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ABSTRACT 
 

This thesis presents the results of analysis to determine the feasibility of lunar missions as 

secondary, piggyback payloads.  Piggyback missions are becoming increasingly common as 

lower cost options to space.  It is shown that piggyback, flyby (or crash) lunar missions are 

feasible departing from the International Space Station (ISS) orbit, geosynchronous orbit (GEO), 

geotransfer orbit (GTO), and sun-synchronous orbit.  Trajectories from GEO are feasible any 

time throughout the lunar period, with varying departure windows above 150° longitude.  

Trajectories from GTO have the lowest transfer ΔV with a minimum of 0.7 km/s and also large 

departure windows up to 200° longitude.  Trajectories from GEO and GTO have similar required 

capture ΔV of about 2 km/s, although more analysis is necessary for optimality.  Capture 

trajectories from ISS and sun-synchronous orbit may not be feasible with existing propulsion 

capabilities. 
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Chapter 1  
 

Introduction 

It is becoming increasingly necessary to understand the propulsive cost (ΔV) tradespace 

for lunar transfers as more and more organizations plan missions to the moon.  The moon still 

offers an abundance of science opportunities, which is more desirable as the cost to reach the 

moon decreases.  Payload sharing is becoming much more common to reduce the launch vehicle 

costs per shared payload volume.  However, this can limit or completely define the spacecraft 

orbit after release from the launch vehicle, especially when spacecraft is secondary payload.  

Consequently, it is useful to analyze the ΔV costs of reaching the moon from suboptimal initial 

orbits.  

Geosynchronous, geotransfer, low-Earth orbits are commonly used orbits by primary 

payloads, thus, there is a high likelihood of a secondary payload option for these orbits.  In 

general, these orbits are suboptimal for lunar transfer.  However, a suboptimal solution may be 

feasible depending on the mission specific propellant budget of the secondary payload. 

Problem Statement 

This thesis presents the analysis for lunar transfers from initial orbits that are either 

geosynchronous orbits, geosynchronous transfer orbits, low-Earth orbits that match the 

International Space Station (ISS) orbit and sun-synchronous orbits.  It could serve as a guide for 

initial mission designs for lunar missions flying as secondary payloads. 

This thesis begins with background material (Chapter 2) that is necessary to understand 

the problem and results.  It begins with explanation of the present state of the secondary payload 
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industry, especially in relation to lunar science.  It covers four of the common orbits and explains 

the various parameters that define these orbits.  It then explains two common theories in orbital 

mechanics that are relevant to lunar transfers: Hohmann transfers and Lambert’s problem. 

Explanation of the included analysis is found in Chapter 3.  This chapter begins by 

explaining the numerical method used to analyze the lunar transfers.  This includes the 

propagation method, forces acting on the simulated spacecraft, and explanation of the effects of 

this problem type on the numerical method (ie: stiffness).  The equations of Lambert’s problem 

are introduced, which were solved using an open-source solver.  A method for estimating capture 

ΔV is introduced for the purpose of providing a full description, although comprehensive capture 

analysis is outside the scope of this thesis.  The analysis chapter is concluded with a step-by-step 

explanation of the simulation setup and execution. 

Chapter 4 presents the results of the analysis and discusses the consequences of the four 

departure orbits.  The primary feasibility metric is ΔV.  For each initial orbit, the chapter explains 

how the ΔV relates to departure and transit conditions.  Orbit visualizations are presented for 

geometric understanding.  The chapter concludes with a brief discussion of lunar capture. 

Chapter 5 concludes this thesis.  It consists of a summary of the trajectory analysis and 

relates the results to the real-life application feasibility.  This chapter wraps up with suggestions 

for future work.
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Chapter 2  
 

Background 

This analysis focuses on studying the options for lunar missions based on highest number 

of opportunities.   Launch vehicles such as United Launch Alliance’s Atlas V and Delta IV and 

the SpaceX Falcon 9 are able to put spacecraft on translunar trajectories as primary payloads, but 

this is expensive and limits the number of opportunities to reach the moon [1][2].  Flying 

piggyback missions as secondary payload gives the spacecraft developer more power and 

opportunity to reach the due to increased launch opportunities and lower costs.  

Secondary Payloads 

There are a few standards used to design and fly spacecraft as secondary payloads.  The 

most common is the cubesat standard.  A 1-unit (1U) cubesat fits in a 10 centimeter cube and has 

a mass less than 1.33 kilograms [3].  There are also 3U and 6U (two by three) variants, which are 

commonly flown.  Companies such as Aerojet are designing propulsion systems that will fit into 

the standard cubesat envelope [4], allowing ∆V maneuvers for the previously passive spacecraft.  

Another standard spacecraft is the ESPA class (see Fig. 2.1), which allows for a 61 cm x 71 cm x 

97 cm satellite with less than 180 kg mass [5].  This provides more mass and volume for larger 

propulsion systems.   
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Figure 2.1:  Model showing integrated ESPA secondary payloads.  Courtesy Milsat Magazine1. 

In addition to other secondary payload standards, non-standard payload sharing may 

become commonplace.  In payload sharing, fairing volume is subdivided and allocated to 

multiple spacecraft, in order to share the costs of the rocket launch.   

Orbital Definitions 

There are many parameters used to define and analyze orbits.  These parameters are 

generally geometric, and allow analysts to use intuition and visualization more easily. 

                                                      
1
 http://www.milsatmagazine.com/story.php?number=797849281 [retrieved 27 November 2015] 
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Earth-Centered Inertial 

The Earth-Centered Inertial (ECI) coordinate frame is defined by the Z-axis through the 

North pole, and the X-axis in the equatorial plane pointing to vernal equinox, with the Y-axis 

completing the right-handed coordinate frame.  Vernal equinox is defined by the vector from the 

Earth to the Sun when coplanar with the equator.  Figure 2.3 shows the inertial axes.  The ECI 

coordinate frame is used for this analysis. 

Orbital Elements 

Kepler defined six parameters that fully define an orbit in a two-body system with one 

infinitesimal mass [6].  These are eccentricity (oblateness of the orbit), semimajor axis (a), 

inclination (i), right ascension of the ascending node (RAAN, Ω), argument of periapse (ω), and 

mean anomaly.  Alternatively, true anomaly (θ) can be substituted for mean anomaly, and has 

been in this thesis.  Figure 2.2 shows the orbital shape where F is the focus (and location of the 

central body), and F* is the empty focus.  Figure 2.3 illustrates the orbital elements (excluding 

semimajor axis and eccentricity).  Equation 2.1 shows the equation for eccentricity, which is 

defined by radius of apoapse (ra) and radius of periapse (rp). 
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Figure 2.2:  Orbital shape definitions 
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Figure 2.3:  Definitions of orbital elements 
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Semimajor Axis and Orbital Period 

Semimajor axis defines half of the distance from periapse (lowest altitude point in orbit) 

to apoapse (highest altitude point in orbit).  Additionally, semimajor axis, a, defines the orbital 

period  

       
  

 
  (2.2) 

where   is the orbital period, and   is the gravitational parameter of the central body.   

Common Orbits 

This analysis covers four orbits that are the final destination for many primary payloads.  

These four orbits are the destination for launches multiple times per year.  As a secondary 

payload, this is ideal since it increases the number of potential launch opportunities.  Table 2.1 

shows estimated values for the four orbits discussed in this thesis. 

Table 2.1:  Orbit type and parameter table 

Orbit Type 
Semimajor 

Axis 
Eccentricity Inclination RAAN 

Argument 

of Periapse 

True 

Anomaly 

LEO 
6578 km to 

7278 km 
0 to 0.1 0° to 100° 

0° to 

360° 
0° to 360° 0° to 360° 

Sun-

synchronous 

6578 km to 

7278 km 
0 to 0.1 90° to 100° 

0° to 

360° 
0° to 360° 0° to 360° 

GTO 

23000 km 

to 35000 

km 

> 0.5 0° 
0° to 

360° 
0° to 360° 0° to 360° 

GEO 42164 km 0 0° 
0° to 

360° 
0° to 360° 0° to 360° 
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Low-Earth Orbit 

Low-Earth Orbit (LEO) is defined by an altitude below 3000 km, with most below 900 

km [1].  Spacecraft in LEO generally fly in near circular orbits.  Of the subsequent orbits, LEO 

requires the lowest energy to reach, but spacecraft in these orbits have the highest orbital speeds, 

which are generally around 7.5 km/s.  Example spacecraft that fly in LEO include surveillance 

satellites, remote sensing science satellites, and the International Space Station. 

International Space Station Orbit 

The International Space Station receives frequent visits to bring supplies and astronauts 

and to remove waste and bring astronauts back to Earth.  The ISS’s nominal orbital altitude is 

around 250 miles and has an inclination of 51.6° [7].  Due to a small amount drag caused by the 

low-density upper atmosphere, this orbit slowly decays and the ISS is boosted to maintain the 

orbit.   

Sun-synchronous Orbit 

Sun-synchronous orbits are low-Earth orbits with inclinations near 98°, called such 

because they maintain orientation with respect to the sun as the Earth orbits the sun.  The 

oblateness of the Earth causes a perturbative effect that causes the RAAN to precess.  This 

perturbation can be analyzed using the     mass distribution model.  Trajectory designers can 

choose a specific inclination for a given altitude where the perturbation causes the orbit to precess 

(           at the same rate as the motion of Earth around the sun, approximately 360°/365.25 

days.  This keeps the relative position of the sun in relation to the orbital plane constant [8]. 
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        (2.2)  

where           is the angular rate of the Earth around the sun and the desired precession rate,     

(0.0010826) is the oblateness constant that accounts for most of the Earth’s deviation from a 

perfect sphere [8], and    is the radius of the Earth (6378 km).  Rearranging Eq. (2.2) and solving 

for inclination yields 

          
 

 
 

   
             

 

   
     

  (2.3) 

Selection of semimajor axis and eccentricity yields a value for inclination that maintains 

orientation with the sun, which is typically around 98°.  For this analysis, 6779 km was used for 

semimajor axis to match ISS orbit, with an eccentricity of zero.  The calculated inclination was 

97.03°. 

 Sun-synchronous orbits are unique since the orbital plane changes relative to the lunar 

orbital plane with a period of exactly one year.  The ISS orbit precesses faster (since inclination is 

lower), with a period of about 72 days.  GEO can be considered non-precessing, since orientation 

of the orbital plane remains nearly constant throughout a year (see Chapter 4).  RAAN is 

undefined for GTO, however four departures from GTO with 90° degree offsets in argument of 

periapse, to analyze any variation relative to the lunar orbit.  However, this variation may be 

caused by     perturbations or initial desired orbits.  

Geostationary Orbit (GEO) 

GEOs have high altitude and are circular, equatorial orbits.  The altitude of 35,856 km is 

chosen that the period of the orbit synchronizes with the rotation of the Earth [1], so the nadir of a 
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spacecraft in this orbit always points to the same point on the surface of the Earth.  GEO is a 

specific case of geosynchronous orbit with zero inclination. 

Geosynchronous Transfer Orbit (GTO) 

GTOs have high eccentricity and, as the name illustrates, are used to transfer to 

geosynchronous orbits or as a parking orbit for deep space missions [9].  This thesis uses GTO 

with no inclination and with perigee at 6779 km (to match the two LEOs) and apogee at an 

altitude corresponding to GEO for analysis. 

Hohmann Transfer 

A Hohmann transfer [10] is the minimum-∆V two-burn, coplanar transfer orbit of a two 

body system using impulsive thrust, with optimality proven in multiple ways 

[11][12][13][14][15][16][17].  The Hohmann transfer applies the impulsive burns at periapse (the 

highest speed point on the transfer ellipse) on the lower, faster orbit, and at apoapse (the lowest 

speed point on the transfer ellipse) on the higher, slower orbit.  Assuming a transfer from a lower 

circular to a higher circular orbit, the initial burn of the Hohmann transfer provides a lower bound 

estimate for the ∆V necessary to reach the moon, since none of the initial orbits used in this 

analysis are coplanar with the lunar orbit.  However, the lunar gravity may provide ∆V benefits 

that may decrease the necessary ∆V.  Figure 2.4 illustrates the Hohmann transfer. 
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Figure 2.4:  Depiction of Hohmann transfer 

Lambert’s Problem 

Lambert’s Problem consists of finding an ellipse that satisfies two given position vectors 

and a TOF, assuming a two-body system [18].  Finding this ellipse allows trajectory designers to 

find the departure and arrival velocity vectors, and consequently, the ΔV necessary to achieve this 

orbital transfer.  Although the two-body assumption is a simplification when including the moon 

as part of the system, this information helps eliminate the trajectories that would require ΔV 

above the abilities of secondary payloads.  Given a TOF and locations of the spacecraft departure 

and the moon, cases where the ΔV from Lambert’s solution is beyond predetermined constraints 

can be thrown out from the onset.  This drastically reduces the total computation time of the 

trajectory propagation.   

The next chapter presents the equations and analysis techniques that utilize the 

parameters and tools explained in this chapter.  It will lay out a framework for analyzing lunar 
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transfers, which can inform trajectory design and give orbit analysts better understanding of the 

lunar tradespace.
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Chapter 3  
 

Analysis and Equations 

This analysis uses total ∆V as the performance metric order to determine the feasibility of 

lunar transfers.  The analysis software was developed in MATLAB with the objective to simulate 

the ∆V tradespace.  The analysis primarily covers numerically propagated trajectories for lunar 

flyby and crash, however there are estimates for lunar capture. 

Numerical Solution 

Numerical propagation, based on Cowell’s method [8], was used to determine if 

trajectories traveled close enough to the moon.  Cowell’s method uses discrete function values of 

first-order ordinary differential equations (ODEs) to approximate solutions.  When approximating 

position, but only have second-order equations (acceleration equations), the second-order 

differential equation can be rewritten as a system of first-order differential equations [6], 

         (3.1) 

              
 

     (3.2) 

In this case, the numerical solver integrates a concatenated, 3D velocity and acceleration 

vector based on ordinary differential equations, over the specified timespan, given position and 

velocity initial conditions.  The output is a concatenated, 3D position and velocity vector for each 

of the chosen time steps, which allows for easy plotting and analysis. 

Cowell’s method of numerical propagation was used for the ease of implementation.  

With this method, propagation is solved by “brute-force”, where all forces acting on the body are 



14 

 

simultaneously integrated.  Other common methods of orbit propagation are Special Perturbation 

methods.  One such method is Encke’s method.  Encke’s method integrates a primary 

acceleration along with additional accelerations linearized about multiple points along the 

trajectory.  Special Perturbation methods can be more accurate than Cowell’s method because 

these methods reduce the truncation error buildup.  However, since this thesis focuses on the ΔV 

tradespace, and not the spatial accuracy, Cowell’s method, along with the MATLAB differential 

equation solvers, provided simple, intuitive implementation with informative results.  Orbital 

analysts may want to use a Special Perturbation method of propagation when designing 

trajectories that need to have increased spatial accuracy. 

MATLAB ode23s 

MATLAB ode23s is a numerical solver for stiff differential equations.  It is based on the 

2
nd

 order Rosenbrock method [19].  The solver uses a user-defined MATLAB function that 

outputs the values of the ODEs.  The other inputs to the solver are the timespan and initial 

conditions.  The differential equations defined for this solver are a system of six first-order ODEs 

that represent the second-order, 3D gravitation system [6], 

                    (3.3)  

where    is a spatial vector representing absolute position and    is the spatial acceleration vector 

(with subscripts corresponding to the cause), all in the ECI coordinate frame. 

The typical “go-to” solver used for propagating differential equations in MATLAB is 

ode45.  It is based on variable time-step, fourth order, Runge-Kutta numerical integration.  

However, this explicit solver is extremely slow to solve problems considered stiff.  The implicit 

ode23s solver is robust to stiff problems [20] and solves them much faster, which is preferred 

when running the magnitude of cases as in this analysis. 
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Accelerations 

The differential equations included the accelerations caused by the gravity of the Earth 

and the moon, modeled as point-masses [18].  In this model, gravity decreases with the square of 

distance.  The direction of acceleration is in the negative direction of the relative position vector.  

The equations are 

           
      

  
     (3.4)  

          
     

  
     (3.5) 

where        and       are the gravitational constants of the Earth and moon, respectively, and 

    and     signify the spacecraft position relative to the Earth and moon point-masses, 

respectively.  These position vectors are shown in Fig. 3.1. 

 

Figure 3.1:  Position vector definitions 
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Lunar Position 

To simulate the position of the moon at each time step, this analysis uses Vallado’s 

second-order lunar ephemeris [8].  The ephemeris outputs the lunar position in the Earth-centered 

inertial (ECI) coordinate frame. 

The position of the spacecraft relative to the moon is given by 

                (3.6) 

where        is the output of the Vallado ephemeris. 

Stiffness 

A stiff differential equation is one where the solution varies slowly in one state, but 

quickly in a nearby state [20].  This is case based on the proximity of the simulated spacecraft to 

the point-masses causing acceleration.  When the spacecraft is in close proximity to the moon, the 

gravitational acceleration acting on the spacecraft will be orders of magnitude greater than the 

acceleration at the middle of the transfer trajectory.  The ode23s solver is robust and speedy at 

solving throughout the trajectory range. 

Solution to Lambert’s Problem 

Of the infinite possible departure vectors at a given initial position in an orbit, only a very 

small window of values with reasonable ∆V requirements will get the simulated spacecraft 

reasonably close to the moon.  The solution to Lambert’s problem provides a baseline translunar 

trajectory; a starting point for analyzing the tradespace of ∆V requirements.  Lambert’s problem 

can be described by 
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                              (3.7) 

where    and    are departure and arrival times, respectively, and the difference between these 

times is a function of semimajor axis, chord, and arrival and departure position magnitudes, 

which can be seen in Fig. 3.2. 

 

Figure 3.2:  Diagram of Lambert's problem, including defining parameters 

When combined with Kepler’s equation, Lambert’s Problem can be solved numerically 

by finding the value of the semimajor axis from the equation 

            
 

                   (3.8) 

with α and β (see Fig. 3.3) relations as 

      
 

 
   

 

  
 

 

 
 (3.9) 

      
 

 
   

   

  
 

 

 
 (3.10) 

where   is chord length between the departure and arrival position vectors, and   is the 

semiperimeter of the triangle defined by the two position vectors,   

    
 

 
                    (3.11) 
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As stated by Prussing and Conway [18], the values of α and β can be interpreted as “the eccentric 

anomaly on the rectilinear ellipse” between the departure and arrival points (Fig. 3.3). 

 

Figure 3.3:  Illustration of a and b relative to departure and arrival position vectors [18] 

Although the moon’s gravity will have an effect, and the two-body assumption is not 

valid, it is a useful starting approximation for the numerical solution since the Earth’s gravity has 

a significantly larger effect during most of the transit.  The simulation used an open-source 

MATLAB Lambert’s Problem solver developed by Oldenhuis [21], which outputted the departure 

velocity vector necessary for the transfer.  Oldenhuis’ solver finds the solution an algorithm [22] 

that converges quickly when few planetary revolutions are required before reaching the 

destination.  This analysis did not require multiple revolutions, therefore this was the only 

algorithm that is used.  Additional algorithms [23] and improvements [24] for code robustness 

went unused in this analysis.  The output departure state vector was numerically propagated 

including lunar gravity and checked for minimum distance to the moon’s center. 

a 

β 

α 

F 
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Izzo’s algorithm (within the Oldenhuis solver) makes an initial guess of the minimum 

energy semimajor axis using non-dimensionalized position, semiperimeter, and chord.  It then 

computes the associated time of flight using Eq. (3.8).  The Newton-Raphson method is used to 

find the zeros of  

                   (3.12)  

by updating       , which is a function of the new guess for semimajor axis. 

“Long Way” Solution 

By default, Oldenhuis’ solver solves the “short way” Lambert’s solution.  This is the part 

of the ellipse shown by the solid line in Fig. 3.2.  However, the “short way” outputs massive ΔV 

requirements when the angle between departure and arrival position is offset by more than 180° 

in true anomaly.  This is because the short way requires reversing the orbital direction. 

The “long way” corresponds to the dotted-line section of the ellipse in Fig. 3.2.  If the 

true anomaly offset is greater than 180°, the “long way” solution may provide the lowest ΔV 

transfer. 

Orbital Energy 

Given the two-body assumption, the energy of an orbit is given by Eq. (3.13) [18].  This 

energy is constant for any position throughout the orbit.  This analysis uses orbital energy as a 

method of estimating ΔV necessary for capture.   

             
  

 
 

 

 
 (3.13) 

 The algorithm for estimating capture ΔV was as follows: 
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1. At a state near the moon, calculate incoming orbital energy (with respect to the moon) 

using relative distance and speed of the spacecraft and the lunar gravitational parameter. 

2. Choose a capture orbit altitude (assuming circular), which in this case was 200 km. 

3. Calculate speed at capture height using incoming orbital energy. 

4. Calculate orbital speed for a circular orbit at the capture height. 

5. Calculate estimated ΔV by subtracting orbital speed from incoming speed at the capture 

height. 

This equation is only valid if the impulsive, capture burn occurs at periapse of the trajectory, with 

respect to the moon.  Trajectory designers can ensure that periapse occurs at the capture height by 

setting the aiming distance of the incoming trajectory [16]. 

Simulation Setup 

The simulation consists of nested for-loops varying through initial orbit (parameters), 

starting date, and departure true anomaly.  Figure 3.4 shows a flowchart of the simulation 

procedure. 



21 

 

 

Figure 3.4:  Trajectory propagation and output algorithm 
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1. Determine initial conditions 

a. Beginning with ISS orbit, iteratively determine initial orbit from ISS, GEO, 

GTO, and sun-synchronous orbit 

b. Iteratively determine the parameters of the initial orbit 

i. For ISS, RAAN takes on discrete values 0°, 90°, 180°, and 270° 

ii. For GEO, there is only one trajectory 

iii. For GTO, argument of periapse takes on discrete values 0°, 90°, 

180°, and 270° 

iv. For sun-synchronous, RAAN takes on discrete values 0°, 90°, 180°, 

and 270° 

c. Given initial date, iteratively determine the days that have passed into the 

lunar period, beginning with 0 and ending at 28 (a whole period), 

incrementing by 1 day 

d. Iteratively determine departure true anomaly (TA), beginning with 0 and 

ending at 350, incrementing by 10 degrees 

e. Iteratively determine the time of flight (TOF), beginning with 0.4 days and 

ending at 5.8 days, incrementing by 0.3 days 

2. Compute the solution to Lambert’s problem given departure position (from initial 

orbit and true anomaly), TOF, and arrival lunar position (including TOF). 

3. If case has ∆V greater than 4 km/s., check the “long way” Lambert’s solution. 

4. If this case ∆V greater than 4 km/s., dismiss and go back to step 1 

5. Integrate using departure velocity vector. 

6. Ensure that the trajectory gets close enough to the moon. 

7. Output resulting trajectory (state and time vector) and performance parameters (TOF, 

ΔV, minimum distance to moon). 
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Initial Conditions 

The simulation varies four parameters to achieve the Lambert’s solution: initial orbit, 

initial orbit parameters, departure true anomaly, and TOF.  These parameters were chosen so that 

this analysis would span the variations caused by different locations of the moon throughout the 

year and different approach trajectories. 

Initial Orbit 

There are four initial orbits used in this simulation. Common orbits are the most 

important to analyze for secondary payloads, since these are most likely launch opportunities.  

This simulation includes two low-Earth orbits (LEO, specifically the orbit of the International 

Space Station and sun-synchronous orbit), geotransfer orbit (GTO), and geosynchronous Earth 

orbit (GEO). 

Initial Orbit Parameters 

Variation in departure date, RAAN, and argument of periapse captures variation of the 

relative orientation of the initial orbits and the moon throughout a lunar period.  For each initial 

orbit, there are 29 departure dates representing each day in the lunar period.  The 1 day increment 

was chosen by beginning with a coarse mesh, and gradually increasing the number of increment 

until the shape of the minimum ΔV curve (see Chapter 4) showed continuity.  This guess-and-

check method helped reduce the number of cases to run while having the resolution necessary to 

capture variation. 

Variation in RAAN allows for analysis of the variation induced by the precession caused 

by the    perturbation, as explained in Chapter 2.  Four, 90°-offset initial RAANs were used ISS 
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and sun-synchronous initial orbits in order to span one period of RAAN precession for the 

respective orbits. 

For transfers from GTO, the four, 90°-offset arguments of periapse were used to define 

the initial orbit.  These arguments of periapse are to span the set of possible GTO orientations, 

which may be defined by the insertion trajectory of some primary payload. 

Departure True Anomaly 

 The simulation varies departure true anomaly every 6° throughout one period of the 

initial orbit, which gives 36 trajectories for each departure date. The 6° increment was chosen 

using the same guess-and-check method as with departure date. 

Time of Flight 

For each departure by true anomaly, the simulation uses a range of TOF from 0.4 days to 

5.8 days.  This TOF is used as an input to Lambert’s problem to calculate departure velocity 

vector for all departures of this simulation.  The minimum and maximum were chosen to bound 

typical lunar transfers.  As with departure date and true anomaly, a 0.3 day increment was chosen 

using the guess-and-check method previously discussed. 

ΔV Bounds 

In order for this simulation to have a reasonable runtime, the MATLAB script only 

propagates trajectories within predetermined bounds.  The simulation does not include trajectories 
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with ∆V requirements greater than 4 km/s (from Lambert’s equation).  Given Tsiolkovsky’s 

rocket equation [1] 

           
  

  
 (3.14) 

where     is the rocket specific impulse,    is specific gravity, and    and    are the initial and 

final masses of the spacecraft, respectively, one can solve for the ratio of initial to final mass with 

known    and rocket    .  The difference in mass from initial to final can be assumed to be the 

fuel used, shown in Eq. (3.15). 

              (3.15) 

Dividing by    yields 

    
  

  
 

     

  
 (3.16) 

and rearranging Eq. (3.14) and substituting into Eq. (3.16) yields 

  
     

  
    

 
  

      (3.17) 

which is the equation for fuel mass percentage of the total mass.  Using Eq. (3.17), the spacecraft 

would need to be approximately 87% fuel, assuming an Isp of 200 seconds.  This mass percentage 

is outside the capabilities of most small spacecraft [1]. 

 The equations presented in Chapter 3 provided the foundation to analyze the described, 

lunar ΔV tradespace.  Chapter 4 presents the results of this analysis to inform design decisions 

and to understand the feasibility of lunar transfer. 
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Chapter 4  
 

Results and Discussion 

This chapter presents the results of the simulation described in Chapter 3.  The primary 

criteria for judging feasibility was ∆V, since this value is generic with regards to spacecraft mass 

and propulsion systems.

ΔV Results 

The ∆V necessary for a Hohmann transfer provides a theoretical lower limit for lunar 

transfers (Table 4.1).  When analyzing crash or flyby lunar transfers, near-Hohmann transfers 

occur when the moon crosses the line of nodes between the initial and lunar orbital planes.  

Departures that require out-of-plane motion are non-Hohmann by definition and require higher 

∆V (as seen in the presented results).  Any missions that require lunar capture will be non-

Hohmann, since the lunar plane is offset from all the initial planes, which is true in general. 

Table 4.1:  Lower limit ∆V for lunar transfers from initial orbit 

 

 

Initial Orbit Hohmann ∆V (km/s) 

ISS or Sun-synchronous 3.08 

GEO 1.05 

GTO (depart periapse) 0.68 

GTO (depart apoapse) 2.48 
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ISS Orbit 

The orbit of the International Space Station allows for spacecraft trajectories that reach 

the moon under the 4 km/s ∆V-budget set for this simulation.  However, all possible trajectories 

require above 3 km/s ∆V.  Figure 4.1 shows the minimum ∆V requirements by simulation 

departure day across four RAAN values.  Given the    perturbation’s effect on RAAN (Eq. 2.2), 

it would take about 72 days for RAAN to precess 90°.  Using Eq. (3.17) and the lowest calculated 

∆V requirement (3.13 km/s), a spacecraft needs to have a fuel mass fraction of at least 80%, given 

the same 200s Isp, for a flyby or crash-landing mission.  Connected points on Fig. 4.1 imply 

continuous groupings of successful trajectories.  If trajectories near these connected points meet 

mission requirements, trajectory analysts should look at these regimes with higher fidelity. 

 

Figure 4.1:  Variation of lowest simulated ΔV from ISS across the lunar period, by season. 
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For each initial RAAN, Fig. 4.2 shows two groupings of possible trajectories throughout 

the lunar period.  Since the ISS orbit and the lunar orbit are non-coplanar, these two groupings 

correspond with Hohmann-like transfers at the ascending and descending node-lines of lunar 

plane with the ISS plane.  The gaps in Fig. 4.2 correspond to the regions where the out-of-plane 

component of ΔV increase reduce the available ΔV for orbit raising to infeasibility, given the 4 

km/s constraint. 

 

Figure 4.2:  Departure windows of degrees true anomaly from ISS for every 90° of RAAN precession.  (a) 0° (b) 90° 

(c) 180° (d) 270° 

 Figure 4.3 shows possible trajectories in Cartesian coordinates from the departure 

conditions of day 10 of a lunar period.  Blue and red trajectories correspond to RAAN of 0° and 

180°, respectively.   Given the    perturbation on RAAN, these RAANs would be separated by 

approximately 144 days.   

(a) (b) 

(c) (d) 
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 Multiple clusters of trajectories can be seen, which correspond to different flight-times.  

Although these trajectories are clustered, the successful trajectory space is continuous.  The 

clustering is caused by the discretization of the initial conditions.  Trajectory analysts should look 

at the space spanned by these departure true anomalies and TOFs (Fig. 4.3) with some margin on 

either side to ensure all possible trajectories are included in the continuous space. 

 

Figure 4.3: Departing ISS, 10 days into lunar period, 0° and 180° RAAN, multiple views 

The departure velocity vectors lie near the orbit plane for both RAAN configurations, 

which is intuitive since this allows most of the impulsive energy to go toward raising the orbit to 

the moon, rather than changing the inclination (which does not get the spacecraft closer to the 

moon).  If lunar capture is necessary, trajectory analysts will need to factor in the velocity of the 

spacecraft relative to the moon at arrival.  Since the inclinations of the lunar and initial orbits do 

not align, out-of-plane motion will be necessary to reduce the overall ΔV costs. 
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As mentioned previously, the feasible trajectories occur as the moon crosses the initial 

orbital plane, and this can be seen in Fig. 4.3.  Although RAAN is offset by 180°, the feasible 

trajectories occur at similar lunar locations because offset gives the same node line of initial lunar 

orbital planes.   

GEO 

A spacecraft in GEO will have no significant variation throughout the year.  For 

equatorial orbits, RAAN is undefined because the orbit is in the same plane as the equator, thus 

there is no node line.  For circular orbits, the argument of periapse can be defined using any point 

in the orbit, since there is no singular periapse.  Thus, GEO will maintain orientation relative to 

the lunar orbit and only one orientation need be analyzed. 

A spacecraft departing from GEO can reach the moon for ∆V under 2 km/s throughout 

the entire lunar period.  This can be seen in the lack of gaps in Fig. 4.4 throughout the lunar 

period.  Compared with the initial ISS orbit, GEO has much higher energy, and is nearly coplanar 

to the lunar orbit, drastically reducing the necessary ∆V.  2 km/s corresponds to approximately 

64% fuel mass fraction, which is much more feasible than 90%+ for small spacecraft departing 

from ISS.  As with the figure for ISS, connected points imply continuity.   
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Figure 4.4:  Variation of lowest simulated ΔV from GEO. 

Figure 4.5 shows that a GEO departure has much larger departure windows than for ISS.  

The minimum window to reach the moon given the ΔV constraint is 150 degrees of true anomaly, 

and the maximum window is 260 degrees true anomaly.  This window is much larger than for 

departure windows from ISS. 
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Figure 4.5:  Degrees of true anomaly for departure windows from GEO 

 Figure 4.6 shows possible trajectories from the departure conditions of day 23 of a lunar 

period.  This corresponds with the day into the lunar period that had the lowest calculated ΔV.  

As with ISS trajectories, these trajectories should be considered a continuous space, although 

represented discretely.  The colors in Fig. 4.6 are only to help the reader differentiate between 

trajectories in order to imply the magnitude of possible trajectories. 
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Figure 4.6:  From GEO, departing 23 days into lunar period, multiple views 

Trajectories diverge from the initial 0 inclination significantly, as seen in Fig. 4.6 (bottom 

right), which provide mission planners much more flexibility for the possibility of lunar capture 

(to align with lunar inclination at arrival).  The increased out-of-plane motion (compared with 

trajectories departing from ISS) is allowed since the energy at GEO is higher.  Less ΔV must be 

used to raise the orbit to the moon, and so some of that ΔV-energy can add to the out-of-plane 

motion and still be within constraints.  

The feasible-trajectory-space is much larger for GEO departure than any of the other 

initial orbits analyzed in this thesis (Figs. 4.3, 4.6, 4.9, 4.12).  A spacecraft can reach the moon 

from any day in the lunar period with a significant departure window.  If a mission-designer 
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desires maximum flexibility, he or she should consider a GEO departure.  However, if ΔV is a 

larger driver of mission success, a departure from GTO may be the best option, as seen below. 

  

GTO 

Spacecraft can reach the moon from GTO for less than 4 km/s ∆V throughout most of the 

lunar period.  However, the most fuel efficient departures happen near the GTO periapse, since 

that location has a high speed (along with GTO being much higher energy than LEO), with 

possible transfers costing less than 1 km/s.  This corresponds to necessary fuel mass fractions of 

less than 40%. 

The curves in Fig. 4.7 corresponding to 0° and 90° argument of periapse dip down lower 

since these orientations align the periapse opposite the node-line of the lunar plane and the initial 

orbital (and equatorial) plane.  As for the trajectories with GEO and ISS initial orbits, the lowest 

cost trajectories occur near the node line of the initial and lunar orbital planes.  However, with 

GTO departure, there is a ΔV bonus caused by the high speed at periapse.  The higher ΔVs 

corresponding to arguments of periapse of 90° and 270° are due to the offset of the lunar node-

line and the vector pointing to periapsis. 
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Figure 4.7:  Variation of lowest simulated ΔV from GTO across the lunar period, varying argument of 

periapse. 

 Departures windows vary greatly throughout the lunar period, but are on the same order 

as GEO departure windows for some days throughout the lunar month.  This can be seen in Fig. 

4.8.  GTO departures may provide trajectory designers a balance of window size and ΔV costs. 
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Figure 4.8:  Departure windows of degrees true anomaly from GTO for every 90° of argument of periapse.  (a) 0° (b) 

90° (c) 180° (d) 270° 

 Figure 4.9 shows possible trajectories from the GTO departure with an argument of 

periapse of 180° corresponding to the orientation the gives the lowest ΔV. As with ISS and GEO 

trajectories, these trajectories should be considered a continuous space, although represented 

discretely.  The feasibility-space is large; much larger than for ISS departure, although smaller 

than for GEO departures. 

As seen in Fig. 4.9 (bottom right), transfer trajectories have inclinations near the initial 0 

inclination (just enough out-of-plane velocity to hit the moon).  As with previous trajectories, this 

allows the impulsive energy to be used to raise the orbit, rather than for the out-of-plane motion. 

 

(a) (b) 

(c) (d) 
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Figure 4.9: Departing GTO, departing 23 days into lunar period, argument of periapse is 180°, multiple views 

Sun-synchronous 

As with departures from ISS, departures from sun-synchronous orbit require much higher 

∆V due to the low orbital energy.  This leads to the large gaps in Fig. 4.10, where the minimum 

∆V is above the 4 km/s limit. The points that show up come in two clusters, which correspond to 

days in the lunar period where the moon is crossing the initial orbital plane. 

Acceptable trajectory departure and arrival points align with the node-lines, as with LEO 

trajectories.  The spacecraft velocity vector at arrival is also nearly perpendicular to the lunar 
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velocity vector, making capture from polar orbit much more ∆V-expensive than LEO (see Table 

4.2). 

 

Figure 4.10:  Variation of lowest simulated ΔV from sun-synchronous across the lunar period, by RAAN 

offsets. 

One would expect performance of trajectories from sun-synchronous orbit to be nearly 

identical to those of ISS departures, excluding capture, and this is the case.  The lowest ΔV 

throughout the lunar period from sun-synchronous orbit have the same approximate range as for 

ISS departures (Fig. 4.1).  Departure true anomaly windows for sun-synchronous departure (Fig. 

4.11) are on the same order as the windows for departing from ISS. 
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Figure 4.11:  Departure windows of degrees true anomaly from sun-synchronous for every 90° of RAAN precession.  

(a) 0° (b) 90° (c) 180° (d) 270° 

Trajectories from sun-synchronous orbit look nearly identical to those from ISS.  Figure 

4.12 shows possible trajectories from sun-synchronous orbit for RAAN of 0° and 180° (about 183 

days apart give    RAAN perturbation).  As with ISS, GEO, and GTO trajectories, these 

trajectories should be considered a continuous space, although represented discretely.  The major 

difference in sun-synchronous from ISS trajectories is that the departure angle is nearly 

perpendicular to the equatorial plane, as would be expected for initial orbits with inclinations near 

90°. 

(a) (b) 

(c) (d) 
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Figure 4.12: Departing sun-synchronous, 22 days into lunar period, 0° and 180° RAAN, multiple views 

 As with departure from ISS, acceptable trajectories from sun-synchronous travel near the 

departure orbital plane, where ΔV costs are minimal.  As RAAN precesses 90° each season 

(caused by oblateness perturbation), so does the viable trajectory-space.  Because of the 

circularity of both orbits, the ΔV remain very similar (and near Hohmann) throughout the RAAN 

variation, with the ΔV variation being accounted by changes in departure true anomaly. 
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Capture 

Although this analysis focused mainly on reaching the moon, Table 4.2 presents the 

estimated capture ΔV for quick reference (see Appendix A for sample calculation).  The capture 

estimate uses the trajectories from each initial orbit with the lowest departure ΔV.  The total ΔV 

estimates are non-optimal, because minimum departure ΔV does not correspond with minimum 

capture ΔV, in general.  The total capture optimal ΔV may require some combination of non-

optimal departure and capture burns.  However, that analysis is beyond the scope of this thesis.  

Table 4.2:  Capture ΔV for best departure trajectories. 

Initial 

Orbit 

Lowest Calculated 

Departure ΔV (km/s) 

Estimated Capture 

ΔV (km/s) 

Required Fuel Mass 

(%) 

ISS 3.1 1.6 91 

GEO 1.1 0.9 64 

GTO 0.7 1.3 64 

Sun-

synchronous 
3.1 3.7 97 
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Chapter 5  
 

Conclusions 

GEO and GTO are the ideal starting orbits for lunar missions because they have the 

lowest transfer ΔV’s, lowest capture ΔV’s and largest departure windows with respect to true 

anomaly.  If the system has tighter ΔV contraints, spacecraft should depart from GTO, since that 

initial orbit allows for the lowest total to reach the moon.  However, departures from GEO allow 

for much more flexibility in terms of departure window with minimal ΔV costs.  Flyby or crash 

missions are feasible from ISS and sun-synchronous orbit, but capture is likely infeasible, 

especially from sun-synchronous, given existing propulsion capabilities. 

In regards to capture departing from ISS, the 91% capture fuel mass fraction of required 

may be overly ambitious given the state of today's propulsion technology.  The required capture 

ΔVs for GEO and GTO ended up the same.  The capture burn for GEO was less, at 0.9 km/s, 

because the transfer from GEO has less relative velocity to the moon.  Capture ΔV from sun-

synchronous is much worse because the arrival is nearly perpendicular to the lunar plane.  This 

requires reducing the perpendicular velocity and adding the parallel velocity, which at 97% fuel 

mass fraction, is a high cost.  Without an improvement in technology, lunar capture from sun-

synchronous should be avoided. 

Future work 

For lunar missions involving small spacecraft, future work should analyze two main 

areas: finite burn propulsion and optimal capture, descent, and landing.  Analysis for finite burn 

propulsion removes the impulsive-ΔV assumption.  This increases the complexity for determining 



43 

 

the optimal burns, and adds in the effects of gravity loss.  The optimal capture, descent, and 

landing problem can be broken up in many ways, where improved overall ΔV minimization 

requires increased problem complexity.
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