coordinate system 

�  angular velocity vector of a satellite with respect to the body fixed coordinate system 

�  roll angle (rad) 


  pitch angle (rad) 

�  yaw angle (rad) 

�  position vector of the mass element dm from the center-of-mass of body G 

A
M/N

 transformation matrix converting the coordinate system from N to M 

A, B, C, I moments of inertia (kg m
2
) 

B subscript for body fixed frame (e.g., XBYBZB) 

D the distance between two parallel axes (used in parallel axis theorem) 

DCM Direction Cosine Matrix 

E subscript for Earth-centered fixed frame (e.g., XEYEZE) 

G gravitational constant 

�  angular momentum of a rotating body 

I subscript for the inertial frame (e.g., XIYIZI) 

Ir moment of inertia along roll-axis (kg m
2
) 

Ip moment of inertia along pitch-axis (kg m
2
) 

Iy moment of inertia along yaw-axis (kg m
2
) 

L, M, N arbitrary coordinate systems 

M total mass of the satellite system (kg) 

Mmass total mass of the moving masses (kg) 

Msat mass of the dry satellite (kg) 

��  gravity gradient moment 

R subscript for the orbital reference coordinate system (e.g., XRYRZR) 
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Re the radius of the Earth 

��  vector to the composite center-of-mass of the system in the inertial coordinate system 

��  vector to the center-of-mass of an object in the inertial coordinate system 

Ω������   angular velocity vector of a orbital reference coordinate system with respect to the 

 inertial coordinate system 
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Chapter 1  

 

INTRODUCTION 

A general spacecraft attitude control system is composed of three major functions: 

sensors, controllers, and dynamic processes. The sensor detects the satellite’s attitude and 

controllers adjust the system. The vehicle’s dynamic rotational motion completes the 

attitude control system. The purpose of attitude control of a spacecraft is to change its 

orientation with respect to the defined frame of reference or to maintain a desired 

orientation in the presence of disturbance torque. To achieve a desired direction, a 

spacecraft needs specific attitude control methods that are dependent on its mission or 

special tasks, for example, weather forecasting, communications, or military observation. 

Attitude control methods are divided into two classes: active control and passive control. 

Distinction between active and passive is that active methods require expenditure of 

energy and passive ones do not. 

The main contribution of this dissertation is to develop new control designs for 

satellite attitude dynamics. The dynamics and attitude control of a spacecraft using a 

shifting mass distribution within the system is investigated. The main advantage of a 

shifting mass distribution concept is that it may allow for completing attitude control and 

saving fuel and extending a satellite’s life as well. This can be adopted in practice by 

moving mass such as a liquid fuel from one tank to another, similar to what an airplane 

does to balance its weight. Using this shifting mass distribution concept, when used in 
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conjunction with another attitude control system, can achieve a better attitude control 

process. 

The procedure of optimal reconfiguration from one mass distribution to another to 

accomplish attitude control consists of two parts. First, the equations of motion for the 

shifting mass concept (also known as morphing) are developed. They are tested for their 

effects on the attitude control by showing how shifting the mass changes the spacecraft’s 

attitude behavior. After verifying that mass shifting could work as an attitude controller 

for fine-tuning attitude behavior in a small satellite, Euler angle changes influenced by 

the mass reconfiguration are developed while stability conditions are satisfied. Extending 

this result, the ground coverage (pointing characteristics) change from a mass 

redistribution, which is a final goal of this research, is examined. In the meantime, the 

controllability is examined to see if this new concept can be applied as a sole controller. 

Due to the limited amount that mass can be shifted, the angular control range is 

calculated to establish the relationship between shifting mass and pointing angle range. 

With this range result, a simulation is performed under various constraints considering 

the practical applications. Since all masses are assumed to move instantaneously for the 

maneuver in this dissertation, continuous mass transfer case could be taken into account 

for further research.  

Once the exact system dynamics and mathematical formulation methods are 

developed, the second part of the research developed the advanced optimization 

algorithm using different boundary conditions and physical characteristics. A method for 

optimal mass redistribution is shown using a combinatorial optimization theory under 

constraints. The optimization technique illustrated here focuses on both minimizing the 
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total optimal mass travel and distribution among the tanks. Various optimal solutions are 

also represented with different constraints. For instance, all tanks are available for mass 

transfer or limited mass shifting case is examined using MATLAB’s Optimization 

Solvers. Moreover, various constraints can be applied for different situations, such as no 

mass shift between two tanks connected by a blocked path or total amount of shifted 

mass per pipe being set for the time optimal solution by modifying the solving algorithm. 

Thus, the modified objective function should be developed to increase the trustworthiness 

and expertise of this research. 

The primary goals of this study are to examine a new way of control method by 

mass redistribution inside the system without other control methods by 

 developing a concept controlling the mome⇒ nt of inertia of the satellite and establishing 

a generalized solution as a single controller; 

 combining with other types of actuators to fulfill the full attitude control maneuver in ⇒

order to increase the maneuver accuracy; 

 modeling the optimization a⇒ lgorithm, which is similar to network theory and under 

various cost functions; 

 examining the effects of shifting mass on ⇒ ground coverage and other attitude 

accuracies; and 

 finding the optimal mass travelling and distributing of mass among the tanks⇒ . 

 

The remaining chapters are organized as following: Chapter 2 contains brief reviews for 

satellite attitude control methods for both active and passive controllers. Additionally, 

basic control representatives used for this dissertation are introduced. In Chapter 3, a 
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specific design for this research has been defined and the related equations of motion are 

found. Compared with the general approach to the motion of gravity-gradient-stabilized 

satellites, a reverse approach to compute the moments of inertia with limited known 

conditions is developed. Once the minimum mass transfer mapping is obtained, the 

optimization process is characterized to find the optimal solution. Network theory is 

applied to define various objective functions. Chapter 4 shows the simulation results 

based on the equations developed in Chapter 3. Beginning with a simple case, which is 

the center-of-mass does not change after mass movement, examples for more 

complicated cases are illustrated. Moreover, restrictions such as a blocked pipe or an 

abandoned tank are tested. In addition to working as a sole control method, mass 

redistribution with an internal rotating device is added. Chapter 5 summarizes all the 

performed tasks, discusses the result and presents conclusions that can be drawn from the 

results. Suggestions for future work are also included. 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2  

 

BACKGROUND 

A spacecraft attitude control system, as seen in the block diagram in Figure 2.1, is 

composed of three major functions: sensor, controller, and dynamic process. The sensor 

detects the satellite’s attitude and controllers operate the system to achieve the desired 

Euler angles and/or rates. The resulting dynamic rotating motion of the vehicle completes 

the closed loop of the attitude control system. 

 

 

Figure 2.1: Diagram of Spacecraft Attitude Dynamics and Control [1]  

2.1 Literature Review 

Enormous amounts of research on attitude control methods have been published 

over the years. Consequently, the behavior and use of conventional attitude control 

actuators are very developed and heavily used at the present time. Studer [2] discusses 

the ACES (spacecraft attitude control and energy storage) system with a minimum of four 
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wheels operating for three-axis attitude control. An optimal design to generate control 

torque by wheels spinning at a high speed was investigated. Tsiotras [3] presents a 

satellite system with four or more momentum wheels and three thrusters. Momentum 

wheels are used as not only actuators but as a provider of power to the satellite from the 

stored energy. Thrusters accomplish quick and large maneuvers needed for orbit 

initialization or transfer phases and manage the momentum.  A control law evaluates the 

torque, which was decomposed into two parts: tracking the power level of the wheels and 

controlling the attitude of satellite. Urakubo et al. [4] used two reaction wheels to 

investigate the satellite system under control while the angular momentum was fairly 

small. An extended Lyapunov control method was applied to derive a discontinuous state 

feedback law. Similarly, Krishnan [5] demonstrated attitude control of a satellite with two 

momentum wheels. Three wheels were initially installed but one of them failed. Two 

different control strategies were attempted for the uncontrollable satellite system. It was 

shown that a time-invariant continuous feedback control law could not stabilize the 

system successfully, but discontinuous feedback achieved stabilized equilibrium. Control 

momentum gyros were also analyzed by other researchers. Mapar [6] introduced a new 

approach to the CMG (Control Moment Gyro) applicable to the Space Station Freedom 

project. A torque equilibrium attitude was chosen for linearization of the nonlinear 

equations of motion instead of the local horizontal vertical frame since the latter was not 

suitable for linearization. Regional pole placement combined with the optimal control 

were used to stabilize an uncontrollable space station. A single gimbaled control moment 

gyro with some restriction was tested by Shi [7]. The applied restrictions helped to design 

the control system and to align the controller and the sensor axis, thus the torque could 
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remain almost constant. However, these active control devices are high-priced and have a 

penalty in fuel consumption if passive control methods are not applied. Zheng [8] 

presented an active optimal control for three-axis stabilized satellite by flywheels. A 

flexible spacecraft with vibrating solar array formed a nonlinear system and the second 

order terms were included in the equations. Linear quadratic regulators were used for 

approximation to satisfy the optimization. 

Environmental forces such as solar radiation pressure, aerodynamic drag, gravity 

gradient torque, and magnetic torque are inevitable for a LEO satellite. Sometimes these 

forces act as a perturbation, but also can counteract as a controller. Shrivastava [9] 

provide a survey of satellite attitude dynamics and control under the influence of 

environmental torques. Park [10] presents a three-axis control scheme for a rigid satellite 

body with external disturbances. The minimax approach and the inverse optimal 

approach provided guidance for an optimal robust control law. Among these passive 

control methods, magnetic torque control is widely used, especially for small satellites in 

low Earth orbit (LEO). Lovera [11] used magnetic actuators to solve the inertial pointing 

problem by means of static attitude and rate feedback. Musser [12] presented an 

autonomous spacecraft attitude control method using a linear quadratic regulator 

algorithm. Since a satellite’s orbit is not aligned with the geomagnetic field, the trajectory 

is time variant; therefore, the optimal feedback gain is time-varing as well and it is 

converted as a function of position not the simulation time. Ahsun [13] provided a control 

method for electromagnetic formation flying. High temperature superconducting wires 

acted as magnetic dipoles for the satellites’ formation in LEO. Nonlinear dynamic 

equations were simulated under the closed loop control method. Psiaki [14] developed a 
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three-axis control method with magnetic torque rods to achieve nadir pointing accuracy 

on the order of 0.5 to 1.0 deg. Without any help from other actuators such as thrusters or 

reaction wheels, the simulation showed a robust closed-loop system. Alfriend [15] also 

used a closed-loop control law for a dual-spin satellite. The satellite spin axis is assumed 

to be parallel to the installed dipoles and the interaction with the geomagnetic field was 

considered. Both approximate and numerical solutions were found for comparison. Psiaki 

[16] discussed three-axis attitude stabilization of a nadir-pointing spacecraft in LEO 

controlled by aerodynamic magnetic torques. Yaw and pitch axes control was carried out 

by passive aerodynamic drag torques, whereas active magnetic control was responsible 

for the roll axis. 

Gravity gradient attitude control is another consideration for a small satellite in 

LEO. It provides a long term control solution with small amount of force due to the 

gravitational difference around the center-of-mass of the whole system. Since the 1960s, 

gravity-gradient control has attracted attention due to its simplicity. Arduini [17] 

generated the general formulation of magnetic damping control for a gravity-gradient-

stabilized satellite. The dynamics and control for a near polar orbit satellite subject to the 

gravity torque was analyzed by Wisniewski [18]. Contrary to its simple design, the 

relationship between the Earth’s magnetic field and the magnetic torque from coils were 

expressed in nonlinear equations. It was shown that the magnetorquers could work as a 

sole three-axis actuator for gravity-gradient-stabilized satellite. Martel [19] found a 

control algorithm to utilize a magnetic control system, eliminating the need for a damper 

system. Three magnetic torquers and one three-axis magnetometer were used for stability 
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of a gravity-gradient-stabilized system. Kalman filtering provided the results for satellite 

attitude angles and their rates.  

In addition, satellite systems with appendages or interconnected systems were 

investigated using several approaches. Modi [20] reviewed the attitude dynamics of 

spacecraft with flexible parts and Lips [21] found a general formulation for a satellite 

with arbitrary number of flexible appendages. The location and shape of the appendages 

were not restricted. Governing coupled nonlinear equations for vibration from 

appendages were examined for practical applications. The center-of-mass of the whole 

system was important with the existence of individual appendages. Ng [22] developed 

further a formulation of an interconnected flexible body system. Shifting center-of-mass 

and slewing of independent bodies were associated for a large scale spacecraft 

application. A satellite system with two beam-type appendages was implemented for 

feasibility. The general approach was to calculate the center-of-mass by the location of 

arbitrary appendages and the equations of motion were analyzed to provide the dynamics 

and attitude control for a multi-body system. Kang [23, 24] used a liquid fuel tank for 

angular momentum exchange. A single movable mass control system was introduced by 

Childs [25]. An active control system by momentum exchange for an artificial-g space 

station was developed. Kumar [26] also applied one movable mass to the miniature 

satellite. The single mass was restricted to move along one axis and the related equations 

of motion were derived through a Lagrangian approach. For the control strategy, a linear 

quadratic regulator was chosen. 

Among the extensive ongoing research, the consideration of center-of-mass 

shifting under the influence of the gravitational force is the motivation for this 
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dissertation. Since relocating the center-of-mass is applicable for attitude control by 

changing the rotation angles and rates, this new concept may work as a controller for a 

multi-body satellite system in LEO. Control can be accomplished by mass redistribution 

in a satellite system using the gravity-gradient technique. Shifting mass involves 

changing the center-of-mass of the system, and/or changing the moments of inertia of the 

system, which then ultimately can change the attitude behavior of the system. 

2.2 Coordinate System 

A coordinate system is a convention to express a unique position of a point in n-th 

order space. Each position is composed of a series of scalar values. Three mutually 

orthogonal vectors can define one coordinate system, i.e., a reference frame. Three 

vectors for a random coordinate system Z are denoted as XZ, YZ, and ZZ, respectively, 

and will be used in this dissertation. All coordinate systems in this research are assumed 

to be right-handed orthonormal systems. Thus, the following equations are satisfied for 

any case: 

 

ˆ ˆ1,  
ˆ ˆ ˆˆ ˆ ˆ ˆ  for  , { , , }

ˆ ˆ0,  
Z Z

v w
v w v w X Y Z

v w

= 
⋅ = ∀ ∈ ≠ 

                             (2.1) 

    ˆ ˆ ˆ× =Z Z ZX Y Z                                                    (2.2) 

ˆ ˆ ˆ× =
Z Z Z

Y Z X                                                    (2.3) 

ˆ ˆ ˆ× =Z Z ZZ X Y                                                    (2.4) 
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 In this dissertation, the several coordinate systems are introduced based on 

different interests. One position in two different coordinate systems can be transferred 

easily by a direction cosine matrix without changing its original characteristic. By 

extending this through a chain rule, any transition can be performed. Some problems can 

be set up in one coordinate system and be solved in a different system. The following 

coordinate systems are generally used for satellite attitude control systems. 

2.2.1 The Inertial Coordinate System  

The inertial coordinate system denoted by the letter I is the system in which the 

origin is located at the Earth’s center. In this system, ˆ
IX  is defined as the unit vector 

form the Earth’s center to the first point of Aries. The unit vector ˆ
I

Z  is chosen from the 

Earth’s center to the North Pole. The vector ˆ
IY  is chosen to complete the right-handed 

system. Figure 2.2 shows a diagram for the inertial coordinate system. 
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ˆ
IZ

ˆ
IX

ˆ
IY

 

Figure 2.2: The Inertial Coordinate System 

 

2.2.2 The Earth-Centered Fixed Coordinate System  

The Earth-centered fixed coordinate system denoted by the letter E is illustrated 

in Figure 2.3. Compared with the inertial coordinate system, this reference frame is fixed 

to the Earth, thus it rotates at the same speed as the Earth’s rotation with the origin 

located at the Earth’s center. In this system, ˆ
E

X  is defined as the unit vector from the 

Earth’s center to the Prime Meridian and the Equator. The unit vector ˆ
EZ  is chosen from 

the Earth’s center to the North Pole. The vector ˆ
EY  is chosen to complete the right-

handed system pointing from the center of the Earth to the 90th meridian east. 
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ˆ
EZ

ˆ
E

X

ˆ
EY

 

Figure 2.3: The Earth-Centered Fixed Coordinate System 

 

2.2.3 The Body-Fixed Coordinate System 

The body-fixed coordinate system, denoted with the letter B, is the system in 

which its origin is generally located at the center-of-mass of a satellite. As its name 

suggests, this reference coordinate system is defined in relation to the satellite itself. This 

orthnormal system can be chosen to point any direction. Figure 2.4 shows one example of 

the body-fixed coordinate system. 
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ˆ
BZ

ˆ
BX

ˆ
BY

 

Figure 2.4: The Body-fixed Coordinate System 

2.2.4 The Orbital Reference Coordinate System 

The orbital reference coordinate system, which is denoted by the letter R, is the 

fundamental coordinate system for satellite attitude control maneuvers. Since attitude 

control occurs around the center-of-mass of a satellite, this coordinate system must 

always be taken into account. The satellite’s center-of-mass is the origin of this 

coordinate system. The unit vector ˆ
R

Z
 
points radially from the Earth’s center to the 

satellite. The unit vector ˆ
RX  is defined in the tangential direction of the satellite in an 

orbit. From Equation (2.4), ˆ
RY , which is normal to both ˆ

RX  and ˆ
RZ , completes the 

orbital reference coordinate system pointing out of the page. A simplified orbital 
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reference coordinate system is shown in Figure 2.5. Appendix A shows several examples 

of how different coordinate systems can be converted between each other. 

 

ˆ
RZ

ˆ
RX

 

Figure 2.5: The Orbital Reference Coordinate System 

2.3 Attitude Representations 

Four different coordinate systems are defined in the previous sections. The next 

step is to establish the transition relationships between these systems. The fundamental 

concept of this procedure is to explain one coordinate system in terms of another system. 

Sometimes it is necessary to extend from a small motion change in a satellite to the 

groundtrack on the Earth. To achieve this maneuver the attitude change must be 

considered in the orbital reference coordinate system first and the resulting effect in an 

inertial coordinate system can be found by applying the relationship between those two 
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coordinate systems. However, it is more intuitive if this process goes through the body-

fixed coordinate system since the relationship between the body-fixed coordinate system 

and the inertial coordinate system is readily known. Also, the small difference can be 

seen more easily than connecting the orbital reference coordinate system to the inertial 

coordinate system directly. The transition process can be combined by applying the chain 

rule through direction cosine matrices. Assume two unit vectors ˆ ˆ ˆ  M M Mx y z and 

ˆ ˆ ˆ  N N Nx y z

 

for two arbitrary coordinate systems M and N, respectively, and the 

relationship developed in next section can be applied for any transformation. 

2.3.1 Direction Cosine Matrix 

As the two vectors ˆ ˆ ˆ  M M Mx y z and ˆ ˆ ˆ  N N Nx y z

 

are unit vectors, each can 

be expressed with vectors of the other system following the simple rule of linear algebra. 

For example, x̂M  may be written as 

ˆ

ˆ ˆ ˆ ˆ ˆx

ˆ

x y z x y zx x x x x x

 
  = + + =    
  

N

M N N N N

N

x

x y z y

z

                             (2.5) 

 

Likewise, both ŷM and ẑM have similar expressions and these equations may be 

merged into one matrix as following:  
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ˆ ˆ ˆ

ˆ ˆ ˆDCM

ˆ ˆ ˆ

x y z

x y z

x y z

x x x

y y y

z z z

      
      = =      
            

M N N

M/N

M N N

M N N

x x x

y y y

z z z
                          

 (2.6) 

 

The matrix DCM
M/N

 is the direction cosine matrix that relates the M-frame to the 

N-frame. The DCM
M/N

 has nine elements for three-dimensional space representing the 

base unit vector of system M with respect to the system N. With the benefit of the 

characteristics of base unit vectors, which are orthonormal, additional constraint 

relationships for the elements of the DCM
M/N

 can be derived from Equation (2.1). For 

instances, all nine elements are not required to describe the satellite’s attitude. Also, there 

are six possible constraint equations with the elements of the DCM
M/N

 and those 

constraints can yield the useful properties explained in Appendix B. 

2.3.2 Euler Angles 

Leonhard Euler (1707-83) claimed that any two different coordinate systems 

sharing the same origin, but with different orientations, might be aligned to each other by 

three successive rotations. The order of the rotation is not necessarily limited, but any one 

axis cannot be used twice in a row. One possible rotation order is that the first angle 

rotation is about the z-axis, the second angle rotation about the changed y-axis, and the 

last rotation angle about the changed x-axis. Now, it is guaranteed that there are always 

three angles used to complete the required maneuver, which are generally called Euler 
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angles. More details for this sequence and the rotation matrix calculation are explained in 

Appendix C. 

There are two types of transformation from one coordinate system to the other. 

The first type is a rotation completed by all three different axes. This type provides six 

rotation sets. The second type is when the first and third angles rotate around the same 

axis and yield six transformation cases. Consequently, 12 possible instances of rotation 

result 12 combinations of Euler angle rotation sets. 

Euler angles are fairly intuitive to understand. No further constraints or conditions 

are required. This characteristic may be useful for the intuitive transformation between 

the body-fixed coordinate system and the orbital reference coordinate system. Also, an 

alternative method, roll-pitch-yaw rotation for small angle changes, which has been 

applied for this research, could also be used. 

 There are a number of ways to describe the mapping sequences that exist for 

different situations. All those methods are used for the same purpose with various 

circumstances and it is also possible to convert between methods. Detailed conversion 

between direction cosine matrix and Euler angles are presented in Appendix D. Table 2.1 

summarizes both advantages and disadvantages of each attitude mapping computation. 
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Table 2.1: Advantages and Disadvantages of Each Attitude Representation [27] 

Parameterization Advantages Disadvantages 

 

 

Direction Cosine  Matrix 

- No singularities  

- No trigonometric Functions  

- Clear physical interpretation  

- Convenient product rule for  

successive  rotations 

- Six  redundant parameters 

 

Euler Angles 

- No redundant parameters  

- Clear physical interpretation 

- Singularities at some angles  

- Trigonometric functions   

- No convenient product rule  

for  successive rotations 

 

 

2.4 Basic Representations in Angular Motion and Rotational Dynamics 

There are several representations to be introduced to describe the angular motion 

in a rotating system. From the definitions of the moment of inertia and the parallel axis 

theorem, properties of the angular momentum are now presented. For example, other 

properties such as the conservation of angular momentum, are widely used through this 

research. 

2.4.1 Moment of Inertia 

 The moment of inertia is defined as a measure of how difficult it is to change the 

rotational motion of an object around its rotating axis. This concept in angular dynamics 

is analogous to the role mass plays in linear dynamics. Likewise, mass is one of the most 

essential properties in a linear system, so angular quantities using moments of inertia in 

an angular system are unavoidable. Note that the moment of inertia is calculated not only 

from how the mass of the object is distributed but also how far the differential element of 
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mass is located from the axis. Thus, the moment of inertia can be changed if one of those 

or both changes. The equation for the moment of inertia is 

 

2

m
I d dm= ∫

                                          
                (2.7) 

 

where I is the moment of inertia, m is the total mass of an object, dm is the differential 

element of mass, and d is the distance of dm from the rotating axis.  

2.4.2 Parallel Axis Theorem 

 The parallel axis theorem is used for calculating of the moment of inertia of an 

object about any axis. If a certain axis does not pass through its center-of-mass with a 

given the moment of inertia of a body, then there must be another axis passing through 

the center-of-mass and is parallel to the axis. Under those circumstances, the following 

equation holds 

 

2
center_of_mass total_massI I M D= +

                     
                (2.8) 

 

where  Icenter_of_mass is the moment of inertia of the object about an axis passing through its 

center-of-mass, Mtotal_mass is the total mass of the object, and D is the distance between 

two axes. 
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2.4.3 Angular Momentum 

 A set of governing equations for the rotating system results in the differential 

equations of the angular momentum about the center-of-mass. Suppose two coordinate 

systems, the inertial coordinate system with a subscript I and the body-fixed coordinate 

system with a subscript B. Let R  be a random vector, then the derivatives of R  in each 

coordinate system can be related by 

 

 
I B

dR dR
R

dt dt
ω

   
= + ×   

   
                                            (2.9) 

 

where 
I

dR

dt

 
 
 

,

 B

dR

dt

 
 
 

are derivatives in the inertial coordinate system and the body-fixed 

coordinate system, respectively, and ω  is the angular velocity of the body-fixed 

coordinate system relative to the inertial coordinate system.  

 Two coordinate systems, the inertial coordinate system ˆ ˆ ˆ
I I I

X Y Z with the origin at 

OI and the body-fixed coordinate system ˆ ˆ ˆ
B B B

X Y Z  with the origin OB located at the 

center-of-mass of the body, are illustrated in Figure 2.6. Both ˆ ˆ ˆX Y Z 
 I I I  and 

ˆ ˆ ˆX Y Z 
 B B B  are assumed to be corresponding unit vectors without loss of generality. 

Then, for any arbitrary small mass ms in the body B, i o iR R r= + . Substituting into 

Equation (2.9) results 
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i o i i o i iR R r r v v rω ω= + + × = + + ×ɺ ɺ ɺ                                   (2.10) 

 

 

ir

0R

iR

ˆ
I

Z

ˆ
I

X

ˆ
IY

ˆ
B

Z

ˆ
B

X

ˆ
B

Y

 
Figure 2.6: Rigid Body Diagram 

 

 

Inserting Equation (2.10) into the definition of the angular momentum equation, the 

following equation is obtained, 

 

( )= × = × + + ×ɺ ɺ ɺ ɺ
i i s i s i o i iH r m R m r R r rω

                             

  (2.11) 
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where 
ɺ

iH  is the derivative of the angular momentum vector of a rigid body about its 

center-of-mass. By assuming the body as a rigid body, 0ir =ɺ  satisfies and it follows that 

 

( ) ( )0= × + + × = − × + × ×ɺ ɺ ɺ
i i i o i i i i i i iH m r R r r v m r m r rω ω                     (2.12) 

 

Then, the angular momentum of the entire body is calculated by the summation of the 

small mass over the whole body 

 

( )0= =− × + × ×∑ ∑ ∑ɺ ɺ
i i i i i i

i i i

H H v m r m r rω                             (2.13) 

 

Since the origin of body B, OB, is assumed to be located at the center-of-mass of the body, 

it follows that 

 

                       0i i

i

m r =∑
                                                   

  (2.14) 

 

Equation (2.13) then reduces to 

 

( )= × ×∑ɺ
i i i

i

H m r rω
                 

                           (2.15) 
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Equation (2.15) can be used to find Euler’s equation describing the dynamics of a rigid 

body in a rotating system. A detailed derivation of Equation (2.16) is found in Hibbeler 

[28]. In Equation (2.16), it is presented that the change of angular momentum in an 

inertial coordinate system is the summation of the angular momentum change in the body 

coordination system plus the cross product of the angular velocity of the body coordinate 

system with respect to the inertial coordinate system and angular momentum of the body, 

i.e., 

 

B/I

external

I B

dH dH
M H H

dt dt
ω

   
= = = + ×   

   

ɺ
                              (2.16) 

 

where 
externalM  is the external moment acting on the body about its mass center. 

2.5 Sensors and Controllers for Satellite Attitude Dynamics 

 In order to perform the mission of the satellite successfully, the satellite’s orbit 

and attitude control system is essential. With more accurate and efficient measurement 

and maneuvering, better performance of the satellite’s duties may be expected. As 

illustrated in Figure 2.1, the first step in the attitude control starts by observing the 

satellite’s attitude. This observation is performed by various sensors installed in a satellite 

system. Sensor modeling and attitude determination for satellite has been well organized 

by Sunde [29]. Chobotov [1] shows the torque ranges of several control actuators in 

Table 2.2. 
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Table 2.2: Torque Range of Control Actuators [1] 

 
 

Active control is used for maneuvers that require high accuracy. The downside of 

these systems is that they need more power or consume fuel, which shortens the life of a 

spacecraft. On the converse, passive control is attractive for its low cost, simplicity, and 

decreased power usage. 

2.5.1 Gravity Gradient 

 The gravity gradient torque is one of the environmental torques of important 

applicability to the attitude control of a satellite. This torque by the Earth can be used to 

stabilize satellites in a nadir pointing attitude and can act on two axes of the orbital 

reference coordinate system. In orbit, a non-symmetric mass distribution of the satellite 

performs as a torque due to the Earth’s gravity. 

 When the motion of a satellite is described, it is common to express the motion of 

a satellite in orbital reference coordinate system defined in Section 2.2.4. In Figure 2.7, 

the coordinate system ˆ ˆ ˆ
R R R

X Y Z  is the orbital reference coordinate system. The orbit is 

circular and n is the mean motion. The origin of this right-handed, orthogonal frame is at 

Control Actuators                    Torque Range (N·m) 

Reaction Wheel                             10
-1

 to 1 

Moment Gyro                               10
-2

 to 10
3
 

Magnetic Torquer                         10
-2

 to 10
-1

 

Aerodynamic                                10
-5

 to 10
-3

 

Gravity Gradient                           10
-6

 to 10
-3

 



26 

 

the center-of-mass of the satellite with the ˆ
R

Z axis directed radially outward from the 

center of the Earth, the ˆ
R

X axis in the direction of velocity, and the ˆ
R

Y axis completing 

the right-hand system by pointing normal to the orbital plane. This orbital reference 

coordinate system ˆ ˆ ˆ
R R R

X Y Z  is also referred to as the Clohessy-Wiltshire [30] coordinate 

system. The roll, pitch, and yaw axes are defined such that the principal body-fixed 

coordinate system ˆ ˆ ˆ
P P P

X Y Z  is aligned with the ˆ ˆ ˆ
R R R

X Y Z  axes, respectively. When the 

ˆ
P

X  axis is aligned with ˆ
R

X it is defined as the roll axis. Similarly, the pitch and yaw axes 

are defined from the relations between ˆ
P

Y  and ˆ
R

Y , and ˆ
P

Z and ˆ
R

Z , respectively. If the 

principal body-fixed coordinate system ˆ ˆ ˆ
P P P

X Y Z  and the orbital reference frame 

ˆ ˆ ˆ
R R R

X Y Z  are slightly misaligned, then three angles, the roll, pitch and yaw angles, are 

defined as the angular differences between each other. By observing the behavior of these 

angles, the satellite’s attitude can be explained. The roll, pitch, and yaw angles are 

illustrated in Figure 2.8. 
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ˆ
RX

ˆ
RZ

r

 

Figure 2.7: Orbital Reference Coordinate System in a Circular Orbit [31] 

 

 

ˆ
RX

ˆ
RY

ˆ
R

Zˆ
P

X

ˆ
P

Y

ˆ
PZ

r

 

Figure 2.8: Diagram of Roll, Pitch, and Yaw Angles [31] 
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 The Euler equations of motion under the gravity-gradient torque derived by Curtis 

[31] with consideration of the net torque acting over the body G by the Earth’s gravity are: 

 

( ) ( )

( ) ( )

( ) ( )

0 0

5

0

0 0

5

0

0 0

5

0

3

3

3

y z

x z

x y

x y z

y z x

x x y

r r
A C B C B

r

r r
B A C A C

r

r r
C B A B A

r

µ
ω ω ω

µ
ω ω ω

µ
ω ω ω

− = −

− = −

− = −

ɺ

ɺ

ɺ

                                     (2.17) 

 

where 2 2

m
A y z dm= +∫ , 2 2

m
B x z dm= +∫ , and 2 2

m
C x y dm= +∫  , respectively, and 

0 0 0 0
 =  x y z

T

r r r r . 

 To investigate the relationship between two coordinate systems, the position 

vector 0r  and the angular velocity is ω  can be expressed as: 

 

[ ]0 00 0
T

r r=                                                       (2.18) 

 [ ]0 0
T

nω =                                                        (2.19) 

 

Substituting Equations (2.18) and (2.19) into (2.17) yields 

 

0x y zω ω ω= = =ɺ ɺ ɺ                                                     (2.20) 
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It is implied that the principal body-fixed coordinate system remains aligned with the 

orbital reference coordinate system from Equation (2.20). In other words, this satellite 

system is gravity-gradient stabilized. The gravity-gradient stabilization is a convenient 

method for a small angle rotation and the main interest of this dissertation. 

In Figure 2.7, the angular velocity, ω , of the satellite in the inertial coordinate 

system is composed of two parts.  

 

relω ω= Ω+                                                      (2.21) 

 

where Ω  is the angular velocity of the orbital reference coordinate system with respect to 

the inertial coordinate system and relω  is the relative angular velocity of the satellite with 

respect to the orbital reference coordinate system. It is noted that the summation cannot 

be computed because two vectors on the right side do not belong to the same coordinate 

system. Since the orbit is assumed to be circular, the following vector is found: 

 

0

0

n

 
 Ω =  
  

                                                          (2.22) 

 

relω  in terms of pitch and yaw angles is expressed as: 
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roll yaw

rel yaw pitch

yaw pitch

sin

cos sin cos

cos cos sin

ω ω θ
ω ω θ ψ ω ψ

ω θ ψ ω ψ

 −
 

= + 
 − 

                                    (2.23) 

 

where ψ , θ , and ϕ  are roll, pitch, and yaw angles. Note that the roll, pitch and yaw 

angles are small, hence the small angle approximation (sin ≈x x  and cos 1≈x ) can be 

applied. In addition, neglecting the higher order terms in Equation (2.23) results 

 

rel

ψ
ω θ

ϕ

 
 =  
  

ɺ

ɺ

ɺ

                                                         (2.24) 

 

where ψɺ , θɺ , and ϕɺ  are angular rates. Since Equations (2.22) and (2.24) are not in the 

same coordinate system, three rotations must be carried out and Equation (C.5) 

implements the successive rotation ϕ θ ψ− −  in order. Equation (2.25) is an alternative 

form of Equation (C.5) after the approximation for small angles and higher order terms 

are neglected. 

 

1

1

1

ϕ θ
ϕ ψ
θ ψ

− 
 − 
 − 

                                                (2.25) 

 

Then, Ω  is rotated by Equation (2.25) as following: 
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1 0

1

1 0

n

n n

n

ϕ θ ϕ
ϕ ψ
θ ψ ψ

−     
     Ω = − =     
     − −     

                                       (2.26) 

 

and substituting Equations (2.24) and (2.26) into (2.21) yields 

 

n

n

n

ψ ϕ
ω θ

ϕ ψ

+ 
 = + 
 − 

ɺ

ɺ

ɺ

                                                       (2.27) 

 

Now, the angular velocity in the inertial coordinate system is described with roll, pitch, 

and yaw angles. Similar mathematics for the position vector 0r delivers 

 

0

0 0

0

r

r r

r

θ
ψ

− 
 =  
  

                                                       (2.28) 

 

By substituting the equations obtained into Equation (2.17), Euler’s equations of motion 

of the satellite including gravity-gradient terms are computed 

 

2( ) ( ) 0y p r p r yI I I n I I I nϕ ϕ ψ+ − + − − =ɺɺ ɺ                                 (2.29) 

2( ) 4( ) 0r r p y p yI I I I n I I nψ ϕ ψ+ − + + − =ɺɺ ɺ                                (2.30) 

23( ) 0p r yI I I nθ θ+ − =ɺɺ                                            (2.31) 
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where rI , 
pI , and 

yI  are the roll, pitch, and yaw moments of inertia of the spacecraft, 

respectively. With these governing differential equations, Equations (2.29), (2.30), and 

(2.31), gravity-gradient torque effects can be analyzed for small angles between the body-

fixed coordinate system and the orbital reference coordinate system. 

 It is noted that Equation (2.31) is a second-order differential equation that is 

uncoupled to the other two variables, ψ  and ϕ . Thus, the classical solutions for the 

Equation (2.31) have the form of  

 

1 2

1 2

p t p tPe Peθ = +                                                   (2.32) 

 

where 

 

( ) 2

1,2

3 r y

p

I I n
p i

I

−
= ±                                                (2.33) 

 

For the pitch angle in Equation (2.32) to be stable, both p1 and p2 must be imaginary in 

Equation (2.33). Otherwise, the solution increases as time increases, which means the 

satellite rotates about the pitch axis in an unstable manner. Therefore, the inside of the 

root in Equation (2.33) must be positive to be stable. The following inequality must be 

satisfied at any time to be gravity-gradient stabilized. 

 

r yI I>                                                           (2.34) 
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When the pitch motion is stabilized, the pitch frequency is given by 

 

( )
pitch

3 r y

f

p

I I
n

I
ω

−
=                                                (2.35) 

 

For an elliptical orbit with small eccentricity eorbit, Kaplan [32] showed that only the pitch 

angle is affected. The additional term to Equation (2.32) is presented as: 

 

( )
1 2 orbit

1 2

2 sin

3
1

p t p t

e

r y

p

e nt
Pe P e

I I

I

θ = + +
−

−

                                           (2.36) 

 

Curtis [31] also showed that the roll and yaw angles have the same frequency and are 

given by 

 

( )roll/yaw

21
4

2
f n b b cω = ± −                                              (2.37) 

 

where 3 1
 − − −   

= + +         

p y p r p y

r y r

I I I I I I
b

I I I
  

and  4
 − − 

=      

p r p y

y r

I I I I
c

I I
, respectively.  

With all solutions and inequalities for the three angles of a satellite, it is found that there 

are two inequalities must be satisfied to be stable, 
r y pI I I> >  or 

p r yI I I> > . 
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Case 1   
r y pI I I> >  

 As stated earlier, the satellite is rotating at the speed of mean motion about the 

pitch axis under the influence of a gravity-gradient torque. This means that the satellite 

rotates about the minor axis of inertia, not about the roll axis, which is the major axis of 

the inertia. Then, the satellite is not stable eventually due to the energy dissipation. 

 

Case 2   
p r yI I I> >  

 Contrary to the Case 1, the satellite rotates about the major axis of the inertia, the 

pitch axis. This implies that the axis of rotation by the gravity-gradient torque coincides 

with the major axis of inertia, which is desired for stable motion. Thus, this criterion will 

be applied for the optimization in the next chapter. 

2.6 Controllability and Observability 

 Controllability and observablility were first introduced by Kalman [33] for control 

theory. Those two concepts are roughly defined as: 

 

Controllability   indicates how well the system’s state containing the system’s variables 

can be changed from the adjusting an external input. A state is said to 

be controllable if it can be changed by an external input.  

Observability   indicates how well the system’s state containing the system’s variables 

can be determined from the known output. A state is said to be 

observable if it can be determined from the known output. 
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Both controllability and observability can give a better understanding from the linear 

time-invariant system as follows 

 

( ) ( ) ( )

( ) ( ) ( )

= +

= +

ɺx t Ax t Bu t

y t Cx t Du t
                                             (2.38) 

 

where the state vector ( )x t  is an m-vector, the control vector ( )u t  is a n-vector, and the 

observation vector ( )y t  is an l-vector. Then, the controllability matrix is defined as: 

 

2 1m

CM B AB A B A − =  ⋯                                     (2.39) 

 

If ( )1rank CM m− = , this system is called controllable. The observability matrix is defined 

as: 

 

2

1

o

m

C

CA

M CA

CA −

 
 
 
 =
 
 
  

⋮

                                                    (2.40) 

 

If ( )1rank oM m− = , this system is called observable. Those two representations may be 

extended to the system expressed in a differential equation form as: 
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1

1 1 01

1

1 2 1 01

( ) ( ) ( )
( )

( ) ( ) ( )
( )

m m

mm m

m m

m mm m

d y t d y t dy t
a a a y t

dt dt dt

d u t d u t du t
b b b b u t

dt dt dt

−

− −

−

− −−

+ + + +

= + + + +

⋯

⋯

                   (2.41) 

 

If this system is controllable, it can be written as: 

 

0 1 2 1

0 1 0 0 0

0 0 1 0 0
( ) ( ) ( )

1m

x t x t u t

a a a a −

   
   
   = +
   
   
− − − −   

⋯

⋯
ɺ

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

                       (2.42) 

[ ]0 1 2 1( ) ( )m my t b b b b x t− −= ⋯                                                (2.43) 

 

Equations (2.42) and (2.43) are called the controllable canonical form. Similarly, if the 

system is also observable, the differential Equation (2.41) can be written as: 

 

0 0

1 1

1 1

0 0 0

0 0 0
( ) ( ) ( )

0 0 1 m m

a b

a b
x t x t u t

a b− −

−   
   −   = +
   
   

−   

⋯

⋯
ɺ

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

                              (2.44) 

( ) 0 0 1 ( )y t x t  = ⋯                                                               (2.45) 

 

Equations (2.44) and (2.45) are called the observable canonical form. 
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2.7 Ground Track / Ground Coverage 

 For many satellites, the information of geodetic data is needed and those data are 

the well-known concepts of longitude ( λ ), latitude (φ ), and altitude ( h ). If the position 

vector in the inertial coordinate system is provided, those values can be computed and 

vice versa without knowing the orbital element values. If the Earth is a perfect sphere, 

then the conversion is a simple calculation. However, the longitude and latitude are 

defined based on the Earth’s elliptical shape, the difference between geodetic and 

geocentric system should be considered for exact values. Figure 2.9 illustrates how those 

two systems are related each other. 

 

Equator plane

a

b

φ

h

0R

ˆ
I

Z

ˆ
IX

(equatorial

radius)

(polar

radius)

 

Figure 2.9: Diagram of Geodetic and Geocentric System 
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Because of the need to convert from the position vector to the latitude and longitude 

values taking into account the elliptical shape of the Earth is nonlinear, a large number of 

different conversion methods have been derived. Bowring [34, 35] and Jones [36] 

presented the conversion from inertial to geodetic system through Newton’s iterative 

technique. Vermeille [37, 38] found the closed form solution for non-iterative method 

and the geodetic coordinate ( λ ,φ , h ) are computed as 

 

1

2 2
2tan

y

x x y
λ −

 
 =
 + + 

                                           (2.46) 

1

2 2
2tan

z

D D z
φ −  

=  
+ + 

                                          (2.47) 

2
2 21k e

h D z
k

+ −
= +                                                 (2.48) 

 

where  
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=

+
                      

2k u v w w= + + −            
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From Equations (2.46)-(2.48), the ground track of a satellite can be expressed via latitude 

and longitude. When a satellite moves along its orbit without roll, pitch, and yaw 

oscillation, the ground coverage forms a straight line along where the ground track passes 

the center of ground coverage area. If a satellite has small angles for roll, pitch, or yaw 

motions, then the ground coverage changes into a periodic curve on the ground. In Figure 

2.10, the roll motion is around the ˆ
B

X  axis, the pitch motion is around the ˆ
B

Y  axis and 

the yaw motion is around the ˆ
B

Z  axis, respectively. The amplitude of the periodic curve 

is a function of latitude and longitude. It is noted that the Lat∆  and Long∆ are function 

of the Euler’s angles and the frequency is also the function of the Euler angle’s 

frequencies. 

ˆ
BZ

ˆ
BX

ˆ
BY

( Lat, Long)f ∆ ∆

 

Figure 2.10: Diagram of Trace of Ground Coverage Due to the Satellite Attitude Motion 
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Thus, if a specific task related to the ground coverage is given to the satellite, the 

approach used for this research can be applied. One example is simulated for a map-

making mission with camera point at the ground on Earth. If the body coordinate system 

and orbital reference coordinate system are aligned, then there are no Euler angles 

motions observed and the ground coverage is a straight line with thickness of the image 

circle depending on the camera’s performance. High frequency oscillations provide more 

coverage on the ground. 

 



 

 

Chapter 3  

 

ANALYSIS 

3.1 Governing Equations of Motion for a Satellite with Movable Mass 

An internal moving mass of a LEO (Low Earth Orbit) satellite under the influence 

of the Earth’s gravity may cause an unexpected attitude change should the mass 

distribution change. The magnitude of the gravity-gradient torque is small and this 

environmental disturbance is inevitable in LEO, but this can be used as a passive control 

method for long term attitude control. A satellite is assumed to be a rigid body for 

attitude dynamics in most cases, as is the assumption in this research. The system is 

composed of two parts: the main satellite which is rigid, and a movable mass or masses. 

This approach expects a more complex computation as a result of the additional terms in 

the equations. A correct equation must be derived for the internal mass distribution to 

accommodate the gravity-gradient torque properly. 

 Both Roberson [39] and Grubin [40] developed the governing equations of 

motions of a satellite vehicle bearing movable masses. Roberson selected the mass center 

at the composite center-of-mass of the system. This reference point expects the center-of-

mass changes as the mass parts move. Grubin avoided the mass center wandering by 

locating the reference point of the system at the center-of-mass of the satellite. 

 The equations of motion of the satellite system with an attached moving mass are 

developed by Kunciw [41] and Edwards [42]. A brief development is presented below. 
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 In Figure 3.1, 
CR is the position vector to the composite center-of-mass and 

0R
 
is 

to the center-of-mass of the satellite from the inertial coordinate system origin. Cr  
and r  

are vectors to the composite center-of-mass and to the control mass, respectively. The 

body fixed coordinate system, ˆ ˆ ˆ
B B B

X Y Z , is located at the center-of-mass of the satellite. 

 

0R

CR

r

Cr

ˆ
BX

ˆ
BY

ˆ
BZ

 

Figure 3.1: Diagram of a Vehicle with a Movable Mass 
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The equations of motion of the system are given by Edwards [42] as 

 

2 2 2 2

2 2

( ) ( )

2( ) ( )

2 2 0

x C x z y C y z

C y z x z y

y z x y x z

I y z I I y z

xy xz yy zz yz

xy xz xz xy yz zy

µ ϖ µ ϖ ϖ

µ ϖ ϖ ϖ ϖ ϖ

ϖ ϖ ϖ ϖ ϖ ϖ

   + + + − + −   

+ − − + + + −

− − − + + − =

ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ ɺɺɺɺ

                    (3.1) 
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I z x I I z x
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µ ϖ µ ϖ ϖ

µ ϖ ϖ ϖ ϖ ϖ

ϖ ϖ ϖ ϖ ϖ ϖ

   + + + − + −   

+ − − + + + −

− − − + + − =

ɺ

ɺ ɺ ɺɺ

ɺ ɺ ɺɺ ɺɺ

                    (3.2) 
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x y z x z y
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µ ϖ ϖ ϖ ϖ ϖ

ϖ ϖ ϖ ϖ ϖ ϖ
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+ − − + + + −

− − − + + − =

ɺ

ɺ ɺ ɺ ɺ

ɺɺ ɺɺɺ ɺ

                    (3.3) 

 

where   
T

x y zI I I  are the principal moments of inertia of the satellite without the 

movable mass,  =  
T

x y zϖ ϖ ϖ ϖ   are the angular rates, [ ]T
x y z   is the position 

vector of the movable mass, and [ ]ɺ ɺ ɺ
T

x y z  and [ ]ɺɺ ɺɺ ɺɺ
T

x y z  are the velocity and the 

acceleration of the movable mass, respectively. Note that all these quantities are with 

respect to the body fixed coordinate system. The parameter mass sat

mass sat

C

M M

M M
µ =

+
 where Mmass 

and Msat are the mass of the movable mass and the satellite’s mass, respectively, is used to 

simplify the equations. 

 Equations (3.1), (3.2), and (3.3) are the general equations with the assumption of 

no external torque with continuous mass movement considered. Appendix E presents the 
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approximate equations after some assumptions are applied such as neglecting the higher 

order terms and the position of the movable mass is fixed. Starting from this model, a 

new mass shifting model is designed in next section. 

3.2 Mass Shifting Method 

Equations (3.1)-(3.3) describe the motion of a satellite with a moving mass 

without external torque. Since the gravitational force acts as the passive controller, it is 

necessary to develop equations of motion including torque from environmental torque, 

which is the gravity gradient. This computation gives the fundamental idea of attitude 

control by shifting masses of the system. 

The governing equations under the influence of the Earth’s gravitational force are 

already given in Equations (2.29)-(2.31). It is known that the roll, pitch, and yaw angles 

are functions of the moments of inertia of the satellite and mean motion, which is 

constant for a circular orbit. This means the attitude of a satellite can be changed by 

changing the moments of inertia of the satellite. 

 To find the relationship between the moments of inertia and the Euler angles, each 

component of the moments of inertia and Euler angles can be expressed by two elements, 

an initial value and a small deviation caused by mass redistribution. Note that the 

assumptions used for the Equations (2.29)-(2.31) are that the body-fixed coordinate 

system coincides with the principal axes and the orbit is circular. Then, moments of 

inertia and Euler angles can be described by: 
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0

0

0

 r r r

p p p

y y y

I I I

I I I

I I I

= +∆

= +∆

= +∆

                                                      (3.4) 

0

0

0

ψ ψ ψ

θ θ θ

ϕ ϕ ϕ

= +∆

= +∆

= +∆

                                                      (3.5) 

 

The angular rates of the Euler angles in Equation (3.5) are 

 

0

0

0

ψ ψ ψ

θ θ θ

ϕ ϕ ϕ

= +∆

= +∆

= +∆

ɺ ɺ ɺ

ɺ ɺ ɺ
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                                                    (3.6) 

 

The state vector, x , is defined as 

x

ψ
θ
ϕ
ψ
θ
ϕ

∆ 
 ∆ 
 ∆

=  
∆ 

 ∆
 
∆ 

ɺ

ɺ

ɺ

                                                        (3.7) 

 

In addition, u , the control vector, is defined as 

 

r

p

y

I

u I

I

 ∆
 

= ∆ 
 ∆ 

                                                        (3.8) 
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The equations of motion can be found by substituting Equations (3.4), (3.5), and (3.6) 

into Equations (2.29), (2.30), and (2.31) with higher-order terms neglected. All the 

intermediate steps are found in Appendix F. Those equations can be written in the 

linearized state space form as: 

 

x Ax Bu= +ɺ                                                    (3.9) 

 

Substituting Equations (3.7) and (3.8) into Equations (2.29) - (2.31), yields 
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Equation (3.10) presents the change of the Euler angles affected by the change of the 

principal moments of inertia subject to gravity-gradient torque. However, the body-fixed 

coordinate system is not always aligned with the principal axis. Thus, the products of 

inertia terms are not zeros. The control vector can be defined as 

T

r p y rp py ryu I I I I I I = ∆ ∆ ∆ ∆ ∆ ∆  . The linearized state space form is developed 

in Appendix G. 

 Similarly, the full linearized Euler equations including the gravity gradient, wheel 

devices, and external moment are given by Sidi [43] as: 
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In Equations (3.11)-(3.13),  =  
T

w wx wy wzH h h h  is the momentum vector of any wheels 

while the rotating axes are aligned with the body axes. Thus, ,   ,= =wx wx wx wy wy wyh I h Iω ω  

and =wz wz wzh I ω , where wxI , 
wyI , and wzI  are the principal moments of inertia of the wheel 

and     
T

wx wy wzω ω ω  is the angular velocity vector of the wheel with respect to the 

body. The angular momentum vector generated by the wheel to the satellite body along 

the body-fixed coordinate system is   
ɺ ɺ ɺ

T

wx wy wzh h h . 
cM and 

dM represent the control 

moment from other control actuators and the environmental disturbance, respectively. 

Differential equations for small angle changes with respect to the control moments and 

related linearized state equation are presented in Appendix H. 

3.3 Mass Distribution System Design 

It is found that the moments of inertia change affects the rotating angles and their 

rates. This means mass shifting inside a satellite system can convert the environmental 

disturbance into the passive control mechanism. The approach is to find mass distribution 
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with several movable masses that will change the center-of-mass and moments of inertia 

affecting the satellite’s attitude behavior. This method can be used for controlling the 

angular velocity and accelerations. Starting from known values of the moments of inertia 

and angular velocity of the satellite system at stage 1 (before mass shift), a different mass 

distribution can be calculated for stage 2 (after mass shift) that produces the desired 

angular behavior. 

To examine this concept, six mass tanks are equally distributed along the 

imaginary sphere illustrated in Figure 3.2. All tanks are assumed to be connected by 

massless pipes, so the contributions of the pipes to the moments of inertia are ignored. 

Two imaginary planes are placed on this sphere (analogous to the Earth’s equator and the 

plane separating the eastern and western hemispheres). Tanks are placed 90 degrees apart 

on each plane, with tanks located at the intersection of these two planes. Each tank is 

assumed to have the same capacity, all have the same dry mass, and all are located at the 

same distance from the center of the spacecraft. Adjacent tanks can transfer mass through 

the massless pipes connecting each other. It is also assumed that the mass shifting occurs 

instantaneously. Thus the angular momentum is conserved without applied external 

torque and the angular velocity immediately before the mass transfer is the initial angular 

velocity immediately after transfer completion. 

From this fundamental model, a more complicated model with other control 

actuators can be developed and the related governing equations of motion and control 

laws would need to be derived. Also, the feasibility of this system to achieve both attitude 

maneuvers and maintain stability is important for actual application. Comparing the 



50 

 

values from position sensors with data after maneuvering may be repeated until its task is 

satisfied. Finally, an optimal solution can be computed for attitude determination. 

 

ˆ
RZ

ˆ
RY

ˆ
R

X
 

Figure 3.2: Configuration of the Satellite System with 6 Mass Tanks 

 

 To evaluate this problem, two models are developed. The first model analyzes the 

rotational motion using Euler’s equations of motion for a rotating system. In these 

equations of motion, the contribution to the moments of inertia is broken down between 

the “dry” satellite and the liquid that is available for transfer between the tanks. The 

second model solves the optimal mass transfer problem by determining how to shift mass 
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from one configuration to another. Given an initial configuration and a final desired 

configuration, the optimal path to shift mass from one configuration to another is 

demonstrated. 

3.4 Developing Dynamic and Control Equations 

The moments of inertia of the whole system consists of two parts, the satellite’s 

moment of inertia, satI , which is not changing over time; and the mass system operated 

by moving mass in order to change its own moments of inertia, massI . By assuming the 

body fixed axes of the dry satellite to be aligned with the principal axes, the moment of 

inertia matrix for the satellite is given by 

 

sat

sat sat

sat

0 0

0 0

0 0

r

p

y

I

I I

I

 
 
 =
 
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                                              (3.14) 

 

where the subscriptions  r, p , and y represent the roll, pitch, and yaw axes, respectively. 

From the definition of the moment of inertia matrix, Equation (3.15) is calculated for this 

design with the assumption of the location of tanks. 
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where 
massr

I , mass p
I  , and massy

I  are computed as: 
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2
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r
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y

I d m m m m
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                                       (3.16) 

 

where d is radius of the sphere. All products of inertia vanish with the assumption that 

each tank lies along a principal axis. In general, the total principal moments of inertia are 

simply found by adding Equations (3.14) and (3.15). However, the center-of-mass 

changes as mass moves, thus the new center-of-mass must be updated after every mass 

shift. The new center-of-mass in the body coordinate system in Figure 3.2 at each time 

when the mass moves from one tank to another is 

 

2 5 3 61 4

1 4 2 5 3 6

 − −−
 + + + 

m m m mm m
d

m m m m m m
                                     (3.17) 
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Equation (3.18) represents the amount of changed moment of inertia after the 

mass redistribution. Since it is a symmetric matrix, three real eigenvalues exist and the 

corresponding eigenvectors compose an orthogonal basis. In addition, the three 

eigenvalues are the principal moments of inertia, and the eigenvectors form the direction 

cosine matrix that relates the new reference frame to the old reference frame. 

From the definition of the moment of inertia, the controllable amount of moment 

of inertia by adding mass to the tanks or changing the location of the tanks are calculated 

by substituting 0I I I= +∆ , 0m m m= +∆  , 0x x x= +∆  , 0y y y= +∆  , 0z z z= +∆ . 

 

11 12 13

mass mass 21 22 23

31 32 33

I I I

I I I I I

I I I

 
 + ∆ =  
  

                                          

(3.18) 

where 

6
2 2

11

1

( ) ( ) ( )k k k k k k

k

I m m y y z z
=

 = + ∆ + ∆ + + ∆ ∑

 

6
2 2

22

1

( ) ( ) ( )k k k k k k

k

I m m x x z z
=

 = + ∆ + ∆ + + ∆ ∑

 

6
2 2

33

1

( ) ( ) ( )k k k k k k

k

I m m x x y y
=

 = + ∆ + ∆ + + ∆ ∑

 

6

12 21

1

( )( )( )k k k k k k

k

I I m m x x y y
=

= = − + ∆ + ∆ + ∆∑

 

6

13 31

1

( )( )( )k k k k k k

k

I I m m x x z z
=

= = − + ∆ + ∆ + ∆∑

 

6

23 32

1

( )( )( )k k k k k k

k

I I m m y y z z
=

= = − + ∆ + ∆ + ∆∑  
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Finally, the control moment of inertia is occurred only on the mass system and is given as: 

 

mass

r rp ry

pr p py

yr yp y

I I I

I I I I I

I I I

 ∆ ∆ ∆
 

∆ = ∆ = ∆ ∆ ∆ 
 ∆ ∆ ∆ 

                                       

(3.19) 

 

where 

6
2 2

1

2 ( ) ( )r k k k k k k k k

k

I m y y z z m y z
=

 ∆ ≅ ∆ + ∆ + ∆ + ∑

 

6
2 2

1

2 ( ) ( )p k k k k k k k k

k

I m x x z z m x z
=

 ∆ ≅ ∆ + ∆ + ∆ + ∑

 

6
2 2

1

2 ( ) ( )y k k k k k k k k

k

I m x x y y m x y
=

 ∆ ≅ ∆ + ∆ + ∆ + ∑

 

6

1

( )rp pr k k k k k k k k k

k

I I m x y m x y m x y
=

∆ = ∆ ≅ − ∆ + ∆ + ∆∑  

6

1

( )ry yr k k k k k k k k k

k

I I m x z m x z m x z
=

∆ = ∆ ≅ − ∆ + ∆ + ∆∑  

6

1

( )py yp k k k k k k k k k

k

I I m y z m y z m y z
=

∆ = ∆ ≅ − ∆ + ∆ + ∆∑  

 

(This is an approximated solution since higher-order terms are dropped). 

Recall that the total moments of inertia are the summation of the satellite’s 

moment of inertia and moving masses’ moments of inertia. Since the satellite’s moment 

of inertia remains unchanged, the moment of inertia change comes from the change in 

moments of inertia of moving masses. 
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sat mass

sat mass mass

         

 ( )

I I I

I I I I I

= +

+∆ = + +∆

                                     

(3.20) 

 

Note that no external torque acts during the mass shifting, thus the angular momentum is 

conserved, as seen in Equation (3.21). 

 

( ) ( )sat mass 1 sat mass mass 2I I I I Iω ω+ = + +∆

                               

(3.21) 

 

where 1ω and 2ω are the angular velocities at stage 1 and stage 2, respectively. 

 Coinciding the origin of two different systems, a dry satellite and a tank system, 

helps avoid the appearance of the products of inertia. This assumption can be easily made 

by the center-of-mass of the tank system staying at the center of the satellite which is 

Equation (3.17) and is equal to the zero vector. Starting from a simple design (case 1 

through case 4) without changing the center-of-mass of the tank system, a general 

equation (case 4) including the mass center change is developed. 

 

Case 1  Each tank is moving along each axis without mass transfer; 

Conditions: 0  ( 1,...,6)km k∆ = =  

Since the moment of inertia is a function of the mass and the distance from the 

reference point, this property introduces case 1, which is each tank moves along each axis 

without changing its amount of mass. This means that if any pair of tanks (tank1 and tank 

4, tank 2 and tank 5, tank 3 and tank 6) are located on the one straight line with same 
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distance from the origin but in the opposite direction, both center-of-mass principal axes 

remain unchanged. Thus, the constraints for case 1 is that mass 1 and mass 4 move only 

along the roll axis, mass 2 and mass 5 along the pitch axis, and mass 3 and mass 6 along 

the yaw axis. Equation (3.22) presents the total moments of inertia at stage 1. 

 

sat mass

sat mass

sat mass

sat mass

sat 2 3

sat 1 3

sat 1 2

0 0 0 0

  0 0 0 0

0 0 0 0

4 ( ) 0 0

  0 4 ( ) 0

0 0 4 ( )

r r

p p

y y

r

p

y

I I I

I I

I I

I I

I d m y m z

I d m x m z

I d m x m y

= +

   
   
   = +
   
      

 + +
 
 = + +
 

+ +  

    (3.22) 

 

The controllable moment of inertia of is computed by (3.19):  

 

2 3

1 3

1 2

4 ( ) 0 0

0 4 ( ) 0

0 0 4 ( )

∆ + ∆ 
 ∆ = ∆ + ∆ 
 ∆ + ∆ 

d m y m z

I d m x m z

d m x m y

              (3.23) 

 

Case 2  Masses are moving while the tank locations are fixed; 

Conditions: 0x y z∆ = ∆ = ∆ = ,  1 4m m= , 2 5m m= , 3 6m m=  

 As stated in case 1, the moment of inertia is the function of the mass and the 

distance from the reference point which is the location of each tank. Contrary to case 1, 

the constraint for case 2 is to change the mass in each tank while the tank location is fixed. 
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For the same reason as in case 1, the mass pairs of tank 1 and tank 4, tank 2 and tank 5, 

tank 3 and tank 6 must be the same amount after mass shifting. Then the change of 

moment of inertia is computed in Equation (3.24). Compared with Equation (3.23), mass 

changes terms are presented instead of tank location changes. 

 

2

2 3

2

1 3

2

1 2

2 ( ) 0 0

0 2 ( ) 0

0 0 2 ( )

d m m

I d m m

d m m

 ∆ + ∆
 

∆ = ∆ + ∆ 
 ∆ + ∆ 

              (3.24) 

 

Case 3  Mass locations move along each axis and the masses are changing; 

Conditions: 1 4m m= , 2 5m m= , 3 6m m=   

 Case 3 is a combination of case 1 and case 2. If one component of the moment of 

inertia needs to be increased, three options are available: moving pair masses away from 

the origin (case 1), increasing mass (case 2), or performing both at the same time (case 3). 

Then I∆  is the summation of Equations (3.23) and (3.24). 

 

2

2 3

2 3

2

1 3

1 3

2

1 2

1 2

2 ( )
0 0

       4 ( )

2 ( )
0 0

       4 ( )

2 ( )
0 0

       4 ( )

d m m

d m y m z

d m m
I

d m x m z

d m m

d m x m y

 ∆ + ∆ +
 

∆ + ∆ 
 ∆ + ∆ +
 ∆ =

∆ + ∆ 
 

∆ + ∆ + 
 ∆ + ∆ 

 (3.25) 
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Case 4  Tank locations are moving in any direction and masses are changing; 

Conditions: 1 4m m= , 2 5m m= , 3 6m m=   

 A complete controllable moment of inertia for any location of masses without 

changing the center-of-mass after mass shifting can be calculated by computing Equation 

(3.19). Two restrictions must be considered. The mass pair must have same amount mass 

in each tank and lie in the same straight line with same distance from the origin but in 

opposite directions. If the position vector of mass 1 is[ ]1 1 1

T
x y z , then the location of 

mass 4 is automatically determined as[ ]1 1 1− − −
T

x y z  . 

 Cases 1 through 3 keep the center-of-mass at the same center-of-mass of the 

satellite with strict restrictions to avoid the appearance of products of inertia. However, 

case 4 considers masses that are allowed to move free of the rotating axis, thus the 

products of inertia terms are shown in this case. Bang [44] used a product of inertia to 

control for a bias momentum in a spacecraft. With this restriction, Equation (3.19) results. 
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1 1 1 1 1

1 1 1 1 1 1 1
2 2 2 2 2

1 1 1 2 2 2
3 3 3 3 3

2 2 2 2 2 2 2 2

1 1 1

3 3 3 3 3 32 2

2 2 2

3 3 32 2

3 3 3

4[ ( )
2( 2(

  ( )
  

  ( )]
  

  2[ ( )
  

     ( )
  )

     ( )]

m y y z z
m x y m x y m

m y y z z
m x y m x y

m y y z z
m x y m x y

m y z
m x y m x y

m y z
m x y

m y z

I

∆ + ∆ +
− ∆ + ∆ − ∆∆ + ∆ +

+ ∆ + ∆
∆ + ∆ +

+ ∆ + ∆
∆ + +

+ ∆ + ∆
∆ + +

+ ∆
∆ +

∆ =

1 1 1 1 1

1 1 1 2 2 2

2 2 2 2 2 2

3 3 3 3 3 3

3 3 3

1 1 1 1 1

1 1 1 1 1 1
2 2 2 2 2

1 1 1 2 2 2
3

2 2 2 2 2 2

3 3 3 3 3 3

3 3 3

  

  

  

  )
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  )

x z m x z

m x z m x z

m x z m x z

m x z m x z

m x z

m x x z z
m x y m x y

m x x z z
m x y m x y

m
m x y m x y

m x y m x y

m x y

+ ∆

+ ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆

+ ∆

∆ + ∆ +
− ∆ + ∆

∆ + ∆ +
+ ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆

+ ∆

1 1 1 1 1 1

1 1 1 2 2 2
3 3 3 3

2 2 2 2 2 2 2 2

1 1 1

3 3 3 3 3 32 2

2 2 2

3 3 32 2

3 3 3

1 1 1 1 1 1

1 1 1 2 2 2

2 2 2

2(

  
( )]

  
  2[ ( )

  
      ( )

  )
      ( )]

2(

  

  

m y z m y z

m y z m y z
x x z z

m y z m y z
m x z

m y z m y z
m x z

m y z
m x z

m x z m x z

m x z m x z

m x z

− ∆ + ∆

+ ∆ + ∆∆ + ∆ +
+ ∆ + ∆

∆ + +
+ ∆ + ∆

∆ + +
+ ∆

∆ +

− ∆ + ∆

+ ∆ + ∆

+ ∆ +

1 1 1 1 1

1 1 1 1 1 1
2 2 2 2 2

1 1 1 2 2 2
3 3 3 3 3

2 22 2 2 2 2 2 2 2 2

1 1 1

3 3 3 3 3 3 3 3 3 3 3 3

2

3 3 3 3 3 3

4[ ( )
2(

  ( )
  

  ( )]
  

  2[ ( )
    

      
  )   )

m x x y y
m y z m y z

m x x y y
m y z m y z

m x x y y
m x z m y z m y z

m x y
m x z m x z m y z m y z

m
m x z m y z

∆ + ∆ +
− ∆ + ∆

∆ + ∆ +
+ ∆ + ∆

∆ + ∆ +
∆ + ∆ + ∆

∆ + +
+ ∆ + ∆ + ∆ + ∆

∆
+ ∆ + ∆

2 2

2 2

2 2

3 3 3

( )

      ( )]

x y

m x y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + + 
 ∆ +   

(3.26) 

 

From Equation (3.26), a general equation for n pairs of masses can be computed. Suppose 

2n masses are arbitrarily distributed satisfying the two conditions: (1) the masses ma (a=1, 

2,…, n) and mn+a are the pair masses and their corresponding locations are expressed by 

[ ]T

a a ax y z  and [ ]− − −
T

a a ax y z , respectively; (2) ma has same mass as mn+a . Then, 

Equation (3.27) is computed. 

 

11 12 13

21 22 23

31 32 33

I I I

I I I I

I I I

∆ ∆ ∆ 
 ∆ = ∆ ∆ ∆ 
 ∆ ∆ ∆ 

                                              

(3.27) 
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where 

2 2

11

1 1

4 ( ) 2 ( )
n n

i i i i i i i i

i i

I m y y z z m y z
= =

∆ ≅ ∆ + ∆ + ∆ +∑ ∑

 

2 2

22

1 1

4 ( ) 2 ( )
n n

i i i i i i i i

i i

I m x x z z m x z
= =

∆ ≅ ∆ + ∆ + ∆ +∑ ∑

 

2 2

33

1 1

4 ( ) 2 ( )
n n

i i i i i i i i

i i

I m x x y y m x y
= =

∆ ≅ ∆ + ∆ + ∆ +∑ ∑

 

13 31

1

2 ( )
n

i i i i i i i i i

i

I I m x z m x z m x z
=

∆ = ∆ ≅ − ∆ + ∆ + ∆∑  

12 21

1

2 ( )
n

i i i i i i i i i

i

I I m x y m x y m x y
=

∆ = ∆ ≅ − ∆ + ∆ + ∆∑  

23 32

1

2 ( )
n

i i i i i i i i i

i

I I m y z m y z m y z
=

∆ = ∆ ≅ − ∆ + ∆ + ∆∑  

 

Case 5  Center-of-mass is changing due to the moving masses; 

Condition: no restriction 

 To take an advantage of not moving the center-of-mass, all previous cases used 

different restrictions such as mass can move only in one direction except for case 4 or the 

positions of a pair of masses must be symmetric to the origin. These restrictions require 

less computational time than the case considering center of mass change. 

 To investigate a general case while masses are distributed arbitrary, thus affecting 

center of mass shifting, the configuration of the six tanks is considered. The locations of 

the six tanks are fixed but the liquid mass can travel to any adjacent tank. This mass 

transfer may cause an asymmetric mass distribution and result a center of mass shift. 

Once the center of mass has been changed, the moment of inertia of both satellite system 
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and tank system must be recalculated. The parallel axis theorem is useful to compute the 

new moment of inertia matrix of the satellite. With a known new center-of-mass, the 

moment of inertia of the mass system can be calculated from the new mass distribution. 

 The change of moment of inertia of the satellite must be added to Equation (3.20). 

That is, the inertia tensor becomes 

 

sat mass

sat sat mass mass

sat mass

         

 ( ) ( )

      

I I I

I I I I I I

I I I

= +

+ ∆ = + ∆ + + ∆

∆ = ∆ + ∆

                            

(3.28) 

 

No external torque is applied during the mass shifting, thus the angular momentum is 

conserved as seen in Equation (3.29). 

 

( ) ( )
1 1 2 2sat mass 1 sat mass 2I I I Iω ω+ = +

                                   

(3.29) 

 

where the subscripts 1 and 2 represents stage 1 and stage 2, respectively. 

 The new center-of-mass for a random mass distribution is computed in Equation 

(3.17) as 2 5 3 61 4

1 4 2 5 3 6

m m m mm m
d

m m m m m m

 − −−
 + + + 

and both 
2satI and

2massI must be calculated from 

this reference point. Define a vector, ,d a displacement vector from the center-of-mass at 

stage 1 to the center-of-mass at stage 2. Then, the parallel axis theorem can be expressed 

as: 

2 1sat sat sat 3 3[( ) ]I I M d d I d d×= + ⋅ − ⊗

                               

(3.30) 
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where satM is the mass of the dry satellite and 3 3I ×  is 3 3×  identity matrix and ⊗  denotes 

the outer product. Substituting 2 5 3 61 4

1 4 2 5 3 6

 − −−
=  + + + 

T

m m m mm m
d d

m m m m m m
  

into Equation 

(3.30) yields 

 

2 1

1

sat sat sat 3 3

2 22

2 2 5 3 61 4
sat sat

1 4 2 5 3 6

2

2 51 4 1 4 1 4

1 4 1 4 2 5 1

[( ) ]

1 0 0

      0 1 0

0 0 1

       

I I M d d I d d

m m m mm m
I M d

m m m m m m

m mm m m m m m

m m m m m m m

×= + ⋅ − ⊗

        − −−   = + + +       + + +         

     −− − −
    + + + +    

−

3 6

4 3 6

2

2 5 2 5 2 5 3 61 4

2 5 1 4 2 5 2 5 3 6

2

3 6 3 6 2 5 3 61 4

3 6 1 4 3 6 2 5 3 6

m m

m m m

m m m m m m m mm m

m m m m m m m m m m

m m m m m m m mm m

m m m m m m m m m m

    −
    +   

       − − − −−
        + + + + +       

       − − − −−        + + + + +        













 

(3.31) 

 

 The moment of inertia matrix of the moving mass for stage 2,
2massI , is computed 

by the definition of the moment of inertia given in Equation (3.15) with respect to the 

new center-of-mass and computed as: 

 

2

mass mass mass

mass mass mass mass

mass mass mass

r rp ry

pr p py

yr yp y

I I I

I I I I

I I I

 
 
 =
 
  

                                       

(3.32) 
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where 

mass

2 2 2 2

2 2 5 3 6 2 5 3 6
1 2

2 5 3 6 2 5 3 6

2 2 2

2 5 3 6 2 5 3 6
3 4

2 5 3 6 2 5 3

  0 0 1 0

    0 1 0 0

r
I

m m m m m m m m
d m m

m m m m m m m m

m m m m m m m m
m m

m m m m m m m

=

           − − − −    − + − + − + −       
+ + + +              

      − − − −
 + − + − + − + −     

+ + +       

2

6

2 2 2 2

2 5 3 6 2 5 3 6
5 6

2 5 3 6 2 5 3 6

    1 0 0 1

m

m m m m m m m m
m m

m m m m m m m m

  
  

+   

          − − − −    + − − + − + − + − −       
+ + + +                

mass

2 22 2

2 3 6 3 61 4 1 4
1 2

1 4 3 6 1 4 3 6

22 2

3 6 3 61 4 1 4
3 4

1 4 3 6 1 4

  1 0 0 0

    0 1 1 0

p
I

m m m mm m m m
d m m

m m m m m m m m

m m m mm m m m
m m

m m m m m m m

=

          − −− −    − + − + − + −      + + + +             

     − −− −
 + − + − + − − + −    + + +      

2

3 6

2 22 2

3 6 3 61 4 1 4
5 6

1 4 3 6 1 4 3 6

    0 0 0 1

m

m m m mm m m m
m m

m m m m m m m m

  
  +   

         − −− −    + − + − + − + − −      + + + +               

mass

2 22 2

2 2 5 2 51 4 1 4
1 2

1 4 2 5 1 4 2 5

22 2

2 5 2 51 4 1 4
3 4

1 4 2 5 1 4

  1 0 0 1

    0 0 1 0

y
I

m m m mm m m m
d m m

m m m m m m m m

m m m mm m m m
m m

m m m m m m m

=

          − −− −    − + − + − + −      + + + +             

     − −− −
 + − + − + − − + −    + + +      

2

2 5

2 22 2

2 5 2 51 4 1 4
5 6

1 4 2 5 1 4 2 5

    0 1 0 0

m

m m m mm m m m
m m

m m m m m m m m

  
  +   

         − −− −    + − + − − + − + −      + + + +               
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2 2 5 2 51 4 1 4
mass 1 2

1 4 2 5 1 4 2 5

2 5 2 51 4 1 4
3 4

1 4 2 5 1 4 2 5

1 0 0 1

                     0 0 1 0

         

rp

m m m mm m m m
I d m m

m m m m m m m m

m m m mm m m m
m m

m m m m m m m m

       − −− −
= − − − + − −       + + + +       

      − −− −
− − + − − −      + + + +      

2 5 2 51 4 1 4
5 6

1 4 2 5 1 4 2 5

            0 1 0 0
m m m mm m m m

m m
m m m m m m m m

      − −− −
− − − + − −       

+ + + +       

 

2 3 6 3 61 4 1 4
mass 1 2

1 4 3 6 1 4 3 6

3 6 3 61 4 1 4
3 4

1 4 3 6 1 4 3 6

1 0 0 0

                     0 1 1 0

         

ry

m m m mm m m m
I d m m

m m m m m m m m

m m m mm m m m
m m

m m m m m m m m

       − −− −
= − − − + − −       + + + +       

      − −− −
− − + − − −      + + + +      

3 6 3 61 4 1 4
5 6

1 4 3 6 1 4 3 6

            0 0 0 1
m m m mm m m m

m m
m m m m m m m m

      − −− −
− − + − − −       

+ + + +       

 

2 2 5 3 6 2 5 3 6
mass 1 2

2 5 3 6 2 5 3 6

2 5 3 6 2 5 3 6
3 4

2 5 3 6 2 5 3 6

0 0 1 0

                     0 1 0 0

          

py

m m m m m m m m
I d m m

m m m m m m m m

m m m m m m m m
m m

m m m m m m m m

      − − − −
= − − − + − −      

+ + + +      

     − − − −
− − + − −     

+ + + +     

2 5 3 6 2 5 3 6
5 6

2 5 3 6 2 5 3 6

           1 0 0 1
m m m m m m m m

m m
m m m m m m m m

     − − − −
− − − + − − −      

+ + + +      

 

 

As expected from case 4, the products of inertia components in both matrices appear. 

This implies that the control vector has six elements instead of three. Equations (3.31) 

and (3.32) may be used for a system equipped with other actuators, environmental 

disturbances, or external torques combined as given in Equation (H.4) in Appendix H. 

 Once the state vector, ( )x t , is obtained, then the observation vector can be 

determined as necessary. For this dissertation, the deviation of latitude and longitude due 

to the satellite’s Euler angles is examined. When a satellite is pointing at a target that is 
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not in the nadir direction, the deviation angle, σ∆ , from the satellite can be expressed by 

the Earth’s central angle, λ∆ . A diagram for the angular relationship between the satellite 

and the Earth is illustrated in Figure 3.3.  

σ∆
λ∆

maxλ∆
η

τ

Figure 3.3: Angular Relationships between Satellite and Earth [45] 

Then the following equations are satisfied with known value of σ∆ . 

 

maxsin cos e

e

R

R h
τ λ= ∆ =

+

                                          

(3.33) 

sin
cos

sin

σ
η

τ
∆

=

                                                    

(3.34) 
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where η  is the satellite elevation angle. Then, the Earth’s central angle, λ∆ , is computed 

from 

 

2

π
λ η σ∆ = − − ∆

                                                 

(3.35) 

 

Note that λ∆ is a function of both latitude and longitude and the equations for conversion 

are given by Larson [45]. 

 

( )0 0 0cos Lat Lat cos sin Lat sin cos Lat cos
2

π
λ λ − − ∆ = ∆ + ∆ Φ  

                

(3.36) 

0 0

0 0

cos sin Lat sin(Lat Lat)
cos Long

cos Lat cos(Lat Lat)

λ∆ − + ∆
∆ =

+ ∆

                      

(3.37) 

 

where Lat0 is the latitude of the nadir location and Φ  is the azimuth of the target. 

Simplifying Equations (3.36) and (3.37) with respect to the deviations in latitude and 

longitude using the small angle approximation yields 

[ ]0 0 0

0

1
Lat cos sin Lat sin cos Lat cos sin Lat

cos Lat
λ λ

−
∆ = ∆ + ∆ Φ −

        

(3.38) 

1 0 0

0 0

cos sin Lat sin(Lat Lat)
Long cos

cos Lat cos(Lat Lat)

λ−  ∆ − +∆
∆ =  +∆ 

                               

(3.39) 

 

Finally, Equations (3.38) and (3.39) can be used to find the relationship between the state 

and the observation, which is the matrix C in Equation (2.38). 
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3.5 Finding the Moments of Inertia Changes from Stage 1 to Stage 2 

 Figure 3.4 summarizes the process to find the change in the moments of inertia 

from stage 1 to stage 2. The initial mass distribution and initial angles for roll, pitch, and 

yaw are known at stage 1. Then, the moments of inertia of stage 1 can be computed easily. 

Using the governing equations of motion for a gravity-gradient-stabilized satellite, Euler 

angles can be calculated as a periodic function of time. Also roll, pitch, and yaw 

oscillation frequencies are found as a function of the moments of inertia. From the known 

position vector of the satellite in the inertial coordinate system, the latitude and longitude 

of the ground location are obtained. Since the satellite is oscillating around the 

groundtrack due to the Euler angles, ground coverage may be determined depending on 

the type of ground-observing sensor. The first goal of this research is to find the change 

in the moments of inertia from the given conditions. Since the mass distribution of stage 

2 is unknown, moments of inertia and roll, pitch, and yaw angles cannot be computed.  
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Figure 3.4: Summary of Finding the Moments of Inertia Change 
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Instead, the starting point is to determine the roll, pitch, and yaw oscillation frequencies 

for stage 2. 

As seen in Equations (2.35) and (2.37), the roll/yaw oscillation frequency and the 

pitch oscillation frequency is function of the moments of inertia. Then, the frequency 

ratio of stage 1 to stage 2 is related to the moments of inertia at stage 1 and their changes 

and are computed in Equations (3.40) and (3.41): 

 

2 2 1 1

2 1

1 1 1 1

1 1

3( ) 3( ) ( )

( )pfr

100 3( ) 3( )

r y r r y y

p p p

r y r y

p p

I I I I I I
n n

I I I

I I I I
n n

I I

− +∆ − + ∆

+∆
= =

− −

                        

(3.40) 

( )
( )

2

2 2 2

2

1 1 1

1
4

ryfr 2

100 1
4

2

n b b c

n b b c

± −
=

± −

                                       

(3.41) 

 

where  

1 1 1 1 1 1

1 1 1

2

( ) ( ) ( )
3 1
    +∆ − +∆ +∆ − +∆ +∆ − +∆

= + +        +∆ +∆ +∆    

p p y y p p r r p p y y

r r y y r r

I I I I I I I I I I I I
b

I I I I I I
 

1 1 1 1

1 1

2

( ) ( )
4
  +∆ − + ∆ + ∆ − +∆

=     +∆ +∆  

p p r r p p y y

y y r r

I I I I I I I I
c

I I I I
 

 

and pfr (%, pitch frequency ratio) is the pitch frequency ratio of stage 1 to stage 2. For 

example, pfr = 200 doubles the pitch frequency at stage 2. ryfr (%, roll/yaw frequency 
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ratio)  can be determined in the same manner or a certain value can be provided. 

However, it is important that it is not always possible to complete the maneuver 

satisfying all restrictions. Therefore, the range for attitude change should be evaluated by 

trial and error. Equations (3.40) and (3.41) are simplified as follows. 

 

2 2 2 2(pfr) ( ) 100 ( ) ( )(100 (pfr) )r y p p y r p r yI I I I I I I I I− ∆ + ∆ − ∆ = − −

                

(3.42) 

 

( )
( )

2
2

2 2 2

2

1 1 1

4ryfr

100 4

b b c

b b c

± −  = 
  ± −

                                         

(3.43) 

 

Recall that roll and yaw have same oscillation frequency, whereas the pitch oscillation 

frequency is independent of the other two. These two equations find the moments of 

inertia for stage 2 by determining the adequate frequencies for a specific mission and the 

ground map-making task is selected here. Note that the stability condition, < <y r pI I I , 

must also be satisfied. Since the given conditions and the inequality are not enough to 

compute the unknown variables, there are huge number of combinations of solutions that 

exist and the minimum of the total mass transfer case will be chosen as the minimum 

mass mapping. However, the selected minimum mass mapping needs to be an optimal 

mass mapping; hence an optimization process must be added. The optimization 

computation is explained in next section. 
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3.6 Optimization Process 

 The optimization procedure is presented in this section. First, the objective of this 

simulation is stated. Next, the network theory is introduced to develop the objective 

function to meet the goal of this research and the most appropriate model is used to set up 

the objective functions. Finally, the optimal solution solver is chosen to find the optimal 

solution for the problem. 

3.6.1 Optimal Mass Distribution 

 The objectives of this simulation are both to minimize the total mass transfer and 

to find the balanced mass distribution after mass mapping subject to the given roll/yaw 

oscillation frequency and pitch oscillation frequency under the gravity-gradient torque. 

Although how to transfer mass between tanks is not defined specifically, the usage of 

power is inevitable to perform this maneuver and eventually affects the operation lifetime 

of a satellite. 

 If the location of a tank is changed without mass movement, it plays the same role 

as mass transfer. Thus, minimizing the relocation distance of each tank can be substituted 

for minimizing the total mass movement. Also, both minimizing mass transfer and tank 

location change can be substituted for the objective of this dissertation. 

 Not only minimizing the total mass transfer, but well-balanced mass mapping for 

the maneuver is also important. For a series of mass transfers (or relocating each tank’s 

position or both), a more balanced mass distribution among tanks yields less total mass 

transfer for next stage. Similarly, fewer tank location changes anticipates a shorter 
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journey for the following stage. In summary, the optimal mass transfer or tank relocation 

for this dissertation is to find the minimum mass transfer or minimum tank relocation (or 

both) and equally distribute each mass transfer or tank relocation. 

3.6.2 Combinatorial Optimization 

 The mass shifting problem can be modeled in a similar manner to the 

combinatorial optimization problem. Cook [46] introduced several types of network 

models applicable to this dissertation such as minimum spanning tree, shortest path 

problem, maximum flow problems and minimum cost problem. 

 Generally, a network model is expressed by a diagram consisting of two 

characteristics: nodes and arcs. The nodes are usually represented by a circle, which 

means the beginning or completion of an operation, and the arc is represented by lines 

connecting the nodes. The arc can have direction whereas the nodes do not. Arcs 

expressed by arrows on the network indicate that flows can be moved only in the 

specified direction. A path is defined as a series of connections among nodes and, if it 

returns to the starting node, it is call a cycle type. If some nodes are connected without 

being included in a cycle, it is named as a tree structure. 

 

1. Minimum Spanning Tree 

 This model designs that all network nodes are to be connected to each other while 

the total length of the extension is to be minimized; for example, computer networks that 
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connect all the computers in the most efficient problem, or the best way to supply 

water/electricity to each household. The solution process is as follows. 

① Select one random node and connect it to the nearest node. 

② Continue connecting nodes within the shortest distance that are not yet connected 

to any other. 

③ Repeat until all nodes are connected.  

 

2. Shortest Path Problem 

 This type of problem is to find the minimum distance between two nodes on the 

path to obtain the shortest path connecting all nodes. Case 1 (the location of tanks change 

without mass transfer) in Section 3.4 can be modeled as this type. Also, the well-known 

TSP (Travelling Salesman Problem) belongs to this type. Whereas the problem is fairly 

straightforward, many techniques to minimize the model have been and currently are 

being developed.  

 Dijkstra’s algorithm [47] is one of the most widely used due to its simplicity and 

robustness. From the starting point of a given network, the following step is to connect to 

the nearest node until the whole connected path is found. 

 The shortest path problem is regarded as a special case of minimum cost flow 

problem, which is used for this research because the distance from the shortest-path 

problem corresponds to the cost for the minimum cost flow problem. Thus, the 

minimization of distance is that it is the minimization of the total cost. This process is 

solved as follows. 
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① Connect the node closest to the starting point. 

② Next, connect to the closest node from the starting point. 

③ Repeat until the entire network is connected. 

 

3. Maximum Flow Problem  

 This problem is to maximize the flow rate between two points. Before applying 

this model, whether the flow rate has only one direction or both directions should be 

determined. This model can solve problems such as complex city traffic flow at 

intersections, or the flow of rush-hour subway passengers. Typically, there are flow 

capacity constraints for each arc that determine the maximum amount of flow. On the 

other hand, there is no capacity constraint for each node on the network. Thus, the 

intermediate transit nodes that pass through a node have no restriction on the amount of 

flow. Each intermediate node works as a transit node such that the flow quantities coming 

into that node exits. This process is solved as follows. 

① Select an arbitrary path from the starting point to the final destination. 

② Once the path is determined, allot the maximum amount of flow for that path. 

(Note that the maximum flow is automatically given by the minimum flow 

among all paths). 

③ If it is possible to move flow in both directions, switch the path to see if the 

maximum volume is bigger. 

④ Repeat until the volume of flow from the starting point to the final point is 

impossible. 
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4. Minimum Cost Flow Problem  

 The minimum cost flow problem deals with the case when the maximum flow 

capacity along each arc is limited and the cost accrued is proportional to the flow. 

Usually the minimum cost flow problem is similar to the transportation problem with 

small differences. In the former, a transit node exists, the latter does not have a transit 

node. Therefore, only one direct connection from the starting point to the final point 

exists for the transportation problem. On the contrary, the minimum cost flow problem 

can travel via the transit nodes. There is a simple solution method, similar to the 

transportation problem, using simplex algorithm widely applied for most large-scale 

cases. 

 The simplex algorithm is a powerful method for a linear programming and helps 

find the minimum solutions with provided conditions. The simplex algorithm can be 

summarized briefly as follows: 

 

1 1 2 2 3 3
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76 

 

where ( 1, , )ic i n= ⋯  are the weighting coefficients and ( 1, , )iX i n= ⋯ are the cost per 

each function, and ( 1, , , 1, , ) ija i m j n= =⋯ ⋯
 
and ( 1, , )jb i m= ⋯  are computed by the 

restrictions on the problem. 

 In Figure 3.5, for five destinations, there are 5! possible routes. Analytic solutions 

can be found by comparing all the possible costs, but it takes considerable time as more 

cities are included. To apply minimum cost flow problem methods to the mass shifting 

attitude problem, analogous representations can be made. A city represents a tank and the 

cost between two cities is the amount of mass moving through the massless pipe. The 

minimum cost for the entire system is same as the minimum amount of mass travelling 

throughout the whole satellite system. However, the direction of the mass travelling 

results in an opposite solution, thus the mass distribution problem is an asymmetric 

minimum cost flow problem requiring more variables in the equations. The optimal 

solution for minimum cost flow problem automatically satisfies the minimum amount of 

mass passing through the pipes, which is the goal of this research. 

 

 
Figure 3.5: Minimum Cost Problem vs. Mass Distribution 
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 To set up the objective function, two objectives are considered. The first objective 

is to minimize the total amount of mass that is transferred and the other objective is to 

balance the mass movement of the entire system. Based on the simplex algorithm, all 

possible mass transfer between any two tanks can be expressed by 

 

Pipe_12 + Pipe_21 + Pipe_13 + Pipe_31 2 Pipe_14 +2 Pipe_41

               Pipe_15 + Pipe_51 Pipe_16 + Pipe_61 + Pipe_23 + Pipe_32

                + Pipe_24 + Pipe_42 2 Pipe_25 +2 Pipe_52 Pipe_16 + Pipe_62

              

min ( ) +

+ +

+ +

=f x

  + Pipe_34 + Pipe_43 Pipe_35 + Pipe_53 2 Pipe_36 +2 Pipe_63

                + Pipe_45 + Pipe_54 Pipe_46 + Pipe_64 + Pipe_56 + Pipe_65

+ +

+
          

(3.45) 

 

where Pipe_12 represents the mass amount moving through the pipe from tank 1 to tank 

2. Therefore, Pipe_12 and Pipe_21 must have same magnitude, but with opposite signs. 

Note that a multiplicand 2 is included with Pipe_14 (also Pipe_41), Pipe_25 (also 

Pipe_52), and Pipe_36 (also Pipe_63) because the distance for those pairs of tanks is two 

units. However, Equation (3.45) only finds the minimum solution not considering the 

balanced mass distribution. Therefore, a modification is needed to satisfy both minimal 

mass transfer and balanced mass distribution. Equation (3.46) represents the modified 

objective function, f(x), defined as the sum of the p-power ( 1p> ) of each mass moving 

through the connecting pipes. Also, no mass transfer through Pipe_14 (also Pipe_41), 

Pipe_25 (also Pipe_52), and Pipe_36 (also Pipe_63) is assumed since they are not 

directly connected, so the objective function reduces to 
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 Pipe_12 + Pipe_21 + Pipe_13 + Pipe_31 + Pipe_15 + Pipe_51

                  Pipe_16 + Pipe_61 + Pipe_23 + Pipe_32 + Pipe_24 + Pipe_42

                   + Pipe_26 + Pipe_62 + Pipe_34 + Pipe_43 + Pipe_35 + P

min ( )

+

= p p p p p p

p p p p p p

p p p p p

f x

ipe_53

                   + Pipe_45 + Pipe_54 + Pipe_46 + Pipe_64 + Pipe_56 + Pipe_65

p

p p p p p p

  

(3.46) 

 

where 1p> . 

 A similar process can be applied to find the objective function for optimal 

relocation of each tank. The shortest path problem only finds the shortest distance, but 

optimal relocation of each tank also requires a balanced displacement. Equation (3.47) is 

the objective function considering both minimizing the tank relocation distance and 

balancing the tank shift without changing mass in it. 
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                  + +

                  +
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+

p p
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)
1

2+n y direction tank 6 location change in z direction
p p

  

(3.47) 

where 1p> . 
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3.6.3 Optimization Solver 

 Though the objective function is obtained using the simplex algorithm, the 

solution method cannot be applied since the objective function is not a linear equation. 

MATLAB’s optimization toolbox [48] provides various optimization solvers for different 

objective functions and are selected based on the function and constraint type. These 

solvers are generally divided into two classes. 

 One group (fmincon, fminunc, fseminf, lsqcurvefit, etc.) use a gradient-based 

algorithm. The others (GA, pattern search, simulated annealing, etc.) are based on the 

probabilistic characteristics of the problem. A preferable solver may find the best solution 

quickly and efficiently, whereas an inappropriate solver may take a longer processing 

time or fail. Table 3.1 suggests the preferred optimal solvers for different types of 

problems. Although ‘fmincon’ is missing from several selections in the table, it still can 

be used to solve most smooth objective functions with smooth constraints. To be eligible 

for a smooth constraint, the constraint must be differentiable at all points. All simulations 

for this research contain two equality constraints from roll/yaw and pitch oscillation 

frequency ratios and two inequality constraints from gravity-gradient stabilization 

( < <y r pI I I ). All the equality constraints for case 1 through case 4 are linear if 2n is 

chosen for the roll/yaw oscillation frequency. Otherwise, the constraint from different 

choice of the roll/yaw oscillation frequency becomes nonlinear but still differentiable at 

any point. The inequality constraints are always linear regardless of the roll/yaw and 

pitch oscillation frequencies at stage 2. For case 5, both equality and inequality 
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constraints are nonlinear all the time but all the constraints are also differentiable 

everywhere. Thus, ‘fmincon’ is selected for the simulation results in Chapter 4. 

 

Table 3.1: Suggested Optimization Decision Table by Objective Type and Constraint 
(http://www.mathworks.com/help/toolbox/optim/ug/brhkghv-18.html#brhkghv-21, 

date accessed 5/10/12) 

Constraint 

Type 

Objective Type 

Linear Quadratic 
Least 

Squares 

Smooth 

nonlinear 
Nonsmooth 

None 

n/a 

(f = const or 

min = −∞ ) 

quadprog 
lsqcurvefit 

lsqnonlin 

fminsearch 

fminunc 

fminsearch 

others 

Bound linprog quadprog 

lsqcurvefit 

lsqlin 

lsqnonlin 

lsqnonneg 

fminbnd 

fmincon 

fseminf 

fminbnd 

others 

Linear linprog quadprog lsqlin 
fmincon 

fseminf 
others  

General 

smooth 
fmincon fmincon fmincon 

fmincon 

fseminf 
others 

Discrete 
bintprog 

others 
others others others others 

 

 



 

 

Chapter 4  

 

SIMULATION RESULTS 

Using the governing equations of motion for various types of mass distribution, 

Euler angles and their rate changes are examined by shifting the moment of inertia of the 

whole system. Starting from a simple example, different constraints are applied to see 

how different mass distributions affect the roll, pitch, and yaw angles and the ground 

coverage. The physical parameters of the problem are presented in Table 4.1. 

 

Table 4.1: Physical Parameters of the System 

Mass of the Satellite 100 kg 

Number of Tanks 6 

Total mass in tanks (10 kg each initially) 60 kg 

Principal roll moment of inertia of the dry satellite 75 kg·m
2
 

Principal pitch moment of inertia of the dry satellite 100 kg·m
2
 

Principal yaw moment of inertia of the dry satellite 60 kg·m
2
 

Semi major axis (Circular Orbit) 7,000 km 

Inclination 90 degree 

Radius of the sphere (the locations of tanks from the origin) 1 m 

Initial roll angle 0 rad 

Initial pitch angle 0 rad 

Initial yaw angle 0 rad 

Initial roll rate -0.00001 rad/sec 

Initial pitch rate 0.00004 rad/sec 

Initial yaw rate -0.00006 rad/sec 

Each stage lasts for 50,000 seconds  
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 First, several simulations present the optimal mass transfer or tank relocation 

satisfying all the constraints under the different designs for a polar orbit satellite with a 

map-making mission. Once the optimal solution is found, it is illustrated how the ground 

coverage can be affected by the roll frequency change. It is expected that the roll 

frequency should be increased to enlarge the ground coverage area per one track of the 

satellite cycle. However, it reduces the possibility of feasible mass distribution at stage 2 

if the roll frequency at stage 2 is changed too much or too many additional restrictions are 

applied. 

 From Table 4.1, the roll frequency at stage 1 is 0.001506 Hz. The roll frequency 

at stage 2 can be determined from the roll frequency ratio relationship, Equation (3.43), 

or a certain value can be specified if necessary. It is found that Equation (3.43) becomes a 

linear constraint only if the roll frequency at stage 2 is 2n regardless of the roll frequency 

at stage 1. Except for this case, Equation (3.43) is always a nonlinear constraint. 

Compared with the roll frequency at stage 1, the roll frequency is increased around 43% 

when the roll/yaw frequency at stage 2 is 2n while the pitch frequency remains 

unchanged. These two frequency constraints and the inequality constraint for stability, 

< <y r pI I I , are used as the general constraints for case 1 through case 4. Recall that the 

optimal solution does not exist if the roll/yaw or pitch frequency changes dramatically or 

any additional constraints due to the design are hard to achieve. 

 After several simple cases are examined, case 4, which is the general design with 

the center-of-mass unchanged, and case 5, which is the practical design with moving 

center-of-mass, are applied under various constraints. 
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Case 1  Tank locations are changing along each axis with fixed masses 

Conditions 

0  ( 1,...,6)∆ = =km k
 
 

Roll frequency at stage 2: 2n 

Pitch frequency at stage 2: unchanged 

 

pitch frequency constraint (Equation (3.42)) 

 

1 3( ) ( ) 0− + ∆ + − − ∆ =r y p r y pm I I I x m I I I z

                                  

(4.1) 

 

roll/yaw frequency constraint (Equation (3.43)) 

 

2

1
( )

8
∆ = − −p r yy I I I

dm

                                              

(4.2) 

 

stability constraint (
y r p

I < I < I ) 

 

1 3

2 1

1
( )

4

1
( )

4

∆ − ∆ < −

∆ − ∆ < −

r y

p r

m x m z I I
d

m y m x I I
d

                                           

(4.3) 
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objective function 

 

(

)

2

2

1
2 2

+

min ( ) tank 1 location change along x-axis

                 tank 2 location change along y-axis

                tank 3 location change along z-axis+

=f x

                            

(4.4) 

 

Equation (3.47) with p=2
 
is reduced to Equation (4.4) for the optimal location of 

each tank satisfying all four constraints, Equations (4.1)-(4.3). Each tank is limited to 

move up to 2m away from the origin. The roll, pitch, and yaw frequencies for stage 1 and 

stage 2 are presented in Table 4.2. Here, pitch frequency remains unchanged and roll/yaw 

frequencies are twice the mean motion of the satellite. 

 

Table 4.2: Roll/Yaw and Pitch Frequencies at Each Stage for Case 1 (Hz) 

Parameters                                  Stage 1                                 Stage 2 

Pitch frequency                             0.000611  
  
                           0.000611 

Roll / Yaw frequency                    0.001506                              0.002156 

 

 

Table 4.3 presents the locations of each tank without mass movement to complete 

the attitude change. Note that the locations of the pair tank are symmetric with respect to 

the origin and tank 2 and tank 5 are located near the center-of-mass. On the other hand, 

all the other tanks remain near their original location. Although the optimal solution is to 

find the minimum movement of tank location and to distribute the shift, the shift is 

concentrated into only two tanks unless all constraints are not met. 
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Table 4.3: Tank location for Stage 1 and Stage 2 for Case 1 (m) 

 Stage 1 Stage 2 

Tank 1 [1,     0,     0] [1.0000,    0,    0] 

Tank 2 [0,     1,     0] [0,    0.0625,    0] 

Tank 3 [0,     0,     1] [0,      0,  1.0000] 

Tank 4 [-1,    0,     0] [-1.0000,   0,    0] 

Tank 5 [0,    -1,     0] [0,    -0.0625,   0] 

Tank 6 [0,     0,    -1] [0,     0,  -1.0000] 

 

 

Figure 4.1 illustrates the tank distribution for each stage. The circle on the diagram 

indicates the amount of mass. At stage 1, six tanks have the same amount of mass and are 

equally distributed on a sphere of radius 1. Tank 2 and tank 5 are located only 6 cm away 

from the center-of-mass. Since there is no mass change, the size of each tank at stage 2 is 

the same. 

The amount of principal moment of inertia change from stage 1 to stage 2 is 

obtained as follows. 

 

2

-37.498 0 0

0 0.00352 0 (kg m )

0 0 -37.498

I

 
 ∆ = ⋅ 
  

                           

(4.5) 

 

Figure 4.2 shows the inequality,
 

< <y r pI I I , is satisfied for stability during the morphing. 

Roll and yaw moments of inertia are decreased while the pitch moment of inertia is 

almost the same as stage 1. With known values of principal moments of inertia at stage 2, 

three attitude angles and their rates can be computed. In Figure 4.3, it is easily noticed  
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Figure 4.1: Diagram of Tank Distribution for Each Stage for Case 1 
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that the pitch frequency at stage 2 is unchanged subject to the constraint, whereas roll and 

yaw frequency change is noticeable due to small change from 0.001506 to 0.002156 

(about a 43% increase). 

 

 

Figure 4.2: Principal Moments of Inertia for Each Stage for Case 1 ( ⋅ 2
kg m ) 
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Figure 4.3: Roll, Pitch and Yaw Angles and Their Rates for Stage 1 and Stage 2 for Case 1 

(stage 2 begins at 5×10
4
 sec) 
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 The series of image circles observed by ground-observing device such as a 

camera to make a satellite map-making mission is illustrated in Figure 4.4. It is observed 

for a polar orbiting satellite that the swept area at stage 2 shows enhanced ground 

coverage due to an increase in roll frequency. The longitude deviation range is increased 

from -0.061 to 0.061 degree at stage 1 to -0.186 to 0.186 degree, and this means around -

20.78 to 20.78 km near the equator. As seen, the swept area is more uniformly covered. 

 

 

Figure 4.4: Ground Coverage Change between Stage 1 and Stage 2 for Case 1 

(stage 2 begins at 5×10
4
 sec) 
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Case 2  Masses are moving while the tank locations are fixed 

Conditions 

0∆ = ∆ = ∆ =x y z ,  1 4=m m , 2 5=m m , 3 6=m m  

Roll frequency at stage 2: 2n 

Pitch frequency at stage 2: unchanged 

 

pitch frequency constraint (Equation (3.42)) 

 

1 3( ) ( ) 0− + ∆ + − − ∆ =r y p r y pI I I m I I I m

                                  

(4.6) 

 

roll/yaw frequency constraint (Equation (3.43)) 

 

2

1
( )

4
∆ = − −p r ym I I I

d

                                              

(4.7) 

 

stability constraint (
y r p

I < I < I ) 

 

1 3 2

2 1 2

1
( )

2

1
( )

2

∆ − ∆ < −

∆ − ∆ < −

r y

p r

m m I I
d

m m I I
d

                                           

(4.8) 
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objective function 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

 Pipe_12 + Pipe_21 + Pipe_13 + Pipe_31 + Pipe_15 + Pipe_51

                  Pipe_16 + Pipe_61 + Pipe_23 + Pipe_32 + Pipe_24 + Pipe_42

                   + Pipe_26 + Pipe_62 + Pipe_34 + Pipe_43 + Pipe_35 + P

min ( )

+

=f x

2

2 2 2 2 2 2

ipe_53

                   + Pipe_45 + Pipe_54 + Pipe_46 + Pipe_64 + Pipe_56 + Pipe_65

    

(4.9) 

 

Equation (4.9) is the same as Equation (3.46) with p=2 and used to find the 

optimal mass transfer while the tank location is fixed. Additional constraints for this case 

are that each pipe is allowed to transfer mass up to 10 kg, and each tank’s capacity is up 

to 20 kg. 

MATLAB’s optimization solver results in no feasible solution satisfying all of the 

constraints. This means any mass distribution at stage 2 never achieves the roll frequency 

of 2n under this design.  

Removing one of the constraints, which is that the mass of each tank can be 

negative at stage 2, Table 4.4 includes the minimum mass mapping per pipe to achieve 

the expected roll/yaw frequency and Table 4.5 shows the mass distribution before and 

after mass shifting. Since the removed constraint violates physics, the optimal solution 

contains negative mass in tank 2 and tank 5. Again, it is concluded that there is no 

feasible mass distribution for the desired frequency. This simulation shows that the 

optimal mass distribution is not always found. 
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Table 4.4: Optimal Mass Shift Through Each Pipe for Case 2 (kg) 

Pipe_12 =  4.520 Pipe_21 = -4.520 

Pipe_13 = -0.335 Pipe_31 =  0.335 

Pipe_15 =  4.520 Pipe_51 = -4.520 

Pipe_16 = -0.335 Pipe_65 =  0.335 

Pipe_23 = -4.855 Pipe_32 =  4.855 

Pipe_24 = -4.520 Pipe_42 =  4.520 

Pipe_26 = -4.855 Pipe_62 =  4.855 

Pipe_34 =  0.335 Pipe_43 = -0.335 

Pipe_35 =  4.855 Pipe_53 = -4.855 

Pipe_45 =  4.520 Pipe_54 = -4.520 

Pipe_46 = -0.335 Pipe_64 =  0.335 

Pipe_56 = -4.855 Pipe_65 =  4.855 

Total amount of mass shifted: 38.839 kg 

 

 

Table 4.5: Mass Distribution for Stage 1 and Stage 2 for Case 2 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 18.371 8.371 

Tank 2 10 -8.750 -18.750 

Tank 3 10 20.379 10.379 

Tank 4 10 8.371 8.371 

Tank 5 10 -8.750 -18.750 

Tank 6 10 20.379 10.379 

Total Amount 

of Mass 
60 60 0 (conserved) 
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Case 3  Each tank can move along each axis and the amount of masses are changing 

Conditions 

1 4=m m , 2 5=m m , 3 6=m m  

Roll frequency at stage 2: 2n 

Pitch frequency at stage 2: unchanged 

 

pitch frequency constraint (Equation (3.42)) 

 

2 2

1 3

1 3

2 ( ) 2 ( )

         4 ( ) 4 ( ) 0

− + ∆ + − − ∆ +

− + ∆ + − − ∆ =
r y p r y p

r y p r y p

d I I I m d I I I m

d I I I m x d I I I m z

                     

(4.10) 

 

roll/yaw frequency constraint (Equation (3.43)) 

 

2 24 8∆ + ∆ = − −p r yd m dm y I I I

                                           

(4.11) 

 

stability constraint (
y r p

I < I < I ) 

 

2

1 3 1 3

2

2 1 2 1

2 ( ) 4 ( )

2 ( ) 4 ( )

∆ −∆ + ∆ − ∆ < −

∆ −∆ + ∆ − ∆ < −

r y

p r

d m m d m x m z I I

d m m d m y m x I I

                            

(4.12) 

 

It is found that there is no applicable mass distribution to perform with the specified 

roll/yaw frequency from the previous simulation, case 2. Mass shift, combined with the 
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change of tank location, is examined to check if this design can complete the attitude 

transform in case 3. To develop the appropriate objective function, the objective 

functions for case 1 and case 2 are added and is presented in Equation (4.13). 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

 Pipe_12 + Pipe_21 + Pipe_13 + Pipe_31 + Pipe_15 + Pipe_51

                  Pipe_16 + Pipe_61 + Pipe_23 + Pipe_32 + Pipe_24 + Pipe_42

                   + Pipe_26 + Pipe_62 + Pipe_34 + Pipe_43 + Pipe_35 + P

min ( )

+

=f x

(

2

2 2 2 2 2 2

2

2

ipe_53

                   + Pipe_45 + Pipe_54 + Pipe_46 + Pipe_64 + Pipe_56 + Pipe_65

                     +

                 + tank 1 location change along x-axis

tank 2 location change along y-axis

        )
1

2 2           tank 3 location change along z-axis+

    (4.13) 

 

Tables 4.6 and 4.7 show the optimal mass mapping and the locations of each tank at stage 

2 to achieve the desired roll/yaw frequency. From the results in case 1 and case 2, it may 

be assumed that the relocation of each tank is more dominant than the mass shift since 

there is no feasible mapping in case 2. It is computed that 0.05050 kg is needed to travel 

to change the satellite attitude thanks to the relocation of the tanks. Therefore, the mass 

distribution diagram at stage 2 is almost same as in Figure 4.1. Table 4.8 presents the 

amount of the mass per tank. Recall that one tank is connected with four pipes to transfer 

mass, the total amount of mass shifted for all pipes and all tanks are different. Total 

amount of mass in the whole system is not changed during mass redistribution, thus its 

value is always zero. 
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Table 4.6: Optimal Mass Shift Through Each Pipe for Case 3 (kg) 

Pipe_12 =  0.00627 Pipe_21 = -0.00627 

Pipe_13 = -0.00004 Pipe_31 =  0.00004 

Pipe_15 =  0.00627 Pipe_51 = -0.00627 

Pipe_16 = -0.00004 Pipe_65 =  0.00004 

Pipe_23 = -0.00631 Pipe_32 =  0.00631 

Pipe_24 = -0.00627 Pipe_42 =  0.00627 

Pipe_26 = -0.00631 Pipe_62 =  0.00631 

Pipe_34 =  0.00004 Pipe_43 = -0.00004 

Pipe_35 =  0.00631 Pipe_53 = -0.00631 

Pipe_45 =  0.00627 Pipe_54 = -0.00627 

Pipe_46 = -0.00004 Pipe_64 =  0.00004 

Pipe_56 = -0.00631 Pipe_65 =  0.00631 

Total amount of mass shifted: 0.05050 kg 

 

 

Table 4.7: Tank location for Stage 1 and Stage 2 for Case 3 (m) 

 Stage 1 Stage 2 

Tank 1 [1,     0,     0] [0.9996,     0,     0] 

Tank 2 [0,     1,     0] [0,   0.0638,       0] 

Tank 3 [0,     0,     1] [0,     0,     0.9997] 

Tank 4 [-1,    0,     0] [-0.9996,    0,     0] 

Tank 5 [0,    -1,     0] [0,    -0.0638,     0] 

Tank 6 [0,     0,    -1] [0,     0,    -0.9997] 

 

 

Table 4.8: Mass Distribution for Stage 1 and Stage 2 for Case 3 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 10.012 0.012 

Tank 2 10 9.975 -0.025 

Tank 3 10 10.013 0.013 

Tank 4 10 10.012 0.012 

Tank 5 10 9.975 -0.025 

Tank 6 10 10.013 0.013 

Total Amount 

of Mass 
60 60 0 (conserved) 
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Since the simulation for case 3 is fairly similar to the result of case 1, the change of 

principal moment of inertia is also close to Equation (4.5) and computed as follows. 

 

2

-37.485 0 0

0 0.027 0 (kg m )

0 0 -37.488

I

 
 ∆ = ⋅ 
  

                              

(4.14) 

 

Figure 4.5 illustrates the moments of inertia for both stage 1 and stage 2. The amount of 

pitch moment is not changed compared with case 1. The other two moments are 

decreased similar to case 1. The roll, pitch, and yaw angles and their rates for case 3 are 

the same as in Figure 4.3 because the same frequency constraints are applied. Also, the 

ground coverage pattern is same as case 1, i.e., Figure 4.4. 

 

 

Figure 4.5: Principal Moments of Inertia for Each Stage for Case 3 ( ⋅ 2
kg m ) 
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Case 4  Tank locations are moving any direction and masses are changing 

Conditions 

1 4=m m , 2 5=m m , 3 6=m m ;  0∆ ≠ix , 0∆ ≠iy , 0∆ ≠iz  (i = 1, 2, 3) 

Roll frequency at stage 2: 2n 

Pitch frequency at stage 2: unchanged 

 

pitch frequency constraint (Equation (3.42)) 

 

2 2 2 2

1 1 1 1 1

2 2 2 2

2 2 2 2 2

2 2 2 2

3 3 3 3 3

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3

( )( ) ( )

( )( ) ( )

( )( ) ( )

2( ) 2( )

2( ) 2( )

2( ) 2(

− + + − ∆

+ − + + − ∆

+ − + + − ∆

+ − + ∆ + − − ∆

+ − + ∆ + − − ∆

+ − + ∆ + − −

r y p

r y p

r y p

r y p r y p

r y p r y p

r y p r y

I I x z I x z m

I I x z I x z m

I I x z I x z m

I I I m x x I I I m z z

I I I m x x I I I m z z

I I I m x x I I I 3 3 3)

   0

∆

=
p m z z

   

                        (4.15) 

 

roll/yaw frequency constraint (Equation (3.43)) 

 

( )2 2 2

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3
2 2 2 2 4(2 2 2 )

                                                                                            

∆ + ∆ + ∆ + ∆ + ∆ + ∆

= − −p r y

y m y m y m m y y m y y m y y

I I I
      (4.16) 
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stability constraint (
y r p

I < I < I ) 

 

2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2 3 3

2 ( ) ( ) ( )

        4( )

2 ( ) ( ) ( )

        4(

 − ∆ + − ∆ + − ∆ 
+ ∆ − ∆ + ∆ − ∆ + ∆ − ∆ < −

 − ∆ + − ∆ + − ∆ 
− ∆ − ∆ + ∆ − ∆ + ∆

r y

x z m x z m x z m

m x x m z z m x x m z z m x x m z z I I

y x m y x m y x m

m x x m y y m x x m y y m x x3 3 3 3 )− ∆ < −p rm y y I I

 

(4.17) 

 

objective function 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

 Pipe_12 + Pipe_21 + Pipe_13 + Pipe_31 + Pipe_15 + Pipe_51

                  Pipe_16 + Pipe_61 + Pipe_23 + Pipe_32 + Pipe_24 + Pipe_42

                   + Pipe_26 + Pipe_62 + Pipe_34 + Pipe_43 + Pipe_35 + P

min ( )

+

=f x

( )

2

2 2 2 2 2 2

2

2

ipe_53

                   + Pipe_45 + Pipe_54 + Pipe_46 + Pipe_64 + Pipe_56 + Pipe_65

                  

                      

      

tank 1 location change along x-axis

tank 1 location change along y-axis

+

+

)
( )

1
2 2

2

2

                

                  

                      

                      

tank 1 location change along z-axis

tank 2 location change along x-axis

tank 2 location change along y-axis

tank 2 l

+

+

+

+ )
( )

1
2 2

2

2

                  

                      

                      

ocation change along z-axis

tank 3 location change along x-axis

tank 3 location change along y-axis

tank 3 location change along z-ax

+

+

+ )
1

2 2is

      (4.18) 
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As defined in Section 3.4, case 4 is the generalized design with center-of-mass 

fixed and three pairs of masses used to compute the mass mapping. The objective 

function, Equation (4.18), for case 4 is similar to case 3 except that each tank location 

change is not restricted to be along one axis. To compare the optimal solutions with case 

3, the same frequencies and stability constraints, Equations (4.15)-(4.17), are applied. To 

avoid unrealistic design, each tank is limited to move outward up to 2m from the origin. 

Since each tank can be located at any place inside the system, the distance between any 

two tanks cannot be the same length as examined through case 1 to case 3. Therefore, a 

various weighting coefficients should be applied to each pipe in Equation (4.18). 

However, it is assumed that the mass transfer cost between any two tanks is the same, 

thus all weighting coefficients are set to 1. 

 Tables 4.9 and 4.10 present the result of the minimum mass transfer and the tank 

location for optimal mass distribution, respectively. A total of 0.05161 kg is required to 

travel for the optimal mapping at stage 2. Compared with case 3, all tank locations are 

located at almost same positions as in case 3. Table 4.11 contains the amount of the mass 

per each tank during mass mapping and a diagram of each stage is shown in Figure 4.6. 

As illustrated in Figure 4.1, each circle size considers the amount of mass each tank, thus 

all the circles have almost same size in the diagram. 
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Table 4.9: Optimal Mass Shift Through Each Pipe for Case 4 (kg) 

Pipe_12 =  0.00613 Pipe_21 = -0.00613 

Pipe_13 = -0.00046 Pipe_31 =  0.00046 

Pipe_15 =  0.00615 Pipe_51 = -0.00615 

Pipe_16 = -0.00039 Pipe_65 =  0.00039 

Pipe_23 = -0.00635 Pipe_32 =  0.00635 

Pipe_24 = -0.00611 Pipe_42 =  0.00611 

Pipe_26 = -0.00641 Pipe_62 =  0.00641 

Pipe_34 =  0.00040 Pipe_43 = -0.00040 

Pipe_35 =  0.00637 Pipe_53 = -0.00637 

Pipe_45 =  0.00608 Pipe_54 = -0.00608 

Pipe_46 = -0.00036 Pipe_64 =  0.00036 

Pipe_56 = -0.00641 Pipe_65 =  0.00641 

Total amount of mass shifted: 0.05161 kg 

 

 

Table 4.10: Tank location for Stage 1 and Stage 2 for Case 4 (m) 

 Stage 1 Stage 2 

Tank 1 [1,     0,     0] [0.999985,  -0.000006,   0.000010] 

Tank 2 [0,     1,     0] [0.000221,   0.065644,   0.000220] 

Tank 3 [0,     0,     1] [-0.000003,  0.000005,   1.000012] 

Tank 4 [-1,    0,     0] [-0.999985,  0.000006,  -0.000010] 

Tank 5 [0,    -1,     0] [-0.000221, -0.065644,  -0.000220] 

Tank 6 [0,     0,    -1] [0.000003,  -0.000005,  -1.000012] 

 

 

Table 4.11: Mass Distribution for Stage 1 and Stage 2 for Case 4 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 10.0114 0.0114 

Tank 2 10 9.9750   -0.0250 

Tank 3 10 10.0136 0.0136 

Tank 4 10 10.0114 0.0114 

Tank 5 10 9.9750 -0.0250 

Tank 6 10 10.0136 0.0136 

Total Amount 

of Mass 
60 60 0 (conserved) 
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Figure 4.6: Diagram of Tank Distribution for Each Stage for Case 4 
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The most distinguishing property of case 4 is the appearance of product of inertia 

elements. Since each tank is allowed to move along each axis only for case 1, 2, and 3, 

the principal axes for stage 1 and stage 2 remain unchanged. If a tank is not limited to 

stay along the axis, off diagonal elements in the inertia matrix are not zero at stage 2 and 

those values cause the principal axes at stage 2 to be different from stage 1. When the 

roll/yaw and pitch frequency are determined to find the optimal mass transfer at stage 2, 

those frequencies explain the motion of the principal axes in stage 2, not stage 1. 

Therefore, a DCM (Direction Cosine Matrix) needs to be found to transfer data from 

stage 1 to stage 2 and vice versa. All data defined at stage 2 must be converted via DCM 

to be used at stage 1. Equation (4.19) presents the change of moment of inertia and the 

DCM is calculated in Equation (4.20). 

 

2

 -37.3966 -0.0043 -0.0001

-0.0043 0.0499 -0.0045 (kg m )

-0.0001 -0.0045 -37.4020

I

 
 ∆ = ⋅ 
  

                         

(4.19) 

 

6 5

6 5

5 5

0.99999 9 10 5 10

DCM 9 10 -0.99999 6 10

5 10 -6 10 -0.99999

− −

− −

− −

 × ×
 

= × × 
 × × 

                                      

(4.20) 

 

Since DCM in Equation (4.20) is nearly an identity matrix, both the angular 

velocity and rate and ground coverage area is almost same as Figure 4.2 and Figure 4.3, 
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respectively. Figure 4.7 illustrates the stability constraint < <y r pI I I
 
for each stage is 

satisfied. 

 

 

Figure 4.7: Principal Moments of Inertia for Each Stage for Case 4 ( ⋅ 2
kg m ) 

 

 It has been shown that the change of tank location is more effective than the mass 

movement to complete the attitude maneuver. This contribution can be altered by adding 

a relevant weighting coefficient to the objective function or boundary constraints for each 
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Case 5 Center-of-mass is changing due to the moving masses 

Conditions 

No restriction for the mass amount and the location of each tank 

Roll frequency at stage 2: 2n 

Pitch frequency at stage 2: unchanged 

 

pitch frequency constraint (Equation (3.42)) 

 

2

2 3 5 6

2

1 2 4 5

2 2

1 4

2 2

3 6

( )( ) (1)

( )( ) (3)

( )( (1)) ( )( (1))

( )( (3)) ( )( (3))

    =0

− + + + + + +

− − + + + + +

− + − + − + − − +

− − − + − − − −

r y p sat

r y p sat

r y p r y p

r y p r y p

I I I M m m m m d

I I I M m m m m d

m I I I d d m I I I d d

m I I I d d m I I I d d

   

                (4.21) 

 

where  d  is defined in Equation (3.30) as the vector from origin to the new center-of-

mass. 

 

roll/yaw frequency constraint (Equation (3.43)) 

 

2 2 2

sat 1 3 4 6 2 5( ) (2) ( (2)) ( (2))

1
                                                                                            ( )

2
p r y

M m m m m d m d d m d d

I I I

 + + + + + − + − − 

= − −
     (4.22) 
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stability constraint (
y r p

I < I < I ) 

 

2 2 2 2 2 2

sat 1 2

2 2 2 2

3 4

2 2 2

5 6

( (1) (3) ) ( (1)) (3) (1) (3)

                               (1) ( (3)) ( (1)) (3)

                               (1) (3) (1) ( (3))

M d d m d d d m d d

m d d d m d d d

m d d m d d d

   − + − − + −   

   + − − + − − −   

 + − + − − − 
2

2 2 2 2 2 2

sat 1 2

2 2 2 2

3 4

2 2

5

( (2) (1) ) (2) ( (1)) ( (2)) (1)

                               (2) (1) (2) ( (1))

                               ( (2)) (1)

r yI I

M d d m d d d m d d d

m d d m d d d

m d d d m

  < − 

   − + − − + − −   

   + − + − − −   

 + − − − + 
2 2

6 (2) (1) p rd d I I − < − 

  

(4.23) 

 

objective function 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

 Pipe_12 + Pipe_21 + Pipe_13 + Pipe_31 + Pipe_15 + Pipe_51

                  Pipe_16 + Pipe_61 + Pipe_23 + Pipe_32 + Pipe_24 + Pipe_42

                   + Pipe_26 + Pipe_62 + Pipe_34 + Pipe_43 + Pipe_35 + P

min ( )

+

=f x

2

2 2 2 2 2 2

ipe_53

                   + Pipe_45 + Pipe_54 + Pipe_46 + Pipe_64 + Pipe_56 + Pipe_65

      (4.24) 

 

 A design for case 5 is the locations of the tank are fixed, but the mass amount in 

each tank can be different from each other causing the change of center-of-mass. This 

results in the change of each tank location again. The objective function used for case 5 is 

given in Equation (4.24). When the objective function is minimized, the total shifted 

mass through pipes is the minimum mass moved and also satisfies the balanced mass 

distribution. 

 With same constraints from roll/yaw and pitch frequencies and gravity-gradient 

stability, it is found that there is no feasible mass distribution. This might have been 
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anticipated from case 1 through case 4. Among those cases, only case 2 does not have the 

optimal solutions since the location of each tank is not allowed to change. Also, the shift 

of each tank location is more effective than the mass movement in cases 3 and 4. Case 5 

has a similar constraint in that the tank location is moved due to the change of center-of-

mass, but the result proves that shifting mass is not enough to achieve the specified roll 

frequency at stage 2. Thus, the next step is to find the roll/yaw and pitch frequency range 

at stage 2 by trial and error with same objective function because the computation time to 

find the optimal solution from using MATLAB’s optimization solver, fmincon, take less 

than a minute with the early version of Intel’s Pentium Dual-Core processor for each case. 

The frequency constraints are found from Equations (3.42) and (3.43) and the stability 

constraints are Equation (4.23). The procedure is implemented as following. 

① Try different values for roll/yaw frequency at stage 2 while the pitch frequency 

remains unchanged. 

② Try different values for pitch frequency at stage 2 while the roll/yaw frequency 

remains unchanged. 

 

The result yields, 

① The available roll/yaw frequency with pitch frequency unchanged at stage 2 is 

from 82.3% to 108.5% of the roll/yaw frequency at stage 1. 

② The available pitch frequency with roll/yaw frequency unchanged at stage 2 is 

from 0.1% to 166.2% of the pitch frequency at stage 1. 
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From the result above, the pitch frequency has a wider frequency range at stage 2 and the 

available frequency range satisfies all four constraints, two from frequency and two from 

the gravity-gradient stabilization. However, when both frequencies on boundary are 

applied, the feasible mass mapping is not always guaranteed. 

 Now that the available frequency ranges for case 5 are known, the next simulation 

tests a different combination of roll/yaw and pitch frequencies. For the same map-making 

mission, higher roll frequency is preferred to cover a larger area. The pitch frequency is 

not a major factor for this mission, but less frequency increases the stability of the 

satellite in general. Thus, the roll/yaw and pitch frequencies for stage 2 are set to 105% 

and 38.5% of stage 1, respectively. The pitch frequency at 38.5% is the lowest possible 

value when the roll/yaw frequency is 105%. 

 Table 4.12 shows the roll/yaw and pitch frequencies for stage 1 and stage 2. As 

pre-determined, pitch frequency at stage 2 is decreased to 38.5% of the pitch frequency at 

stage 1 while the roll/yaw frequency is increased by 5%. 

 

Table 4.12: Roll/Yaw and Pitch Frequencies at Each Stage for Case 5 (Hz) 

Parameters                                  Stage 1                                 Stage 2 

Pitch frequency                             0.000611  
  
                           0.000234 

Roll / Yaw frequency                    0.001506                              0.001582 

 

 

Table 4.13 presents the optimal mass shift through each pipe. Since the frequency values 

are chosen near the boundary, more mass are shifted than the other cases. A total of 

22.4874 kg of mass is shifted to achieve the required frequencies and this mapping 
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satisfies both minimum total mass movement and balanced mass distribution. The 

amount of shifted mass per each tank is presented in Table 4.14 and the diagram for each 

stage is illustrated in Figure 4.8. It is noticed that the size of each circle is different due to 

the mass shift. Case 1 through 4, the pair mass must be the same to maintain the center-

of-mass unmoved but all tanks have different amount of mass. Unbalanced mass 

distribution causes the center-of-mass to be moved and the new center-of-mass is located 

at -0.01657 0.00016 -0.00377  
T
m. 

 

Table 4.13: Optimal Mass Shift Through Each Pipe for Case 5 (kg) 

Pipe_12 =  2.9966 Pipe_21 = -2.9966 

Pipe_13 =  1.0373 Pipe_31 = -1.0373 

Pipe_15 =  1.9135 Pipe_51 = -1.9135 

Pipe_16 =  1.2530 Pipe_65 = -1.2530 

Pipe_23 = -1.6617 Pipe_32 =  1.6617 

Pipe_24 = -2.8073 Pipe_42 =  2.8073 

Pipe_26 = -1.5866 Pipe_62 =  1.5866 

Pipe_34 = -1.2517 Pipe_43 =  1.2517 

Pipe_35 =  2.1459 Pipe_53 = -2.1459 

Pipe_45 =  2.8804 Pipe_54 = -2.8804 

Pipe_46 =  0.8406 Pipe_64 = -0.8406 

Pipe_56 = -2.1128 Pipe_65 =  2.1128 

Total amount of mass shifted: 22.4874 kg 

 

Table 4.14: Mass Distribution for Stage 1 and Stage 2 for Case 5 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 17.2004 7.2004 

Tank 2 10 0.9478 -9.0522 

Tank 3 10 11.5186 1.5186 

Tank 4 10 17.7800 7.7800 

Tank 5 10 0.9475 -9.0525 

Tank 6 10 11.6057 1.6057 

Total Amount 

of Mass 
60 60 0 
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Figure 4.8: Diagram of Tank Distribution for Each Stage for Case 5 

(the size of each circle is not exactly scaled) 
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Since the center-of-mass has been relocated, the change in moments of inertia is 

the summation of moment of inertia change of system mass and the satellite system. Each 

moments of inertia change is computed in Equations (4.25) and (4.26). 

 

2

sat

0.00142 0.00026 -0.00624

0.00026 0.02887 0.00006 (kg m )

-0.00624 0.00006 0.02745

I

 
 ∆ = ⋅ 
  

                        

(4.25) 

 

2

mass

25.01976 0.00006 -0.00012

0.00006 58.102226 0.00002 (kg m )

-0.00012 0.00002 36.87293

I

 
 ∆ = ⋅ 
  

                   

(4.26) 

 

Then, the principal moments of inertia for stage 1 and stage 2 satisfy the stability 

constraints in Figure 4.9. Compared with previous results, all three values for the 

principal moments of inertia at stage 2 are increased. It is also found that the roll moment 

of inertia and yaw moment of inertia have almost same amount. This makes the pitch 

frequency a small number and longer period from Equation (2.35). As calculated in 

Equations (4.25) and (4.26), this simulation also creates the products of inertia. Thus, a 

DCM is needed to convert the data from stage 1 and stage 2 and computed as 

 

 0.999999 0.002038 -0.000001

DCM 0.002038 -0.999999 -0.000005

-0.000001 0.000005 -0.999999

 
 =  
  

                            

(4.27) 
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Figure 4.9: Principal Moments of Inertia for Each Stage for Case 5 ( ⋅ 2
kg m ) 

 

 

The roll, pitch, and yaw angles and their rates for stage 1 and stage 2 are presented in 

Figure 4.10. To compare the attitude angles in a same coordinate system, data at stage 2 

is converted into stage 1 via Equation (4.27). Since the roll/yaw frequency is increased 

only 5% at stage 2, frequency change is not noticeable. However, the pitch frequency 

change is conspicuous because the frequency is reduced to half. Figure 4.11 illustrates the 

ground coverage from this simulation. A 5% increase of roll/yaw frequency does not 

show the outstanding ground coverage change like in Figure 4.4 but the small increase is 

still noticed. The longitude deviation range at stage 1 is -0.061 to 0.061 degree and the 

deviation range at stage 2 is -0.082 to 0.082 degree.  
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Figure 4.10: Roll, Pitch and Yaw Angles and Their Rates for Stage 1 and Stage 2 for Case 5 

(stage 2 begins at 5× 10
4
 sec) 
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Figure 4.11: Ground Coverage Change between Stage 1 and Stage 2 for Case 5 

(stage 2 begins at 5× 10
4
 sec) 

 

 

The model for case 4 is examined to compare the optimal mass distribution 

subject to the same constraints. The same frequency constraints, 5% increase of roll/yaw 

frequency and 38.5% of pitch frequency at stage 1 are applied. Table 4.15 presents the 
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than the mass transfer to achieve the roll/yaw and pitch frequencies at stage 2. 
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Table 4.15: Optimal Mass Shift Through Each Pipe for Case 4 (kg) 

Pipe_12 =  0.01250 Pipe_21 = -0.01250 

Pipe_13 =  0.00985 Pipe_31 = -0.00985 

Pipe_15 =  0.01250 Pipe_51 = -0.01250 

Pipe_16 =  0.00985 Pipe_65 = -0.00985 

Pipe_23 = -0.00264 Pipe_32 =  0.00264 

Pipe_24 = -0.01250 Pipe_42 =  0.01250 

Pipe_26 = -0.00264 Pipe_62 =  0.00264 

Pipe_34 = -0.00986 Pipe_43 =  0.00986 

Pipe_35 =  0.00264 Pipe_53 = -0.00264 

Pipe_45 =  0.01250 Pipe_54 = -0.01250 

Pipe_46 =  0.00986 Pipe_64 = -0.00985 

Pipe_56 = -0.00264 Pipe_65 =  0.00264 

Total amount of mass shifted: 0.09999 kg 

 

 

Table 4.16: Tank location for Stage 1 and Stage 2 for Case 4 (m) 

 Stage 1 Stage 2 

Tank 1 [1,     0,     0] [1.311485,   0.000005,  0.000016] 

Tank 2 [0,     1,     0] [-0.000000,  0.822443,  0.000000] 

Tank 3 [0,     0,     1] [0.000000,   0.000000,  0.999998] 

Tank 4 [-1,    0,     0] [-1.311485, -0.000005, -0.000016] 

Tank 5 [0,    -1,     0] [0.000000,  -0.822443, -0.000000] 

Tank 6 [0,     0,    -1] [-0.000000, -0.000000, -0.999998] 

 

 

Table 4.17: Mass Distribution for Stage 1 and Stage 2 for Case 4 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 10.0447 0.0447 

Tank 2 10 9.9697   -0.0303 

Tank 3 10 9.9856 -0.0144 

Tank 4 10 10.0447 0.0447 

Tank 5 10 9.9697 -0.0303 

Tank 6 10 9.9856 -0.0144 

Total Amount 

of Mass 
60 60 0 (conserved) 
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Table 4.16 shows the tank location change before and after the simulation. Compared 

with Table 4.10, tank 1 and tank 4 move outward and tank 2 and tank 5 are shifted toward 

the origin. Tank 3 and tank 6 remain near their original location at stage 1. All six tanks 

remain near each axis even though they can be moved to any location. A diagram is 

illustrated in Figure 4.12. Table 4.17 contains the amount of shifted mass per each tank. 

Since the total mass movement shown in Table 4.15 is small, each tank also shows the 

small amount of mass change. In addition, the change of moment of inertia and 

corresponding DCM are calculated as: 

 

2

 -7.19177 -0.00010 -0.00034

-0.00010 12.5199 -0.00001 (kg m )

-0.00034 -0.00001 5.38602

I

 
 ∆ = ⋅ 
  

                     

(4.28) 

 

7

6

7 6

0.99999 -0.00014 -2 10

DCM 0.00014 0.99999 -2 10

2 10 2 10 0.99999

−

−

− −

 ×
 

= × 
 × × 

                                  

(4.29) 
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Figure 4.12: Diagram of Tank Distribution for Each Stage for Case 4 
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Since the DCM is near the identity matrix, angular velocity and their rates, and 

ground coverage are almost same as case 5. The difference is the optimal mass 

distribution caused by the different model. Figure 4.13 illustrates that the stability 

constraint < <y r pI I I
 
for each stage is satisfied. As seen in Figure 4.9, the roll moment of 

inertia and yaw moment of inertia are pretty close each other due to the same reason, 

which is the pitch frequency at stage 2 is set to have low pitch frequency. On the contrary, 

all three values for the principal moments of inertia are not changed at stage 2 as the case 

5 model presented. 

 

 

Figure 4.13: Principal Moments of Inertia for Each Stage for Case 4 ( ⋅ 2
kg m ) 
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It has been shown that two different models, case 4 and case 5, can be used to find 

the optimal solutions under the same frequency and stability constraints. Because each 

design has different characteristics, the optimal mass mapping is different for the same 

problem. Examples with more realistic constraints are examined for the application to the 

satellite. 

From the result of case 4, the optimal mass distribution and the location of each 

tank is found. The optimal solution is acceptable mathematically, but it is not easy to 

place a tank only 6 cm away from the origin. Thus more realistic constraint is added 

which is only one pair tanks (e.g., tank 1 and tank 4) can move along one axis (e.g., x-

axis) with the range of 0.9 m to 1.1 m from the origin. With the same frequency and 

stability constraints as above, the following results are computed. 

Table 4.18 presents the mass transfer both minimizing the total mass movement 

and also distributing the mass mapping among tanks. The outstanding difference from the 

previous simulations by the case 4 model is the increase of the total shifted mass. Usually 

less than 1 kg is shifted with the contribution of tank relocation. Under this constraint, the 

advantage of tank relocation is not enough to obtain the required change in moments of 

inertia. Table 4.19 shows the location of each tank at stage 1 and stage 2. Case 4 model 

usually changes the tank location more than the mass transfer, thus the maximum 

movement of tank location occurs and are presented in Table 4.19. Since more mass is 

moved through each pipe, more mass is shifted in each tank as well. The amount of mass 

for each stage is found in Table 4.20. A diagram is illustrated in Figure 4.14 before and 

after the maneuver. 
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Table 4.18: Optimal Mass Shift Through Each Pipe for Case 4 (kg) 

Pipe_12 =  1.281 Pipe_21 = -1.281 

Pipe_13 =  0.716 Pipe_31 = -0.716 

Pipe_15 =  1.281 Pipe_51 = -1.281 

Pipe_16 =  0.716 Pipe_65 = -0.716 

Pipe_23 = -0.565 Pipe_32 =  0.565 

Pipe_24 = -1.281 Pipe_42 =  1.281 

Pipe_26 = -0.565 Pipe_62 = -0.565 

Pipe_34 = -0.716 Pipe_43 =  0.716 

Pipe_35 =  0.565 Pipe_53 = -0.565 

Pipe_45 =  1.281 Pipe_54 = -1.281 

Pipe_46 =  0.716 Pipe_64 = -0.716 

Pipe_56 = -0.565 Pipe_65 =  0.565 

Total amount of mass shifted: 10.253 kg 

 

 

Table 4.19: Tank location for Stage 1 and Stage 2 for Case 4 (m) 

 Stage 1 Stage 2 

Tank 1 [1,     0,     0] [1.1,   0,   0] 

Tank 2 [0,     1,     0] [0,     1,    0] 

Tank 3 [0,     0,     1] [0,     0,    1] 

Tank 4 [-1,    0,     0] [-1.1,  0,   0] 

Tank 5 [0,    -1,     0] [0,    -1,    0] 

Tank 6 [0,     0,    -1] [0,     0,   -1] 

 

 

Table 4.20: Mass Distribution for Stage 1 and Stage 2 for Case 4 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 13.996 3.996 

Tank 2 10 6.306   -3.694 

Tank 3 10 9.698 -0.302 

Tank 4 10 13.996 3.996 

Tank 5 10 6.306 -3.694 

Tank 6 10 9.698 -0.302 

Total Amount 

of Mass 
60 60 0 (conserved) 
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Figure 4.14: Diagram of Tank Distribution for Each Stage for Case 4 
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The change of the moments of inertia is computed in Equation (4.30) and the 

DCM becomes an identity matrix since the constraint applied for this simulation does not 

change the principal axes between stage 1 and stage 2. This is also verified by checking 

that the off diagonal terms are zero in Equation (4.30). 

 

2

 -7.9918 0 0

0 11.3879 0 (kg m )

0 0 4.6038

I

 
 ∆ = ⋅ 
  

                       

(4.30) 

 

The principal moments of inertia for both stages are presented in Figure 4.15. 

 

 

Figure 4.15: Principal Moments of Inertia for Each Stage for Case 4 ( ⋅ 2
kg m ) 
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 A different constraint can be applied to the case 5 model such as one path (pipe) 

being blocked. By assuming that Pipe_12 is blocked, the optimal mass distribution is 

obtained as follows. 

 The amount of mass travelling through each pipe is presented in Table 4.21. As 

assumed, there is no mass transfer through Pipe_12 and Pipe_21 also has no mass 

movement automatically. All other pipes allow mass shift and total 23.584 kg of mass 

transfer satisfies both minimum total mass move and the balanced mass mapping. Table 

4.22 shows the mass amount at stage 1 and stage 2. Compare with Table 4.14 containing 

the amount of mass with all pipes working, Table 4.22 does not show much difference. 

This means even one pipe fails, mass still has access through other pipes to arrive at a 

certain tank. When all pipes are working, the total mass amount is 22.4874 kg from Table 

4.14, that is, one failed pipe does not affect finding the optimal mass distribution.  Figure 

4.16 illustrates the diagram when one pipe has failed. It shows similar mass distribution 

for the reason explained above. 

 

Table 4.21: Optimal Mass Shift Through Each Pipe for Case 5 (kg) 

Pipe_12 =  0 Pipe_21 =  0 

Pipe_13 =  1.619 Pipe_31 = -1.619 

Pipe_15 =  3.220 Pipe_51 = -3.220 

Pipe_16 =  1.619 Pipe_65 = -1.619 

Pipe_23 = -2.673 Pipe_32 =  2.673 

Pipe_24 = -3.748 Pipe_42 =  3.748 

Pipe_26 = -2.673 Pipe_62 =  2.673 

Pipe_34 = -1.075 Pipe_43 =  1.075 

Pipe_35 =  1.600 Pipe_53 = -1.600 

Pipe_45 =  2.676 Pipe_54 = -2.676 

Pipe_46 =  1.075 Pipe_64 = -1.075 

Pipe_56 = -1.600 Pipe_65 =  1.600 

Total amount of mass shifted: 23.584 kg 



123 

 

 

Figure 4.16: Diagram of Tank Distribution for Each Stage for Case 5 

(the size of each circle is not exactly scaled) 
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Table 4.22: Mass Distribution for Stage 1 and Stage 2 for Case 5 (kg) 

 Stage 1 Stage 2 Mass shifted 

Tank 1 10 16.460 6.460 

Tank 2 10 0.905 -9.095 

Tank 3 10 11.578 1.578 

Tank 4 10 18.576 8.576 

Tank 5 10 0.900 -9.100 

Tank 6 10 11.578 1.578 

Total Amount 

of Mass 
60 60 0 

 

 

 Equations (4.31)-(4.32) present the moment of inertia change of the satellite 

system and mass system due to the center-of-mass shifting. The new center-of-mass is 

located at [ ]-0.0604 0.0023 -0.0000
T

m and the DCM is computed in Equation (4.33). 

 

2

sat

0.00057 0.01444 -0.00000

0.01444 0.36493 0.00000 (kg m )

-0.00000 0.00000 0.36550

I

 
 ∆ = ⋅ 
  

                          

(4.31) 

 

2

mass

24.96323 0.00334 -0.00000

0.00334 58.15709 0.00000 (kg m )

-0.00000 0.00000 36.80679

I

 
 ∆ = ⋅ 
  

                      

(4.32) 

 

 0.999999 0.000000 -0.000000

DCM 0.000000 -0.999999 -0.000303

-0.000000 0.000303 -0.999999

 
 =  
  

                                 

(4.33) 
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Figure 4.17: Principal Moments of Inertia for Each Stage for Case 5 ( ⋅ 2
kg m ) 

 

Figure 4.17 presents the principal moments of inertia at stage 1 and stage 2. Since the 

mass distribution is close to the case with no failed pipe, three principal moments of 

inertia have similar values in Table 4.9. 

 

 It is generally known that the gravity gradient stabilization can control only two 

axes: roll and pitch. When Equation (3.10) is applied to Equation (2.39) for 

controllability check, the rank is 5 and this means the system is not fully controllable 

from the control vector. In Equation (3.10), it is found that one column of the 6× 6 matrix 

is a zero vector and this column results in the rank is not full. In other words, there is no 

control moment applied to the yaw axis. Even optimal mass transfer does not provide the 

yaw control moment since the satellite at stage 2 is also assumed to be stabilized under 

the influence of a gravity gradient. Therefore, additional control devices are needed to 

control all three axes. Equation (H.9) is the governing equation with an internal rotating 
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device installed. The rotating device such as momentum wheel, reaction wheel, or gyro 

can provide the moment required along the yaw axis. Equation (H.9) does not have a zero 

column or row in the equation and the linearized state space form can be derived through 

the same way that Equation (3.10) was developed. Then, Equation (2.39) can investigate 

the controllability by checking the rank of the matrix with elements calculated from the 

state space equation. 



 

 

Chapter 5  

 

SUMMARY, CONCLUSIONS, and FUTURE WORK 

The procedure of optimal reconfiguration from one mass distribution to another 

to accomplish attitude control has been demonstrated. Mass shifting could work as an 

attitude controller for fine-tuning attitude behavior in a small size satellite in LEO. To 

utilize the gravity gradient-torque, a system of six tanks equally distributed along an 

imaginary surface is introduced and two fundamental models are developed. Each system 

is composed of the dry satellite and the six tanks so that the configuration of the mass 

system can change the attitude of the satellite by changing the moments of inertia of the 

system from various mass distributions. 

The first model is the general system such that three pairs of mass can move 

freely to any location. The only design restriction is that each pair of masses must have 

the same amount of mass to avoid the center-of-mass shifting. The optimal solution 

satisfies both minimal total mass movement including tank location shift and the balance 

of the mass mapping among all connecting pipes. Several simulations show that the 

optimal mass mapping is more affected by the location of each tank than the amount of 

mass in each tank. Since this model is too general to apply to the real system, relevant 

restriction may be included. 

The other model is a more realistic design with the six tank locations fixed and 

the internal mass traveling through each pipe. Since no restriction is applied to the 

amount of mass per each tank, the center-of-mass change yields the location of each tank 
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to be changed as well. Under this situation, the location of each tank is expressed by the 

mass of each tank. Fewer variables results in nonlinear constraints instead. 

To compute the optimal mass mapping, the roll/yaw and pitch frequencies are 

used because the each frequency is the function of three principal moments of inertia. 

The other two constraints are derived from the gravity-gradient stabilization theory. Two 

equality constraints from frequencies and two inequality constraints from the stability 

condition become the universal constraints for each simulation. Then, additional 

restrictions are added if necessary. No mass shift occurs between two tanks connected by 

a blocked pipe and the limited range of tank locations is applied to find the optimal 

solution. 

Several examples are simulated by both models. Although the Euler angles and 

their rates result in almost the same model, the optimal mass distribution and the location 

of tank are fairly different from each other. For the free tank location model, the 

contribution of the tank location is much larger and the available frequency range is also 

wider than the changing center-of-mass model. However, more restrictions should be 

applied from the engineering viewpoint. The other model, changing center-of-mass, has a 

narrow range of roll/yaw frequency due to the limitation of the design. Since the mass 

reconfiguration under the gravity gradient is not designed for the major attitude controller, 

this model is more realistic. 

Ground coverage is also introduced to guide the frequency determination. Since 

the frequency constraints are related to the ground coverage for a special task such as a 

map-making mission, higher roll frequency is selected to enlarge the coverage area on the 

ground. However, the feasible mass distribution is not always available. The possible 
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frequency range after mass distribution is found by changing one of the frequencies while 

the other is fixed. 

Controllability is also checked for the gravity-gradient satellite. Since gravity 

gradient is not enough to control all three axes, the governing equation including the 

internal rotating device is added. That internal device generates the last axis that gravity 

gradient is not able to control, then control of all three axes can be fulfilled. 

MATLAB’s optimization solver provides a strong solver to find the optimal 

solution. Each process takes less than a minute even without the assistance of super 

computation ability. The only thing to be careful is to find the adequate frequencies; 

otherwise the optimization solver fails to find the answer. 

 

Throughout various simulations, it has been demonstrated that both designs 

(center-of-mass fixed design and center-of-mass changing design) can work as attitude 

control methods for the gravity-gradient stabilized satellite. These models may use not 

only liquid mass but also any movable parts in any directions while the conventional 

gravity-gradient controller such as gravity-gradient boom has a limited design. Compared 

with most gravity-gradient control methods, both models provide more flexible mass 

distribution so that more accurate moments of inertia can be achieved. The usage of 

internal moving mass could be less effective than using general gravity-gradient devices, 

but the payload design can be more simplified since the space for the gravity-gradient 

devices is no longer required. Thus the new designs can be a substitute for the small size 

satellite in LEO requiring a high pointing accuracy. 
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Also, the methodology used in this simulation can be applied for a mission 

especially when the frequency of the roll, pitch, and yaw motion is important. It is proved 

that how the frequency changes affects the ground coverage changes. By increasing the 

ground coverage, more area can be observed while more narrow area can be observed by 

decreasing the coverage area. In addition, the optimization process can be added as 

necessary. The optimal solution with well-developed objective functions from network 

model theory proves that it can be applied to the various problems. 

 

Future work may include the following ideas. 

1. Both models assume that the transition occurs instantaneously without 

considering the continuous mass transfer. So, continuity may be the topic for the 

next research. 

2. Even though the computation time is extremely short, there are still chances that 

the desired frequencies cannot be verified until the optimization solver finishes 

the computation. Thus, finding the safe range of frequencies based on the original 

mass configuration might be helpful. 

3. One of the assumptions made for this dissertation is that all masses used in 

simulation are regarded as a point mass. If the mass in a tank is not uniformly 

distributed or the location of mass is not aligned with each axis may require 

additional calculation to find the principal axes. Consideration of the internal tank 

design would increase the chance to apply to the real satellite.  
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Appendix A 

 

Conversions between Coordinate Systems 

There are several choices of coordinate systems for attitude control systems. It is 

always possible to convert from one coordinate system to another by finding the 

transformation matrix. Here, the various mapping matrices are calculated to complete 

these conversions and more details are found in [27]. With those transformations, the 

conversions can be performed simply by matrix multiplication. 

Choose two coordinate systems M and N with base vectors [ ]ˆ ˆ ˆ
M M M

x y z
T

 and 

[ ]ˆ ˆ ˆ
N N N

x y z
T

 
in each coordinate system. Then, a random vector v  can be expressed in 

each coordinate system by a linear combination with the base: 

 

     [ ] [ ]ˆ ˆ ˆ ˆ ˆ ˆv v v= =
M M M M N N N N

x y z x y z

             

                  (A.1) 

 

where vM  and vN  are the associated vectors to obtain v  in each coordinate systems M 

and N, respectively. If A
M/N

 is the transformation matrix describing the orientation of 

coordinate system N to M, then the equations (A.2) show the conversions from vN  to 

vM . It is shown that the inverse transformation is the transpose of the same matrix in 

equation (A.3). 

 

   
/v A v= M N

M N                                                       (A.2) 
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/ / Tv A v (A ) v= =N M M N

N M M                                          (A.3) 

 

A.1 Converting a Matrix between the Inertial and Orbital reference coordinate 

systems 

Let r  be the radius vector and v  be the velocity vectors of a satellite in the 

inertial coordinate system. The vector Cz  is defined as the unit vector in the opposite 

direction of the radius vector in the same coordinate system. Then the following equation 

holds:  

 

[ ]1
I I I

x y z

 
 = − = −  
  

x

C y

z

r
r

z r
r r

r

                                    (A.4) 

 

Suppose a projection of the velocity vector into the orthogonal subspace of the radius 

vector and let Cx  be the unit vector in the direction of this projection, this can be 

expressed as: 

 

[ ]
2

C

2

x = = I I Ix y z

⋅  −
 
 ⋅

−   

x

y

z

r v xv r
r y

r v
v r z

r

                              (A.5) 

 

Next, Cy  is defined as C Cz x× : 
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[ ] [ ]C C C

1
y z x I I I I I Ix y z x y z

      
      = × = − × =      
            

x x x

y y y

z z z

x r y

x r y
r

x r y

              (A.6) 

 

Substituting equations yields the transformation matrix from inertial to orbital reference 

coordinate system, A
R/I

: 

 

A

R I I

R/I

R I I

R I I

x x x

y y y

z z z

 
      
      = =      
            − − −
 

x y z

x y z

yx z

x x x

y y y

rr r

r r r

                           (A.7) 

 

A.2 Converting the Angular Velocity of the Body-fixed Coordinate System with 

respect to the inertial Coordinate System 

Equation (A.8) represents how the angular velocity of the body-fixed coordinate 

system is related to the inertial coordinate system. The angular velocity is the function of 

the radius vector r  and the velocity vector v  and may be computed as  

 

2
y

v r

r
ω

×
= −R /I

R
                                                 (A.8) 

 

If a satellite’s orbit is circular, v r×  is constant. That means the angular velocity has the 

same magnitude and direction at any location of the orbit. 

 



 

 

Appendix B 

 

Useful Properties of Direction Cosine Matrices 

The first useful property of a direction cosine matrix [27] is that the DCM
M/N

 is a 

unitary rotation matrix. In other words:  

 

/ / TDCM (DCM ) I=M N M N
                                           (B.1) 

 

As seen in Equation (B.1), the rotation matrix has its transpose matrix as its 

inverse matrix, which is always promised to exist. Apparently, any arbitrary vector can be 

expressed in either coordinate system M or N. Therefore, an arbitrary vector v  can be 

written as 

 

[ ] [ ]M N
ˆ ˆ ˆ ˆ ˆ ˆv v v= =

M M M N N N
x y z x y z                               (B.2) 

 

where vM  and vN  are 3× 1 column vectors. Substituting Equation (B.1) into Equation 

(B.2), the next equation is found:  

 

[ ] [ ]/ Tˆ ˆ ˆ ˆ ˆ ˆ(DCM ) v v=M N

N N N M N N N N
x y z x y z                      (B.3) 

 

Without loss of generality, the following relationship is obtained  
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/ T(DCM ) v v=M N

M N                                               (B.4) 

 

As mentioned earlier, DCM
M/N

 is a unitary rotation matrix. Thus multiplication of 

Equation (B.4) by the inverse matrix on both sides yields 

 

/v DCM v= M N

M N                                                 (B.5) 

 

From Equation (B.5), it may be concluded the DCM
M/N

 can work as a transformation 

matrix from one coordinate system to another. The matrix DCM
M/N 

is a transformation 

from arbitrary system M to another arbitrary system N. Also it can be concluded that its 

transpose matrix (DCM
M/N

)
T
 will transform to the opposite mapping which is, 

 

/ T /(DCM ) DCM=M N N M
                                            (B.6) 

 

This step can be extended to more than two different coordinate systems simply applying 

the chain rule. Suppose a coordinate system L with a base unit vector, [ ]ˆ ˆ ˆ
L L L

x y z . 

Applying the same idea used for Equation (B.2) for an arbitrary vector v , 

 

[ ] L
ˆ ˆ ˆv v=

L L L
x y z                                               (B.7) 
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Similarly, the following process can be led to find the mapping matrix from vL  
to vN  

and vL  
to vM :  

 

/v DCM v= N L

N L                                                    (B.8) 

                             
/v DCM v= M L

M L                                                   (B.9) 

 

Substituting Equations (B.5) and (B.8) yields the following:  

 

/ /v DCM DCM v= M N N L

M L                                          (B.10) 

 

From Equations (B.8), (B.9), and (B.10), the general mapping relationship for arbitrary 

systems can be found. 

 

/ / /DCM DCM DCM=M L M N N L
                                      (B.11) 

 

 

 

 

 



 

 

Appendix C 

 

Euler Angle Rotation 

To describe the rotation of a coordinate system, at most, three angles are needed 

to complete the rotating sequences. Those three angles are called at the Euler Angles [43] 

and the related transformation matrix is different for each sequence. To simplify the 

process, the origin of each coordinate system is assumed to be located at the same 

position in a space. The cycle is performed as follows 

1. Rotation by the angle ϕ  about the axis 3 

2. Rotation by the angle θ  about the axis 2’ 

3. Rotation by the angle ψ  about the axis 1” 

In Figure C.1, the original coordinate system, 123, is rotated around axis 3 through the 

Euler angle ϕ .  

ϕ

ϕ

 

Figure C.1: Rotation by the angle ϕ  about the axis 3 
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As seen, it rotates the axes 1 and 2 to 1’ and 2’ respectively and it satisfies 

 

1 cos sin 0 1

2 sin cos 0 2

3 0 0 1 3

ϕ ϕ
ϕ ϕ

     
     = −     
          

'

'                                           (C.1) 

 

The 3 × 3 associated rotation matrix in equation (C.1) is called the orthogonal 

transformation matrix, R3(ϕ ), where R denotes the rotation, the subscript 3 recalls the 

axis and the ϕ  
is the angle of rotation. 

 The second rotation is illustrated in Figure C.2. The coordinate system rotates 

around the axis 2’ through the angle θ . The coordinate system before the rotation is 

1’2’3 (used the axis 3 instead of 3’ because the axis has not been changed from the first 

rotation) and the coordinate system after the rotation is 1”2’3’.  

 

θ

θ

 

Figure C.2: Rotation by the angle θ  about the axis 2’ 
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This rotation can be expressed by the transformation matrix as: 

 

1 cos 0 sin 1

2 0 1 0 2

3 sin 0 cos 3

θ θ

θ θ

     
     =     
     −     

'' '

' '

'

                                         (C.2) 

  

 The 3× 3 matrix in equation (C.2) is denoted by R2(θ ), where the subscript 2 used 

for axis 2’ and the θ  is the angle of rotation. 

The last rotation to complete the cycle is performed around the axis 1” through 

the angle ψ . Figure C.3 shows the diagram of the final rotation. 

 

ψ

ψ

 

Figure C.3: Rotation by the angle ψ  about the axis 1” 

 

 

 

 



146 

 

Similarly, the transformation matrix is calculated as: 

 

1 1 0 0 1

2 0 cos sin 2

3 0 sin cos 3

ψ ψ
ψ ψ

     
     =     
     −     

'' ''

'' '

'' '

                                        (C.3) 

 

It is noted that the only two axes of right-hand side 2’ and 3’ have been changed into 2” 

and 3” as expected because the coordinate system rotates around the axis 1”. Based on 

the similar notation, the 3 × 3 transformation matrix is called R1( ψ ). Thus the 

transformation matrix from the one coordinate system to the other coordinate system can 

be found by the product of R3(ϕ ), R2(θ ), and R1(ψ ) in order. Thus the entire rotation 

transformation matrix from the coordinate system 123 to 1”2”3” is 

 

1 2 3

1 1

2 R ( )R ( )R ( ) 2

3 3

ψ θ ϕ
   
   =   
      

''

''

''

                                              

(C.4) 

 

Thus, the final rotation transformation matrix 1 2 3R ( )R ( )R ( )ψ θ ϕ  is  

 

cos cos sin cos sin

sin cos cos sin sin cos cos sin sin sin cos sin

sin sin cos sin cos cos sin sin sin cos cos cos

ϕ θ ϕ θ θ
ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ θ ψ

ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ θ ψ

− 
 − + + 
 + − + 

 (C.5) 
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As noted earlier, the inverse matrix of this matrix transforms the coordinate system 1”2”3” 

into 123 and is simply the transpose of Equation (C.5) 

 

cos cos sin cos cos sin sin sin sin cos sin cos

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

ϕ θ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ
ϕ θ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ

θ θ ψ θ ψ

− + + 
 + − + 
 − 

 (C.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix D 

 

Conversions Between Attitude Mapping Computations 

Different maneuvers require different attitude representations because of its ease 

of use. Euler angles help understand a visual rotation while transformation matrix is 

pretty intuitive for a vector transformation, However, the different choice of problem 

solving method may delay the calculating time for the same result. Conversions between 

Euler angles and transformation matrix are described. 

Several definitions are as following. A
M/N

 is the transformation matrix and ψ , θ , 

and ϕ  are the Euler angles for an arbitrary coordinate system M with respect to the other 

system N. Let A
M/N

 be defined as 

 

11 12 13

/

21 22 23

31 32 33

A A A

A A A A

A A A

 
 =  
  

M N                                              (D.1) 

 

D.1 Conversion from the Euler Angles to the Transformation Matrix 

As illustrated in Appendix B, Euler Angles represent the angles to rotate one 

coordinate system to align to the other system. Three successive rotations are performed 

to complete this maneuver and the order of the rotation about each axis results in a 

different rotating matrix. Total 12 different rotation matrices exist and the relationship 

from Euler angles to the transformation matrix is straightforward. The 3 × 3 rotation 
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matrix of the Equation (D.2) is the same matrix of Equation (B.5) which the order of 

rotation is φ θ ψ− − :  

 

 

/A

cos cos sin cos sin

sin cos cos sin sin cos cos sin sin sin cos sin

sin sin cos sin cos cos sin sin sin cos cos cos

φ θ φ θ θ
φ ψ φ θ ψ φ ψ φ θ ψ θ ψ

φ ψ φ θ ψ φ ψ φ θ ψ θ ψ

− 
 = − + + 
 + − + 

M N

 (D.2) 

 

D.2 Conversion from the Transformation Matrix to the Euler Angles  

This conversion can be calculated from Equation (D.2) and inverse trigonomic 

functions to find the correct Euler angles. However, this method contains a problem 

which is caused by the quadrant ambiguities. Without full understanding of the attitude 

situation, it is not easy to decide the correct quadrant. If the Euler angles are assumed for 

reference purposes, this ambiguity may be disregarded in most cases. Then, the Euler 

angles ψ , θ , and ϕ  are expressed with the elements of the transformation matrix as: 

 

1 32

33

A
tan

A
ψ −  

=  
 

                                                 (D.3) 

1

13sin Aθ −= −

                  

                                   (D.4) 

1 21

11

A
tan

A
ϕ −  

=  
 

              

                                     (D.5) 

 



 

 

Appendix E 

 

Modified Equations of Motion of the Satellite with a Movable Mass 

Equations (3.1), (3.2), and (3.3) describe the time variant attitude of a satellite 

with the movable mass that can be located at any place. However, the purpose of this 

research is to find the optimal mass distribution of the system. This means the location of 

the center-of-mass of the whole system is fixed when a mass transfer is completed. Also, 

this research concerns small angle attitude change for a nadir pointing control. Thus, the 

higher order terms from the multiplications of small angular velocity and their rates may 

be neglected. Then, the following matrix form can be applied for further computation. 

 

1
2 2

2 2

2 2

( )

( )

( )

( )

           2 ( )

( )

x x C C C

y C y C

z C C z C

x

y

z

I y z xy xz

yx I x z yz

zx zy I x y

yy zz xy xz zy yz

yx xx zz yz xz z

zx zy xx yy

ϖ µ µ µ
ϖ µ µ µ
ϖ µ µ µ

ϖ
ϖ
ϖ

−
 + + − − 
   = − + + −  
   − − + +   

− + −   
   − + + −   
   − +   

ɺ

ɺ

ɺ

ɺ ɺ ɺ ɺɺɺ ɺɺ

ɺ ɺ ɺ ɺɺ ɺɺ

ɺ ɺɺ ɺ

x

yx xy

  
  
  
  −  

ɺ

ɺɺ ɺɺ

   

       (E.1) 

 

 

 

 

 



 

 

Appendix F 

 

Derivation of Steady State Equation for Gravity Gradient Stabilization 

 The governing equations of motion including the gravity gradient are well 

described in Section 2.5.1 as: 

 

2( ) ( ) 0y p r p r yI I I n I I I nϕ ϕ ψ+ − + − − =ɺɺ ɺ                                    (2.29) 

2( ) 4( ) 0r r p y p yI I I I n I I nψ ϕ ψ+ − + + − =ɺɺ ɺ                                   (2.30) 

23( ) 0p r yI I I nθ θ+ − =ɺɺ                                               (2.31) 

 

To develop a general state-space representation, each components of moment of inertia, 

Euler angles and their rates can be expressed by the summation of two terms, initial value 

and deviation as already defined in Equations (3.4)-(3.6) 

 

0 0 0
,           ,           r r r p p p y y yI I I I I I I I I= +∆ = +∆ = +∆                           (3.4) 

0 0 0,           ,              ψ ψ ψ θ θ θ ϕ ϕ ϕ= +∆ = +∆ = +∆                            (3.5) 

0 0 0,           ,              ψ ψ ψ θ θ θ ϕ ϕ ϕ= +∆ = +∆ = +∆ɺ ɺ ɺɺ ɺ ɺ ɺ ɺ ɺ                            (3.6) 

 

Substituting these into Equations (2.29)-(2.31) results 

 

0 0 0

0 0 0

2

0 0

0

( )( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) 0

y y p p r r

p p r r y y

I I I I I I n

I I I I I I n

ϕ ϕ ϕ ϕ

ψ ψ

 +∆ +∆ + +∆ − +∆ +∆ 

 + +∆ − +∆ − +∆ +∆ = 

ɺɺ ɺɺ

ɺ ɺ
              (F.1) 
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0 0 0 0

0 0

2

0 0

2

0

( )( ) ( ) ( ) ( ) ( )

                                              4 ( ) ( ) ( ) 0

r r r r p p y y

p p y y

I I I I I I I I n

I I I I n

ψ ψ ϕ ϕ

ψ ψ

 +∆ +∆ + +∆ − +∆ + +∆ +∆ 

 + +∆ − +∆ +∆ = 

ɺɺ ɺɺ ɺ ɺ

              (F.2) 

0 0 0

2

0 0( )( ) 3 ( ) ( ) ( ) 0p p r r y yI I I I I I nθ θ θ θ +∆ +∆ + +∆ − +∆ +∆ = 
ɺɺ ɺɺ               (F.3) 

 

Then the Euler angles accelerations have a second order differential equations with 

higher order terms neglected yields 

 

0 0

0

0 0 0

2 2

0 0

0

1
4( ) 4( )

                            +( ) ( )

r p y p y

r r

r p y r p y

I I I n I I n
I I

I I I n I I I n

ψ ψ ψ ψ

ϕ ϕ

∆ = − ∆ + − ∆ + ∆ −∆+∆

− + ∆ + ∆ −∆ +∆ 

ɺɺ ɺɺ

ɺ ɺ

                     (F.4) 

0 0

0

2 2

0 0

1
3( ) 3( )p r y r y

p p

I I I n I I n
I I

θ θ θ θ ∆ =− ∆ + − ∆ + ∆ −∆ +∆
ɺɺ ɺɺ                       (F.5) 

0 0

0

0 0 0

2 2

0 0

0

1
( ) ( )

                             +( ) ( )

y p r p r

y y

p r y p r y

I I I n I I n
I I

I I I n I I I n

ϕ ϕ ϕ ϕ

ψ ψ

∆ = − ∆ + − ∆ + ∆ −∆+∆

− − ∆ + ∆ −∆ −∆ 

ɺɺ ɺɺ

ɺ ɺ

                   (F.6) 

 

The following assumption can be made 

 

0 0 0 0 0

0

0

1

1 1 1 1 1
1 1

(1 )

r r

rr r r r r r r
r

r

I I

II I I I I I I
I

I

−
   ∆ ∆

=− = = + ≅ −      ∆+∆    +
                  (F.7) 

 

Similarly, 



153 

 

0 0

1 1
1

p

p p p

I

I I I

 ∆
≅ −  

 
                                                (F.8) 

0 0

1 1
1

y

y y y

I

I I I

 ∆
≅ −  

 
                                                (F.9) 

 

Substituting into Equations (F.4)-( F.6) and neglecting higher order terms yields 

 

0 0

0

0 0 0

2 2

0 0

0

1
4( ) 4( )

                            +( ) ( )

r p y p y

r r

r p y r p y

I I I n I I n
I I

I I I n I I I n

ψ ψ ψ ψ

ϕ ϕ

∆ = − ∆ + − ∆ + ∆ −∆+∆

− + ∆ + ∆ −∆ +∆ 

ɺɺ ɺɺ

ɺ ɺ

                   (F.10) 

0 0

0

2 2

0 0

1
3( ) 3( )p r y r y

p p

I I I n I I n
I I

θ θ θ θ ∆ =− ∆ + − ∆ + ∆ −∆ +∆
ɺɺ ɺɺ                     (F.11) 

0 0

0

0 0 0

2 2

0 0

0

1
( ) ( )

                             +( ) ( )

y p r p r

y y

p r y p r y

I I I n I I n
I I

I I I n I I I n

ϕ ϕ ϕ ϕ

ψ ψ

∆ = − ∆ + − ∆ + ∆ −∆+∆

− − ∆ + ∆ −∆ −∆ 

ɺɺ ɺɺ

ɺ ɺ

                 (F.12) 

 

where the initial values for  

 

{ }
0 0 0 0 0

0

2

0 0 0

1
( ) 4( )r p y p y

r

I I I n I I n
I

ψ ϕ ψ= − − + + −ɺɺ ɺ                              (F.13) 

0 0

0

2

0 0

3
( )r y

p

I I n
I

θ θ= − −ɺɺ                                                                (F.14) 

0 0 0 0 0

0

2

0 0 0

1
( ) ( )p r p r y

y

I I n I I I n
I

ϕ ϕ ψ = − − + − − ɺɺ ɺ                               (F.15) 



 

 

Appendix G 

 

Derivation of Steady State Equation for Gravity Gradient Stabilized Satellite with 

Products of Inertia Elements 

 Repeating the same computation as shown in Appendix F finds the Equations 

(G.1)-(G.3) from Equations (3.11)-(3.13). 

 

0 0 0 0 0

0

0 0 0

0

2 2

0 0

2

0 0 0

2

0 0

1
4 ( ) 4 ( ) ( )

                  ( )

                  2 2

r p y p y p y r

r

p y r rp rp ry ry ry

ry py py

I n I I n I I n I I I
I

n I I I I I I I n I

n I nI n I

ψ ψ ψ ψ ϕ

ϕ θ θ ϕ ϕ ϕ

ϕ θ θ

∆ =− ∆ + − ∆ − ∆ −∆ − − − ∆

− ∆ −∆ −∆ − ∆ −∆ − ∆ −∆ − ∆

− ∆ − ∆ − ∆ 

ɺɺ ɺɺ ɺ

ɺɺ ɺɺɺ ɺɺ ɺɺ

ɺ ɺ

         (G.1) 

0 0

0

0 0 0

0 0

2 2

0 0

2 2

0 0 0

2 2

0 0 0

1
3 ( ) 3 ( )

                 ( 2 ) 2

                 ( 2 ) 2

p r y r y

p

rp rp rp rp

py py py py

I n I I n I I
I

I n n I nI n I

I n n I nI n I

θ θ θ θ

ψ ϕ ψ ψ ϕ ψ

ϕ ψ ϕ ϕ ψ ϕ

∆ = − ∆ + − ∆ + ∆ −∆

−∆ + − − ∆ − ∆ + ∆

+∆ − + + − ∆ + ∆ + ∆ 

ɺɺ ɺɺ

ɺɺ ɺ ɺɺ ɺ

ɺɺ ɺ ɺɺ

                      (G.2) 

0 0 0

0

0 0 0

0 0 0

0 0

2 2

0 0 0

2 2

0 0 0

1
( ) ( )

                  ( ) ( )

                  2 2

    

y y r p y r p

y

p r p r py py

ry ry rp rp ry ry

I n I I I n I I I
I

n I I n I I I I

I I nI n I n I n I

ϕ ϕ ψ ψ

ϕ ϕ θ θ

ψ ψ θ θ ψ ψ

∆ = − ∆ − + − ∆ − ∆ +∆ −∆

+ − ∆ + ∆ −∆ − ∆ −∆

− ∆ −∆ + ∆ + ∆ − ∆ − ∆ 

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺɺ

ɺ ɺɺɺ ɺɺ

                         

               (G.3) 

Define a state vector,

 

T

x ψ θ ϕ ψ θ ϕ = ∆ ∆ ∆ ∆ ∆ ∆ 
ɺɺ ɺ  , and a control vector, 

T

r p y rp py ryu I I I I I I = ∆ ∆ ∆ ∆ ∆ ∆  , then the linearized state space equation is 

found as: 
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11 12 11 12 11

21 22 21 22 21

∆ ∆ ∆   
     ∆∆ ∆     
 ∆   ∆ ∆     

= + +         ∆∆ ∆         
     ∆∆ ∆
    
∆∆ ∆       

ɺ

ɺ

ɺ

ɺɺ ɺ

ɺɺ ɺ

ɺɺ ɺ

r

p

y

rp

py

ry

I

I

IA A B B C

IA A B B C

I

I

ψ ψ
θ θ
ϕ ϕ
ψ ψ
θ θ
ϕ ϕ

                  

(G.4) 

 

where  

11

0 0 0

0 0 0

0 0 0

 
 =  
  

A

,        

12

1 0 0

0 1 0

0 0 1

A

 
 =  
  

 

( )

( )

( )

0 0 0

0 0

0 00 0 0

0 0 0

0 00

0 0

2 2

22 2

21

22

4
0

32

0

 −
 
 
 

− +
= − − 

 
 

− 
 
  

y p ry

r r

y rrp py py

p p p

r pry

y y

n I I n I

I I

n I In I nI n I
A

I I I

n I In I

I I

 ( )

( )

0 0 0

0

0

0

0

0 0 0 0

0 0

22

0 2

2
0 0

2
0

p y r

py

r

rp

p

r p y rp

y y

n I I I
nI

I

nI
A

I

n I I I nI

I I

 − −
 −
 
 
 

=  
 
 − + −
 
 

 

11

0 0 0

0 0 0

0 0 0

 
 =  
  

B

,        

12

0 0 0

0 0 0

0 0 0

 
 =  
  

B
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0 0 0

0 0 0

0 0 0

2 2

0 0 0 0 0 0

2 2

0 0 0
21

2 2

0 0 0 0 0 0

4 4

3 3

r r r

p p p

y y y

n n n n n

I I I

n n
B

I I I

n n n n n

I I I

ψ ϕ ψ ϕ ψ ϕ

θ θ θ

ψ ϕ ψ ϕ ϕ ψ

 + + −
− 

 
 
 = − −
 
 

+ + − 
− − 

 

ɺɺ ɺ ɺ ɺ

ɺɺ

ɺ ɺ ɺɺ ɺ

 

0 0 0

0 0

0 0 0

2

0 0 0 0

2 2

0 0 0 0 0 0
22

2

0 0 0 0

2

2 2
0

2

r r r

p p

y y y

n n

I I I

n n n n
B

I I

n n

I I I

θ θ ϕ ϕ

ψ ϕ ψ ϕ ψ ϕ

θ θ ψ ψ

 +
− 

 
 

+ − − − =
 
 

+ 
− 

 

ɺɺ ɺ ɺɺ

ɺɺ ɺ ɺɺ ɺ

ɺ ɺɺ ɺɺ

 

11

0 0 0

0 0 0

0 0 0

 
 =  
  

C

 

0 0

0

0 0

0

0 0

0

21

 ∆ + ∆
 
 
 

∆ + ∆ =  
 
 ∆ + ∆
 
  

ɺɺ ɺɺ

ɺɺ ɺɺ

ɺɺɺɺ

rp ry

r

rp py

p

ry py

y

I I

I

I I
C

I

I I

I

θ ϕ

ψ ϕ

ψ θ

 

 

 Note that the products of inertia appear in Equation (G.4) since the body-fixed 

coordinate system is not assumed to align with the principal axes. If those two axes are 

aligned to avoid products of inertia term, Equation (G.4) becomes the state Equation 

(3.10). 

 



 

 

Appendix H 

 

Equations of Motion for the Masses Attached Satellite with Other Actuators 

The dynamics of satellite motion is given by Euler as: 

 

external

dH dH
H H M

dt dt
ω

   
= = + × =   

   I B

ɺ
                              (H.1) 

 

where 
dH

dt

 
 
 I

,

 

dH

dt

 
 
 B

are derivatives in the inertial coordinate system and the body-

fixed coordinate system respectively and ω is the angular velocity of the body-fixed 

coordinate system relative to the inertial coordinate system. Mexternal is the all external 

moment acting on the body about its mass center. The total angular momentum, H , of 

the satellite and internal rotating members such as momentum or reaction wheels is 

 

= +H I hω                                                      (H.2) 

 

where I is the moment of inertia matrix of the system and h  is the angular momentum 

induced from internal rotating members. 

 The inertial angular rate of the satellite in body-fixed coordinate system is given 

in Equation (2.27) as 
T

n n nω ψ ϕ θ ϕ ψ = + + − 
ɺɺ ɺ  with the initial value  
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[ ]0
0 0=

T

nω   for a circular orbit where n is mean motion. Substituting Equation (H.2) 

into Equation (H.1) yields 

 

G dI I h M M hω ω ω ω+ × + × = + − ɺɺ                                   (H.3) 

 

where 
GM is the gravity gradient moment and 

dM is the other environmental moment. 

 Each term-by-term equations of Equation (H.3) are as follows. 

 

0

     0

0

xx xy xz

xy yy yz

xz yz zz

xx xy xz xz xx

xy yy yz yz xy

xz yz zz zz xz

I I I n

I I I I

I I I n

I I I nI nI

I I I nI nI

I I I nI nI

ψ ϕ
ω θ

ϕ ψ

ψ ψ
θ θ
ϕ ϕ

  + 
   =    
   −  

  −     
       = + −       
       −      

ɺɺ ɺ

ɺɺɺ

ɺɺ ɺ

ɺɺ ɺ

ɺɺ ɺ

ɺɺ ɺ

                          (H.4) 

 

The following assumptions for the elements of ω  can be made without loss of generality. 

 

2 2 2

0

2 2

0

2

       0         2

       0     

    0     

x y

z x y

x z y z

n

n

n n

ω ω θ ω

ω ω ω ψ ω ϕ

ω ω ω ω ϕ ψ

≅ ≅ +

≅ ≅ +

≅ ≅ −

ɺ

ɺ

ɺ

                                           (H.5) 

 

Then,  
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2

ˆˆ ˆ

          

2 ( )

          0
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+
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n I n I
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ψ
θ
ϕ

   −  
    − − +    
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     (H.6) 

 

and, 

 

ˆˆ ˆ

0 0 0

        0 0 0

0 0 0

x y z

z y y z

z x x z

y x y x

i j k

h n n n

h h h

h h nh nh

h h nh nh

h h nh nh

ω ψ ϕ θ ϕ ψ

ψ ψ
θ θ
ϕ ϕ

 
 

× = + + − 
 
 

   −      
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ɺ

ɺ
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                (H.7) 

 

On the right hand side, the gravity gradient torque is  

 

2 2

0

3 0 3

0 0

zz yy xy yz

G xy zz xx xz

xz yz

I I I I

M n I I I n I

I I

ψ
θ

ϕ

 − −   
     = − +     
     − −     

                            (H.8) 
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Finally, substituting into Equation (H.3) yields a state equation as: 

 

12

1 1 1
21 22 3

00

( )

A

I A I A I M h A

ψ ψ
θ θ
ϕ ϕ
ψ ψ
θ θ
ϕ ϕ

− − −
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                          (H.9) 

 

where 
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