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AABBSSTTRRAACCTT  

 

The N-body problem as formulated by Sir Isaac Newton in the seventeenth 

century has been a rich source of mathematical and scientific discovery.  Continuous 

attempts invested into the solution of this problem over the years have resulted in a host 

of remarkable theories that have changed the way the world is viewed and analyzed.   A 

final solution in terms of an infinite time-dependent power series was finally discovered 

in the latter part of the twentieth century.  However, the slow convergence of this result 

makes its implementation impractical in every day spacecraft trajectory design and 

optimization.  The only feasible way to solve the N-body problem reliably is to 

numerically integrate the equations of motion. 

This dissertation derives two new variable time step algorithms using time 

dependent power series solutions developed for the two-body problem.  These power 

series solutions allow the space-dependent N-body problem to be transformed into a 

time-dependent system of equations that can be solved analytically.  The analytic results 

do not yield global solutions, but rather approximate outcomes whose order of accuracy 

can be controlled by the user. 

The two algorithms are used to investigate scenarios corresponding to a highly 

elliptical orbit in the two-body problem; periodic, central configuration scenarios in the 

three-body problem; and a non-periodic scenario in the restricted three-body problem.  

The results obtained are compared to the outcomes returned by a variable time step 

fourth-order, fifth-order Runge-Kutta numerical integration algorithm.  The outcomes 

derived for each situation demonstrate that the two new variable time step algorithms are 

both more accurate and much more efficient than their Runge-Kutta counterpart. 
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CCHHAAPPTTEERR  11  

IINNTTRROODDUUCCTTIIOONN  

 

The N-body problem is the problem of finding the motion of N point particles 

given their masses and initial states when only their mutual gravitational attraction, as 

governed by Newton’s Laws of Motion and Law of Universal Gravitation, are taken into 

account.  This problem forms the foundation of Celestial Mechanics and more specific to 

this research, Astrodynamics.  Celestial Mechanics is defined as the study of the dynamic 

motion of celestial bodies, such as planets and asteroids.  Astrodynamics, on the other 

hand, is defined as the study of the motion of man-made objects in space, subject to both 

naturally and artificially induced forces.  Natural forces include gravitational attraction 

and solar radiation pressure effects.  Artificially induced forces include the various forms 

of propulsion that currently exist [1-2]. 

The equations of motion that govern the N-body problem are a function of their 

positions with respect to each other and their respective gravitational parameters.  The 

gravitational parameter of a celestial body is defined as the product of its mass and the 

universal gravitational constant.  In compact form, the N-body problem equations of 

motion with respect to the system’s barycenter (center of mass) are 
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In this expression, i is the index of the current body, j is an index that represents 

the effect of other bodies on the current object, r��
�

 and r
�

 are the current body’s 

acceleration and position vectors, respectively; 
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µj is the gravitational parameter of each respective body, and N represents the number of 

bodies being analyzed.  The problem described by equation 1.1 is a second-order, 

nonlinear, coupled, space dependent, variable coefficient, homogeneous system of 3N 

ordinary differential equations that in general has no practical time dependent, analytic 

solution and can only be solved through the use of numerical integration. 

The N-body problem has been studied since the time man first looked up into the 

night sky and started developing models that described the motion of celestial bodies 

observable to the naked eye.  Through the work of many mathematicians, physicists, and 

astronomers; these models steadily increased in accuracy throughout the years.  Much of 

the knowledge that has been developed pertains to the two-body and relative two-body 

problems, for which complete solutions have been derived.  A large amount of literature 

also exists for the three-body problem, which includes a global, time dependent power 

series solution.  Moreover, many solutions have also been derived for special cases of 

systems with more than three bodies.  A final solution in terms of an infinite time series 

was finally proposed at the end of the twentieth century.  However, the implementation of 

this solution is rendered unfeasible by the number of terms required to obtain a reliable 

outcome, even when small time intervals are examined. 

Numerical integration is a useful alternative that is capable of solving any version 

of the N-body problem in a reasonable amount of time.  However, high-accuracy 

numerical integrators, while efficient, also require a significant number of steps to 

implement.  Moreover, time step sizes must be managed appropriately to minimize the 
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amount of round-off error that is inherent in the numerical process.  For the case of 

numerical integrators such as the fourth-order and fifth-order Runge-Kutta algorithms, 

the first error comes from the fact that an infinite power series is truncated and the second 

arises from the small numerical round-off errors that occur at each step in the 

computation.  Both of these errors can be minimized by implementing an algorithm that 

continuously monitors the solution’s precision during the course of the computation and 

adaptively changes the step size to maintain a consistent level of accuracy. As a result, 

the step size may change many times during the course of the computation.  Larger time 

steps are used where the solution is varying slowly, and smaller steps are used where the 

solution varies rapidly.  A variable time step numerical integration algorithm is usually 

much faster than its constant time step counterpart, because it concentrates its 

computational effort on time intervals that need it most and takes large strides over 

portions that don't need small time steps. 

This work proposes a new solution to the N-body problem using methods that 

were originally developed for the two-body problem in the late 1950’s as a foundation.  

The techniques introduced in this dissertation do not produce global solutions, but rather 

approximate, analytic outcomes whose order of accuracy can be controlled by the user.  

As will be demonstrated, these analytic expressions can also be used recursively to design 

spacecraft trajectories in a manner that is both more accurate and more efficient than a 

variable time step Runge-Kutta 4-5 numerical integration algorithm.  The remaining 

chapters in this dissertation can be summarized as follows: 
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� Chapter 2 presents a brief history of the N-body problem and outlines a suggested 

reading list that introduces the reader to both the basic and advanced technical 

concepts of the N-body problem. 

� Chapter 3 presents and discusses the equations of motion of the two-body 

problem.  An analytic, time dependent solution for the case of circular orbits is 

derived.  The classical orbital element method used to determine future states for 

elliptical, parabolic, and hyperbolic orbits is outlined and discussed.  Time 

dependent, power series solutions of the relative two-body problem are presented 

and used recursively to analyze a highly elliptical orbit scenario.  The fourth-order 

and fifth-order Runge-Kutta numerical integration algorithms are introduced and 

used to investigate the same scenario analyzed by the power series solution.  A 

variable time step algorithm that incorporates these two numerical integrators is 

also derived.  Discussion on the absolute error and simulation time results 

returned by the four numerical experiments conclude the chapter. 

� Chapter 4 transforms the relative two-body problem into a time dependent system 

using the power series solutions derived in Chapter 3.  A fourth-order, analytic 

solution is derived for the transformed system and the result is shown to be a 

useful alternative to the universal form of Kepler’s equation when working in any 

coordinate system.  A fifth order solution is derived for the case when a vehicle is 

initially located at the periapsis of a parabolic orbit. Two methods are proposed to 

solve the transformed problem when higher-order coefficients are implemented.  

Finally, all of these results are used to develop two new variable time step 
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propagators that are more accurate and more efficient than the variable time step 

Runge-Kutta numerical integrator. 

� Chapter 5 derives a new power series solution, a fourth-order solution, and a 

higher-order solution for the N-body problem.  A variable time step numerical 

integration algorithm that extends the RK45, 47P, and 67P capabilities derived in 

Chapter 4 to the solution of the N-body problem is introduced.  The algorithms 

are then used to solve periodic central configuration scenarios and a non-periodic 

scenario in the three-body and restricted three-body problem, respectively. 

� Chapter 6 summarizes this work and draws conclusions from the results obtained 

in this dissertation.  Future work that uses the methods derived by the author is 

also discussed. 
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CCHHAAPPTTEERR  22  

TTHHEE  HHIISSTTOORRYY  OOFF  TTHHEE  NN--BBOODDYY  PPRROOBBLLEEMM  

 

This chapter gives a brief history of the N-body problem.  This problem is based 

on the principles of classical mechanics as derived by Isaac Newton in 1687.  A more 

accurate description of gravity was later developed by Albert Einstein in 1915.  However, 

the velocities of all bodies and man-made satellites found in the solar system are 

relatively small when compared to the speed of light and, consequently, the predictions 

made by Newton’s equations agree extremely well with observational data.  As will be 

seen, the development of models that describe the motion of celestial objects in the night 

sky and the search for a solution of the N-body problem has led to some of the greatest 

advancements in mathematics, physics, and astronomy. 

 
 

AARRIISSTTOOTTLLEE  

The Greek philosopher Aristotle (384 BC-322 BC) proposed that the Earth was 

located at the center of the Universe and that the Sun and all the planets known at that 

time (Mercury, Venus, Mars, Jupiter, and Saturn) orbited the Earth.  These orbits were 

assumed to be circular in nature, due to the elegance that the ancient Greeks attributed to 

circles and spheres.  This view of the Universe, known as Geocentrism, was motivated by 

the fact that all celestial objects observable with the naked eye seemed to revolve around 

the Earth in the night sky.  It was also a common belief that the Earth was a stable, 

immovable, spherical solid.  Aristotle was convinced that since the Earth was made of 

“Earth-stuff,” its nature was not to move in circles, but to always seek the center of the 

Universe.  Due in large part to the advent of the Dark Ages, Geocentrism was the 



 

dominant view of the Universe until the latter part of the 16
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dominant view of the Universe until the latter part of the 16th century [

shows the geocentric universe envisioned by Aristotle. 

Figure 2.1: Aristotle’s Geocentric Universe 

http://www.astro.umass.edu/~myun/teaching/a100/images/geocentric.jpg

PPTTOOLLEEMMYY  

The Roman astronomer and mathematician Ptolemy (90-168) continued the work 

created the first systematic model of celestial motion called the 

Geocentric Model of the Universe.  In this model, the sun, the moon, planets, and stars 

were embedded in transparent, rotating crystalline spheres called deferents, which were 

.  An additional, smaller sphere, called an epicycle, was then 

embedded in the deferent.  Finally, the planet was embedded in the epicycle sphere.  The 

deferent rotated around the Earth while the epicycle rotated within the deferent.  This 

caused the planet to move closer to and farther from the Earth at various points in its 

orbit.  Additional epicycles could also be embedded into the original epicycle

caused the planet to slow down, stop, and then move backward with respect to the Earth.

[3-7].  Figure 2.1 

 

http://www.astro.umass.edu/~myun/teaching/a100/images/geocentric.jpg 

168) continued the work 

motion called the 

In this model, the sun, the moon, planets, and stars 

called deferents, which were 

an epicycle, was then 

embedded in the deferent.  Finally, the planet was embedded in the epicycle sphere.  The 

deferent rotated around the Earth while the epicycle rotated within the deferent.  This 

Earth at various points in its 

orbit.  Additional epicycles could also be embedded into the original epicycle, which 

caused the planet to slow down, stop, and then move backward with respect to the Earth.  
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These extra epicycles allowed Ptolemy to account for the unusual retrograde motion of 

some planets that was observed in the night sky.  The Geocentric Model of the Universe 

gave accurate predictions of future positions of celestial objects, but was considered too 

complex and cumbersome to implement [8-13].  Figure 2.2 shows a typical deferent-

epicycle system for the Sun with respect to the Earth. 

 
 

 
Figure 2.2: Deferent-Epicycle System 

 
 

CCOOPPEERRNNIICCUUSS  

The Polish astronomer Nicolaus Copernicus (1473-1543) formulated the 

Heliocentric Model of the Universe.  This model places the Sun at the center of the solar 

system with the Earth and the rest of the planets revolving around it in circular orbits.  

Copernicus proposed that the Earth experiences three types of motion: daily rotation 

about an axis, annual tilting of this axis, and an annual revolution around the Sun.  These 

three displacements were used to explain the occasional retrograde motion of the planets 

with respect to the Earth and allowed him to conclude that the distance from the Earth to 

the Sun is much smaller than the distance from the Earth to the stars.  He also conjectured 
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that a planet’s orbital period (the time it takes to complete one revolution around the Sun) 

was directly proportional to its distance from the Sun.  His work is often regarded as the 

starting point of modern astronomy and the defining epiphany that began the Scientific 

Revolution.  Although Copernicus’ proposal of Heliocentrism would later be proven 

correct, the assumption of circular orbits caused his numerical results to be less accurate 

than those predicted by Ptolemy’s Geocentric Model when determining the future 

positions of planets.  For this reason, and also for fear of religious persecution, his 

complete findings were not published until after his death [14-19].  Figure 2.3 gives a 

visual comparison between Geocentrism and Heliocentrism. 

 
 

 
Figure 2.3: Geocentrism vs. Heliocentrism 

http://www.astro.umass.edu/~myun/teaching/a100/images/comparison.jpg 
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GGAALLIILLEEOO  

The Italian astronomer and mathematician Galileo Galilei (1564-1642) made 

many astronomical observations that supported Copernicus’ Heliocentric Model with an 

improved version of the telescope.  Among his many discoveries, he observed that Venus 

exhibits phases ranging from crescent to full, similar to those seen on the Moon; a 

phenomenon that was a key prediction of the Heliocentric Model.  Moreover, he 

discovered the four largest moons of Jupiter (Ganymede, Callisto, Io, and Europa) and 

through subsequent observations, concluded that they orbited the planet and not the 

Earth.  Galileo was also the first astronomer to observe the rings of Saturn.  These 

discoveries were critical, because they could not be explained by the Geocentric Model.  

Galileo spent the last days of his life under house arrest after the Church concluded that 

his discoveries supporting Heliocentrism were heretical in nature [20-22]. 

 
 

BBRRAAHHEE  

In 1597, the Danish astronomer Tycho Brahe (1546-1601) was granted the island 

of Hven where he built one of the finest observatories of the time.  He constructed several 

large instruments that were used to produce the most accurate astronomical observations 

of his time.  This precise and redundant data allowed him to catalogue the positions of the 

planets with enough accuracy that it finally became possible to determine whether the 

Geocentric or Heliocentric Models described the Universe more correctly.  Instead, he 

developed his own model of the universe called the Tychonic Model, which combined 

the mathematical benefits of Heliocentrism with the philosophical benefits of the 

Geocentric Model.  The Tychonic Model assumes that the Earth is located at the center of 

the universe with the Sun and the Moon revolving around it.  The other five planets 
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known at the time revolved around the Sun.  Brahe was able to demonstrate that the 

motion of the Sun and the planets with respect to the Earth predicted by his new model 

were equivalent to the predictions given by Heliocentrism.  This result was appealing to 

many astronomers of the time, because it allowed them to pursue the benefits of the 

Copernican model without the fear of religious persecution [23-26]. 

 
 

KKEEPPLLEERR  

The German astronomer and mathematician Johannes Kepler (1571-1630) 

became Brahe’s assistant in 1600 and after his death in 1601 used Brahe’s accurate data 

to develop his own theories of celestial motion.  Kepler was a firm believer in 

Heliocentrism, but he also had a difficult time letting go of the concept of circular orbits.  

For this reason, he initially developed the Platonic Solid Model of Planetary Motion.  In 

this system, the planets orbited the Sun in circular orbits and the size of their orbital paths 

was described by inscribing and circumscribing three-dimensional polyhedra within solid 

spheres.  The diameter of the six spheres corresponding to the six planets known at the 

time was determined by the order of the platonic solids embedded in them.  Kepler 

deduced that the structure of the solar system and the distance relationships between the 

planets were dictated by ordering the platonic solids in the following manner: octahedron, 

icosahedron, dodecahedron, tetrahedron, and the cube.  Figures 2.4 and 2.5 give a visual 

representation of Kepler’s Platonic Solid Model. 

While the theory was mathematically beautiful and successfully explained the 

diameters of the orbits of the planets, Kepler later abandoned the Platonic Solid Model 

after observing that the results predicted by it did not match Brahe’s accurate data.  Still, 

convinced that the concept of Heliocentrism was correct, he came to the realization that 
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the idea of circular orbits had to be abandoned.  He eventually discovered that the orbit of 

Mars could be accurately described by an ellipse.  Kepler generalized his analysis to 

include the motions of all planets and subsequently proposed his three Laws of Planetary 

Motion [27-33]: 

� All the planets move in elliptical orbits with the Sun at one focal point. 

� The radius vector drawn from the Sun to a planet sweeps out equal areas in equal 

time intervals. 

� The square of the orbital period of any planet is proportional to the cube of the 

semimajor axis of the elliptical orbit. 

 
 

 
Figure 2.4: The Inner Planets in the Platonic Solid Model 

http://www.uwgb.edu/dutchs/Graphics-Other/histsci/kepsph1.gif 

 
 

It is important to note that Kepler derived these laws through empirical 

observation and did not actually prove their validity mathematically.  He was, however, 

able to derive an expression using geometric constructions that could be used to 
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determine the future locations of the planets in the night sky.  This expression, known 

today as Kepler’s equation, was a crowning achievement for the cause of Heliocentrism.  

For the first time in the history of the N-body problem, a theory based on Heliocentrism 

was able to produce results that were far more accurate than the outcomes predicted by 

the Geocentric Model. 

 
 

 
Figure 2.5: The Outer Planets in the Platonic Solid Model 

http://ocw.nd.edu/architecture/nature-and-the-built-environment/lecture-5/keplers-

crystal/image_preview 

 
 

NNEEWWTTOONN  

The English mathematician and physicist Isaac Newton (1643-1727) developed 

the Calculus and proposed the Three Laws of Motion, which became the foundation of 

modern Mechanics.  He also proposed the Law of Universal Gravitation, which states 

that every particle in the Universe attracts every other particle with a force that is directly 
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proportional to the product of their masses and inversely proportional to the square of the 

distance between them.  This new inverse square force law allowed him to formulate the 

N-body problem as it is known today.  Newton was able to solve the two-body problem, 

the inverse cube, and the inverse fifth force laws using analytical geometry constructions 

and his newly developed limit techniques.  He also made the first known attempts to 

solve the three-body problem, although this endeavor soon proved to be much more 

difficult than the effort invested in solving the two-body problem.  From his work, 

Newton reasoned that the planets don’t rotate around the Sun; instead, the Sun and the 

planets all rotate about their common center of mass.  This solution allowed him to 

conclude that the orbit of a point mass in space with respect to another will take the shape 

of a conic section (circle, ellipse, parabola, or hyperbola).  This result also allowed him to 

derive all of Kepler’s Laws of Planetary Motion analytically and expand Kepler’s 

equation to include all four conic sections [34-38]. 

 
 

EEUULLEERR  

The success of the two-body problem motivated mathematicians to search for 

solutions for the problem of more than two bodies.  The Swiss mathematician Leonhard 

Euler (1707-1783) introduced the concept of the synodic (rotating) coordinate system in 

his analysis of the restricted three-body problem.  The term “restricted” indicates that the 

mass of one of the particles being analyzed is negligible, causing it to have no 

gravitational influence on the motion of the other two particles.  The use of this type of 

coordinate system allowed him to discover a family of periodic orbits with respect to the 

line connecting the two primary masses.  Euler also discovered a family of solutions for 

the full three-body problem known as homothetic central configuration solutions.  A 
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homothetic central configuration is one in which the positions of the point particles being 

analyzed by the three-body problem collapse homothetically at their center of mass.  The 

term “homothetically” implies that the particles are released without initial velocities and 

then eventually dilate without rotation [39-43].  Figure 2.6 shows a homothetic solution 

in the three-body problem. 

 
 

 
Figure 2.6: Homothetic Solution of the Three-Body Problem 

 
 

LLAAGGRRAANNGGEE  

The Italian mathematician Joseph Louis Lagrange (1736-1813) continued Euler’s 

work on the three-body problem and discovered five equilibrium points (known today as 

the Lagrange points) when analyzing the circular restricted three-body problem.  The 

circular restricted three-body problem assumes that the two primary masses are either 

fixed in space or move in circular coplanar orbits about their center of mass.  As seen in a 

frame of reference which rotates with the same period as the two co-orbiting bodies, the 

centrifugal force and gravitational fields of the two principal bodies are in balance at the 
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Lagrange point, allowing a third object to be stationary with respect to the primary 

bodies.  The first three Lagrange points, L1, L2, and L3, are referred to as the collinear 

Lagrange points, because they are located on the same axis as the two primary bodies.  

The fourth and fifth points are referred to as the triangular Lagrange points, because their 

distances from the two primary bodies form equilateral triangles with sides equal to the 

distance between the two principal bodies.  Figure 2.7 shows the location of the Lagrange 

points in the circular restricted three-body problem. 

 
 

 
Figure 2.7: Lagrange Points in the Circular Restricted Three-Body Problem 

 
 

Lagrange also derived solutions for many special cases of the full three-body 

problem, including a family of homographic, central configuration solutions which lie at 

the vertices of a rotating equilateral triangle that can shrink and expand periodically.  The 

term “homographic” implies that the configuration formed by the three bodies at any 

given instant moves in such a way as to remain similar to itself as time varies [44-48].  

Two of these central configuration solutions are shown in Figures 2.8 and 2.9. 



17 
 

 
Figure 2.8: Equal Mass Central Configuration Solution of the Three-Body Problem 

 
 

 
Figure 2.9: Unequal Mass Central Configuration Solution of the Three-Body Problem 
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PPOOIINNCCAARRÉÉ  

In 1887, Oscar II, King of Sweden and Norway, initiated a mathematical 

competition and established a prize for anyone who could find a power series solution of 

the N-body problem.  In the event that a solution could not be derived, the prize would be 

awarded for an important contribution to classical mechanics.  Out of the twelve papers 

submitted, only five of them tackled the problem of N-bodies.  However, the five papers 

failed to develop the power series solution required by the jury, which consisted of three 

of the most respected mathematicians of that time and who themselves had tackled the 

problem of N-bodies in their research: Gösta Mittag-Leffler, Charles Hermite, and Karl 

Weierstrass.  Under these circumstances, the panel decided to award the prize to the 

French mathematician Jules Henri Poincaré (1854-1912) for his remarkable contribution 

to the understanding of the equations of dynamics (called Hamiltonian systems today) 

and for the many new ideas he brought into mathematics and mechanics.  Although he 

did not actually solve the problem, his work demonstrated that certain numerical 

solutions of the three-body problem result in chaotic motion with no obvious sign of a 

repetitious path.  The evolution of these orbits is so sensitive to minor changes in an 

object’s position and velocity with respect to other gravitating bodies that it is essentially 

unpredictable.  Poincaré’s manuscript was important, because it laid the foundation of 

deterministic chaos theory [49-54]. 

 
 

SSUUNNDDMMAANN  

In 1912, the Finnish mathematician Karl Fritiof Sundman introduced a new 

transformation based on the theory of complex-variable functions that allowed him to 

derive a power series solution for the three-body problem.  He was able to prove that this 
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series is convergent for all real values of time, except when the initial state (position and 

velocity) corresponds to an angular momentum of zero.  However, Sundman later 

discovered that although the time series converges uniformly, it does so very slowly.  For 

this reason, calculating the state of a particle to any useful precision at a future time 

requires so many terms that his solution is of little practical use.  It was later discovered 

that Sundman’s transformation could not be extended to the problem of N-bodies and, 

consequently, seven more decades would pass before a global solution of the N-body 

problem could be determined [55]. 

 
 

WWAANNGG  

In 1991, the Chinese mathematician Qiudong Wang developed a global power 

series solution to the N-body problem by introducing a new “blowing up” transformation 

that was also based on the theory of complex variables.  In order to develop this result, 

Wang had to omit any consideration of the complicated singularities that can be 

encountered by the solution of the N-body problem.  The implementation of this solution, 

however, results in the same behavior observed with Sundman’s work on the three-body 

problem: the power series, though convergent on the whole real axis, has a very slow 

convergence.  One would have to sum up millions of terms to determine the motion of 

the particles involved for insignificantly short intervals of time.  Consequently, the round-

off errors resulting from its implementation makes the power series unusable in 

numerical work [56]. 
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SSUUGGGGEESSTTEEDD  RREEAADDIINNGG  

This chapter has briefly discussed the N-body problem from a historical point of 

view.  In the author’s opinion, a significant number of volumes would be needed to 

document or even fully summarize the extensive amount of theoretical literature that has 

been written over the years about the topic.  What follows, however, is a short list of 

publications recommended by the author that discuss several aspects of the N-body 

problem.  This list is by far not an exhaustive one, but it will allow the reader to develop 

a strong foundation in the principles of the problem being analyzed in this dissertation. 

� Curtis’ Orbital Mechanics for Engineering Students is a great undergraduate level 

text that discusses many of the concepts of the two-body problem and trajectory 

design.  The derivations in this book are outlined in a step-by-step manner and 

explained very well, making it an excellent resource for both beginning and 

advanced astrodynamicists [57]. 

� Vallado’s Fundamentals of Astrodynamics and Applications is an excellent text 

that discusses many aspects of the N-body problem including its history and the 

formulation of the equations of motion.  An emphasis is then placed on the theory 

of two bodies with detailed derivations.  Many real-life algorithms used to 

implement the analytic results derived are presented and explained in detail [58]. 

� Newton’s Mathematical Principles of Natural Philosophy was the landmark 

publication that laid the foundation of classical mechanics.  This was the first text 

that discussed the equations of motion pertaining to the N-body problem.  The 

book gives the first solution of the two-body problem and discusses some of the 

first attempts at solving the three-body problem [59]. 
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� Lagrange’s Analytical Mechanics was another landmark publication that 

reformulated Newton’s classical mechanics into a form that emphasized work and 

energy methods.  These new methods are then used to derive many important 

outcomes from the two-body problem and used to develop many solutions for 

special cases of the three-body problem [60]. 

� Szebehely’s Theory of Orbits: The Restricted Problem of Three Bodies is an 

advanced classical text that provides a deep and thorough analysis of the restricted 

three-body problem [61]. 

� Pollard’s Mathematical Introduction to Celestial Mechanics is an advanced text 

that gives a complete description of the solution of the two-body problem, an 

introduction to Hamiltonian equations, and a brief treatment of the restricted N-

body problem.  It is a great starting point for the study of Hamiltonian systems 

and celestial mechanics [62]. 

� Meyer’s Periodic Solutions of the N-body Problem provides an excellent, 

systematic investigation of the special cases pertaining to the N-body problem for 

which periodic, time dependent solutions can be derived [63]. 
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CCHHAAPPTTEERR  33  

TTHHEE  TTWWOO--BBOODDYY  PPRROOBBLLEEMM  

 

This chapter presents and discusses the equations of motion of the two-body 

problem.  An analytic, time dependent solution for the case of circular orbits is derived.  

The classical orbital element method used to determine future states for elliptical, 

parabolic, and hyperbolic orbits is outlined and discussed.  Time dependent, power series 

solutions of the relative two-body problem are presented and used recursively to analyze 

a highly elliptical orbit scenario.  The fourth-order and fifth-order Runge-Kutta numerical 

integration algorithms are introduced and used to investigate the same scenario analyzed 

by the power series solution.  A variable time step algorithm that incorporates these two 

numerical integrators is also derived.  Discussion on the absolute error and simulation 

time results returned by the four numerical experiments conclude the chapter. 

 
 

EEQQUUAATTIIOONNSS  OOFF  MMOOTTIIOONN  

The two-body problem is an important model that can be used to analyze the 

motion of satellites orbiting the Earth or traveling through interplanetary space.  Any 

deviation in real-life applications from the predictions it makes are the result of 

perturbations caused by other gravitational sources or other forces, both natural and 

induced.  Figure 3.1 shows the coordinate system of the two-body problem.  The 

equations of motion that govern the two-body problem are 
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where µ1 and µ2 are the gravitational parameters of the primary and secondary body, 

respectively, and 1r
�

 and 2r
�

 are the position vectors of the primary and secondary body, 

respectively. 

 
 

 
Figure 3.1: Two-Body Problem Coordinate System 

 
 
Subtracting equation 3.1 from equation 3.2 yields the acceleration vector of the second 

body with respect to the first (relative acceleration vector), 
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where µ is the sum of the gravitational parameters.  This relative motion outcome is the 

fundamental equation of the two-body problem.  Additionally, when the gravitational 

parameter of the second body, µ2, is much smaller than the gravitational parameter of the 
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first, µ1, the relative motion expression given by equation 3.3 becomes the restricted two-

body problem.  The term “restricted” indicates that the mass of the second body being 

analyzed is negligible, causing it to have no gravitational influence on the motion of the 

first as shown in Figure 3.2. 

 
Figure 3.2: Restricted Two-Body Problem Coordinate System 

 
 

TTHHEE  OORRBBIITT  EEQQUUAATTIIOONN  

Johannes Kepler stated in his First Law of Planetary Motion that all the planets 

move in elliptical orbits with the Sun at one focus.  Sir Isaac Newton later expanded this 

result by determining that the solution of the relative two-body problem would take the 

form of a conic section: circle, ellipse, parabola, and hyperbola.  However, he derived 

this outcome using analytical geometry constructions and his newly developed concept of 

the limit.  It wasn’t until a few years after Newton’s death that Daniel Bernoulli solved 

the relative two-body problem using the methods of calculus which, ironically, had been 

invented by Isaac Newton himself and Gottfried Leibniz, and further developed by his 

father and uncle; Johann and Jacob Bernoulli, respectively.  Daniel Bernoulli’s solution 

of the relative two-body problem, now commonly referred to as the orbit equation, was 
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not a time dependent outcome but one based on the geometry of the orbit in question.  It 

is in essence the equation for a conic section in polar coordinates.  Three different ways 

of writing the orbit equation are 
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where ∆r is the magnitude of the relative position vector and the remaining variables are 

defined as follows: 

� a is the semimajor axis, which determines the size of the orbit; 

� e is the eccentricity, which determines the shape of the orbit; 

� ν is the true anomaly, which determines the angular location of the second body 

relative to the periapse point; 

� p is the semi-parameter, which is equivalent to the magnitude of the relative 

position vector when the true anomaly is equal to 90°; and 

� h is the magnitude of the specific angular momentum vector, which is determined 

by the cross-product of the relative position and velocity vectors, 

 vrhhvrh
������

∆×∆==→∆×∆=  (3.5) 

Figure 3.3 shows the geometry of the variables that form the orbit equation for an 

elliptical orbit. 

 
 



26 
 

 
Figure 3.3: Geometry of an Elliptical Orbit 

 
 

In this figure, b is the semiminor axis, rp is the radius of periapsis (the point where 

the second body is closest to the primary body), and ra is the radius apoapsis (the point 

where the second body is furthest from the primary body).  The magnitude of the relative 

position vector is equal to the radius of periapsis when the true anomaly is equal to 0° and 

to the radius of apoapsis when the true anomaly is equal to 180°.  In addition to being 

called the major axis, the line connecting the radius of periapsis with the radius of 

apoapsis is also known as the line of apsides. 

As was mentioned earlier, the orbit’s eccentricity determines its shape and can be 

obtained by finding the magnitude of the eccentricity vector, which always points 

towards the radius of periapsis, 
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The four conic section solutions of the relative two-body problem are related to 

eccentricity in the following manner: 

� If e = 0, the orbit is circular. 

� If 0 < e < 1, the orbit is elliptical. 
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� If e = 1, the orbit is parabolic. 

� If e > 1, the orbit is hyperbolic. 

These outcomes can be seen in Figure 3.4. 

 
 

 
Figure 3.4: Effect of Eccentricity on Orbital Geometry 

 
 

CCIIRRCCUULLAARR  OORRBBIITT  SSOOLLUUTTIIOONNSS  

Equation 3.3 is a second order, non-linear, coupled, space dependent vector 

differential equation that can be expanded into a first-order matrix equation, 
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In this expression, s�
�

∆  and s
�

∆  are the relative rate of change and relative state 

vectors, respectively, A is the space dependent coefficient matrix, µ is the sum of the 

gravitational parameters, 3x30/  is a 3x3 zero matrix, I3x3 is a 3x3 identity matrix, r
�

∆  is the 

relative position vector, and v
�

∆  is the relative velocity vector.  The initial conditions for 

equation 3.7 are 
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where 0s
�

∆  is the relative initial state, and 0r
�

∆  and 0v
�

∆  are the initial relative position and 

velocity vectors, respectively.  As stated earlier, there is no practical time dependent, 

analytic, general solution to this vector differential equation.  The only exception to this 

is the case when the two bodies are in circular orbits with respect to their center of mass.  

For such a case, the mean angular motion of both bodies is a constant defined as 
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With this definition, the coefficient matrix, A, becomes a sparse constant matrix, 
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This causes the vector differential equation given by equation 3.7 to become a system of 

equations with constant coefficients for which an analytic solution can be derived.  Using 

eigenvalue methods [64], the general solution can be stated as 
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where M is the fundamental eigenvalue matrix, c
�

∆  is a generic state constant of 

integration, and 1c
�

∆  and 2c
�

∆  are generic vector constants of integration.  Using the 

initial conditions given by equation 3.8, the unique solution of equation 3.7 becomes 
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where Φ is the relative state transition matrix.  The state of each body with respect to the 

systems’ barycenter can then be given by 
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This time dependent, analytic solution applies to circular orbits only and cannot 

be extended to the case of elliptical, parabolic, and hyperbolic orbits.  For these orbit 

types, a trajectory designer can use the classical orbital element approach to determine 

future states given a set of initial conditions. 

 
 

CCLLAASSSSIICCAALL  OORRBBIITTAALL  EELLEEMMEENNTT  SSOOLLUUTTIIOONNSS  

The orbit equation can be used to determine a future state consisting of a relative 

position and velocity given a set of initial conditions in inertial space, 
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This section will outline the procedure for the case of an elliptical orbit.  The reader is 

referred to Curtis [65] or Vallado [66] for the procedure involving parabolic and 

hyperbolic orbits.  The first step in this process is to determine the classical orbital 

elements of the orbit being analyzed: 
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� Semimajor axis, a; 

� Eccentricity, e; 

� Inclination, i; 

� Right Ascension of the Ascending Node, Ω; 

� Argument of Periapsis, ω; and 

� True Anomaly, ν. 

The semimajor axis and eccentricity determine the orbit’s size and shape, respectively, 

while the inclination, right ascension of the ascending node, and argument of periapsis 

determine the orbit’s orientation in inertial space.  The true anomaly determines the 

location on the orbit of the second body with respect to the first.  A visual description of 

these elements can be seen in Figure 3.5. 

 
 

 
Figure 3.5: Classical Orbital Elements 

 
 

The relative position and velocity vectors can be used to determine the semimajor 

axis a through the use of the specific mechanical energy equation, 
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where ε is the orbit’s specific mechanical energy.  Eccentricity e is determined by 

evaluating the magnitude of equation 3.6.  The inclination i is determined by first 

calculating the orbit’s specific angular momentum vector given by equation 3.5 and then 

finding the angle between the specific angular momentum vector and the inertial K̂  axis, 
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Inclination is the angle formed by the orbital plane and the inertial ĴÎ −  plane.  It 

will always fall between 0° and 180°, so no quadrant check is required by equation 3.17.  

The right ascension of the ascending node, Ω, is calculated by first determining the 

ascending node vector η
�

, which is part of the line of nodes.  The line of nodes is the line 

formed by the intersection of the orbital plane and inertial ĴÎ −  plane.  The ascending 

node vector is perpendicular to both the inertial K̂  axis and the specific angular 

momentum vector, so it can be determined by 
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The right ascension of the ascending node is the angle formed by the inertial Î  axis and 

the line of nodes, 
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This angle can range between 0° and 360°, so a quadrant check is necessary: 
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� If 0J ≥η  then �� 1800 ≤Ω≤ . 

� If 0J <η  then �� 360180 <Ω< . 

The argument of periapsis ω is the angle formed by the ascending node vector and the 

eccentricity vector, 
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This angle can also range between 0° and 360°, so a quadrant check is necessary: 

� If 0eK ≥  then �� 1800 ≤ω≤ . 

� If 0eK <  then �� 360180 <ω< . 

Finally, true anomaly is the angle between the eccentricity vector and the relative position 

vector, 
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The quadrant check used to determine the correct angle is: 

� If 0vr ≥∆⋅∆
��

 then �� 1800 ≤ν≤ . 

� If 0vr <∆⋅∆
��

 then �� 360180 <ν< . 

Once the orbit’s classical orbital elements have been determined, the initial eccentric 

anomaly E0 is given by 
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where ν0 is the true anomaly corresponding the initial state.  Eccentric anomaly is the 

angle formed by the eccentricity vector and the line connecting the location of the second 

body with center of the ellipse.  The eccentric anomaly corresponding to the new state Ef 

is determined by solving Kepler’s equation, 

 ( ) ( )[ ] tnEsinEsineEE 0f0f ∆+−+=  (3.23) 

where n is the mean angular motion, 
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and ∆t is the time between states, 

 0f ttt −=∆  (3.25) 

Kepler’s equation is a transcendental expression that can only be solved using an 

iterative procedure such as Newton’s root-finding method.  Once the new eccentric 

anomaly has been determined, the true anomaly corresponding to the new state νf is 

found by rearranging equation 3.22, 
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The orbit equation is used to define the relative position vector in the perifocal 

coordinate system ( Ŵ,Q̂,P̂ ), where the principle direction is parallel to the eccentricity 

vector, which points towards the periapsis point [67].  This can be seen in Figure 3.6. 
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Figure 3.6: Perifocal Coordinate System 

 
 
Working in the perifocal coordinate system, the relative position and velocity vectors, 

respectively, corresponding to the new state are given by 
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Finally, the new state can be converted to inertial coordinates using a transformation 

matrix, 
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where the transformation matrix (T) is given by 
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where ( ) ( )cosc =  and ( ) ( )sins = . 

The classical orbital element method returns exact results when future states are 

being predicted for all orbit types (with the exception of circular orbits) governed by the 

relative two-body problem when an initial state and a propagation time are known.  

However, it quickly becomes apparent that the classical orbital element method requires a 

substantial number of steps to implement.  Moreover, the procedure cannot be extended 

to cases where the motion of more than two bodies is taken into account.  A time 

dependent, analytic solution that can be applied to the motion of any number of bodies 

would allow the trajectory designer to determine a future state in just one step.  Such a 

time dependent solution has been developed in the form of a power series for the relative 

two-body problem and, as will be derived by the author in the next chapters, this power 

series can be extended to the N-body problem. 

 
 

PPOOWWEERR  SSEERRIIEESS  SSOOLLUUTTIIOONNSS  

A time dependent solution of the relative two-body problem can be expressed in 

terms of a Taylor series expansion given the initial relative position and velocity [68-70], 
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where the first and second order derivatives are defined as 
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Successive terms in the Taylor series expansion can be found by defining the following 

quantities: 
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These three values are known as fundamental invariants because they are 

independent of the selected coordinate system and they form a closed set under the 

operation of time differentiation.  Consequently, differentiation of the fundamental 

invariants with respect to time leads to the following outcomes: 

 αλ−=
α

3
dt

d
 (3.38) 

 ( )β+αλ−=
β

2
dt

d
 (3.39) 

 22
dt

d
λ−α−β=

λ
 (3.40) 

With these definitions, the higher order derivatives in the Taylor series expansion given 

by equation 3.32 can now be expressed as 
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FFuunnddaammeennttaall  IInnvvaarriiaanntt  CChhaarraacctteerriissttiiccss  

The fundamental invariant α can be described as the local angular acceleration of 

the second body with respect to the first.  Looking at equation 3.35, it can be concluded 

that this local angular acceleration approaches zero as the distance between the two 

bodies approaches infinity.  Moreover, the fundamental invariants β and λ can be 

rewritten in terms of α.  Once again working in the perifocal coordinate system shown in 

Figure 3.6, the magnitude of the relative position vector is the orbit equation.  The 

magnitude of the relative velocity is given by 
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=∆  (3.42) 

Substituting the orbit equation and equation 3.42 into the definition of the fundamental 

invariant β given by equation 3.36 and simplifying yields 
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A close scrutiny of equation 3.43 allows us to conclude the following: 

� When e = 0 (circular orbit), β = α. 

� When e = 1 (parabolic orbit), β = 2α. 

� When ν = 0°, β = α(1 + e). 

� When ν = 180°, β = α(1 – e). 

� When ν = 90° or 270°, β = α(1 + e2). 
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Likewise, substituting the orbit equation and equation 3.42 into the definition of the 

fundamental invariant λ given by equation 3.37 and simplifying yields 

 ( )
( )ν+

α
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∆⋅∆
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cose1
sine

r
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2
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00

��

 (3.44) 

Substituting various values of true anomaly and eccentricity into equation 3.44 allows us 

to conclude the following: 

� When e = 0 (circular orbit), λ = 0. 

� When e = 1 (parabolic orbit), ( )[ ]ν−α=λ cos1 . 

� When ν = 0° or 180°, λ = 0. 

� When ν = 90° or 270°, α=λ e . 

Additionally, the expression for eccentricity given by equation 3.6 can be rewritten in 

terms of fundamental invariants. 
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 (3.45) 

 
 
LLaaggrraannggee  CCooeeffffiicciieennttss  aanndd  RReeccuurrssiioonn  RReellaattiioonnsshhiippss  

By rearranging equation 3.41, it can be shown that the relative position vector of 

any point particle whose motion is described by the two-body problem can be expressed 

in terms of its initial position and velocity with respect to a primary body given an initial 

time such that 

 ( ) 00 vGrFtr
���

∆+∆=∆  (3.46) 
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where the functions F and G are known as Lagrange coefficients.  Further research of 

these time dependent Lagrange coefficients has lead to the development of recursion 

relationships that allow a trajectory designer to evaluate higher order derivatives of 

equation 3.46 in an efficient manner [71-72].  These recursion relationships are given by 

 ( )( ) ( )0k1k1k02k ffff2k1k α++α+α−=++ −+ �  (3.47) 

 ( )( ) ( )0k1k1k02k gggg2k1k α++α+α−=++ −+ �  (3.48) 

 ( ) ( )0k1k1k01k 31k λα++λα+λα−=α+ −+ �  (3.49) 

 ( ) ( ) ( ) ( )[ ]00k1k1k1kk01k 21k β+αλ++β+αλ+β+αλ−=β+ −−+ �  (3.50) 

 ( ) ( )0k1k1k0kk1k 21k λλ++λλ+λλ−α−β=λ+ −+ �  (3.51) 

where k is an integer such that; 

 �,2,1,0k =  (3.52) 

and the values of the zero and first order terms, respectively, are 

 1f0 =  (3.53) 

 0f1 =  (3.54) 

 0g0 =  (3.55) 

 1g1 =  (3.56) 
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With these definitions, the time dependent Lagrange coefficients are then found 

by summing their respective components, 

 ∑
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=
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where ξ is the desired order of the Lagrange coefficients.  Using these definitions, the 

first seven terms of each time dependent Lagrange coefficient can be stated as 
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Equations 3.59-3.60 apply to all types of orbits governed by the relative two-body 

problem.  For the case of a circular orbit, where α = β and λ = 0, the time dependent 

Lagrange coefficients reduce to the terms of a Taylor series expansion for the cosine and 

sine trigonometric functions, respectively, 
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These circular orbit results agree with the analytic solution given by equation 3.12.  For 

the case of an elliptical or hyperbolic orbit, where the initial state is given at periapsis so 

that ν = 0 and λ = 0, the time dependent Lagrange coefficients reduce to 
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Finally, for the case of a parabolic orbit, where the initial state is given at periapsis so that 

ν = 0, λ = 0, and β = 2α; the time dependent Lagrange coefficients reduce to 
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RRaaddiiuuss  ooff  CCoonnvveerrggeennccee  

Implementing higher orders of the time dependent Lagrange coefficients will 

allow the outcomes of equation 3.46 to agree more closely with the results produced 

when the relative two-body problem is solved using the classical orbital element method 

or numerically integrated.  However, there is a time interval beyond which the power 

series solution will diverge from the exact solution, regardless of the number of terms 

that are included when the Lagrange coefficients are calculated.  This time interval is 
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called the Taylor series’ radius of convergence.  Fortunately, expressions for the radius of 

convergence have been developed.  For elliptical orbits, the radius of convergence is 

given by 
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where Me is the elliptical orbit’s mean anomaly, 

 ( )00e EsineEM −=  (3.68) 

and E0 is the eccentric anomaly corresponding to the initial state given by equation 3.22.  

For parabolic orbits, the radius of convergence is given by 
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Finally, for hyperbolic orbits, the radius of convergence is given by 
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where the hyperbolic orbit’s mean anomaly Mh is given by 

 ( ) hhh EEsinheM −=  (3.71) 

and the hyperbolic anomaly is defined as 



43 
 

 




















 ν

+

−
=

−

2
tan

1e

1e
tanh2E 01

h  (3.72) 

UUssiinngg  PPoowweerr  SSeerriieess  SSoolluuttiioonnss  IItteerraattiivveellyy  

Even though the power series solution of the relative two-body problem has a 

finite radius of convergence, it can still be used iteratively to describe a complete 

trajectory.  The author proposes the following algorithm to achieve this result for an 

elliptical trajectory with respect to the Earth.  The same process can be used for parabolic 

and hyperbolic orbits.  Given the period of the elliptical orbit, τ; an initial relative 

position, 0r
�

∆ ; an initial relative velocity, 0v
�

∆ ; and a constant time step, ∆t: 

� The fundamental invariants (α, β, and λ) corresponding to the current state are 

computed using equations 3.35 and 3.37. 

� The seventh-order Lagrange coefficients (F and G) are computed using equations 

3.59 and 3.60. 

� The seventh-order Lagrange coefficient rates ( F�  and G� ) are evaluated by 

differentiating equations 3.59 and 3.60 with respect to time. 

� The new position is evaluated using 

 001 vGrFr
���

∆+∆=∆  (3.73) 

� The new velocity is evaluated using 

 001 vGrFv
��

�
�

�
∆+∆=∆  (3.74) 

� The process is repeated for each new state for the remainder of the orbit’s period. 

Seventh-order Lagrange coefficients are being implemented in this algorithm because 

they return adequate results while maintaining a manageable polynomial size.  Working 
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in the perifocal coordinate system shown in Figure 3.6, equations 3.27 and 3.28 illustrate 

that the relative position and velocity vectors are a function of the orbit’s semi-parameter, 

true anomaly, and eccentricity, 
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 (3.76) 

These two equations will be used to evaluate initial conditions for a numerical 

experiment involving the iterative algorithm just described.  The test will analyze an 

elliptical orbit for a duration equaling the period τ using different time step sizes.  The 

time steps are varied by 15-second intervals up to a maximum size of five minutes. 

The experiment investigates an elliptical orbit with respect to the Earth (µ = 

398,600 km3/s2) and assumes that the secondary body’s gravitational parameter is equal 

to zero (a restricted two-body problem).  The orbit’s semi-parameter is (p = 13,128 km) 

and its eccentricity is (e = 0.966).  Its radius of periapsis is (rp = 6,678 km) and its radius 

of apoapsis is (ra = 384,400 km).  This is equivalent to placing a satellite on a Hohmann 

transfer from low Earth orbit to the Moon and is shown in Figure 3.7.  The blue sphere 

representing the Earth is drawn to scale. 
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Figure 3.7: An Elliptical Orbit with Respect to the Earth 

 
 
The satellite’s initial position is at periapsis ν = 0, so it’s initial conditions are  

 P̂rr p0 =∆
�

 (3.77) 
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p
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µ
+=∆

�
 (3.78) 

Since the algorithm is evaluated for exactly the entire period of the elliptical orbit, 

 
µ

π=τ
3a

2  (3.79) 

the correct final position should be equal to the initial position.  However, the truncated 

Taylor series will produce a small amount of error after each time step.  With this in 

mind, the final absolute error for each orbit analyzed is evaluated using 

 rk0 rrError
��

∆−∆=  (3.80) 

where rkr
�

∆  is the final relative position vector returned by the seventh-order algorithm.  

Figure 3.8 shows the absolute error results (in Earth radii) obtained by this first 
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experiment and the computer time (in seconds) needed to integrate the orbit for each time 

step size. 

 
 

 
Figure 3.8: Absolute Error Results Using a Seventh-Order Iterative Power Series 

a) Absolute Error, b) Simulation Time 

 
 
Figure 3.8 shows that the power series solution of the relative two-body problem can be 

used iteratively to accurately describe an elliptical trajectory with a small computer time.  

As will be shown in the following chapters, this iterative procedure can be extended to 

the problem of N-bodies while maintaining the short computer time requirements. 

 
 

NNUUMMEERRIICCAALL  IINNTTEEGGRRAATTIIOONN  SSOOLLUUTTIIOONNSS  

A useful solution alternative that can also be extended to the problem of N-bodies 

is to numerically integrate the equations of motion.  As was stated earlier, the relative 

two-body problem is a nonlinear, coupled, space dependent system of ordinary 

differential equations.  This nonlinear characteristic is the principle reason why it is 

difficult to derive an explicit, time dependent, analytic solution.  Several approximation 
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techniques have been developed over the years to numerically integrate nonlinear, initial 

value problems such as the relative two-body problem and the N-body problem.  For the 

purpose of this dissertation, the fourth-order and fifth-order Runge-Kutta numerical 

integration algorithms (RK4 and RK5, respectively) will be used as a benchmark to 

develop accurate orbital trajectories in both the relative two-body problem and the N-

body problem [73-74].  These two numerical integration algorithms can achieve the 

accuracy of a Taylor series expansion without requiring the calculation of derivatives 

beyond the first. 

 
 
RRuunnggee--KKuuttttaa  44  

Beginning with the relative two-body problem given by equation 3.3, 
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 (3.81) 

its numerical integration using RK4 with step-size ∆t is represented as 

 frr 01

���
+∆=∆  (3.82) 

 gvv 01

���
+∆=∆  (3.83) 

where the increment functions f
�

 and g
�

 are defined as 

 ( )4321 ff2f2f
6

1
f

�����

+++=  (3.84) 

 ( )4321 gg2g2g
6

1
g

�����
+++=  (3.85) 



48 
 

The vectors 41 f through f
��

 and 41 g through g
��

 are known as: 

� The initial estimate of the new position, 1f
�

; 

� The initial estimate of the new velocity, 1g
�

; 

� The first midpoint estimate of the new position, 2f
�

; 

� The first midpoint estimate of the new velocity, 2g 
�

; 

� The second midpoint estimate of the new position, 3f
�

; 

� The second midpoint estimate of the new velocity, 3g
�

; 

� The endpoint estimate of the new position, 4f
�

; 

� The endpoint estimate of the new velocity, 4g
�

; 

and are respectively defined as (where curly brackets imply “a function of”) 
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 ( )304 gvtf
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+∆⋅∆=  (3.92) 

 { }304 frrtg
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+∆∆⋅∆=  (3.93) 

The elliptical orbit numerical experiment performed earlier using the iterative power 

series solution of the relative two-body problem is now repeated using RK4.  Figure 3.9 

shows the absolute error results returned by this investigation. 

 
 

 
Figure 3.9: Absolute Error Results Using RK4 

a) Absolute Error, b) Simulation Time 

 
 
RRuunnggee--KKuuttttaa  55  

Beginning with the relative two-body problem given by equation (3.81), its 

numerical integration using RK5 with step-size ∆t is represented as 

 frr 01

���
+∆=∆  (3.94) 

 gvv 01

���
+∆=∆  (3.95) 

where the increment functions f
�

 and g
�

 are defined as 
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The vectors 61 f through f
��

 and 61 g through  g
��

 are known as: 

� The initial estimate of the new position, 1f
�

; 

� The initial estimate of the new velocity, 1g
�

; 

� The first midpoint estimate of the new position, 2f
�

; 

� The first midpoint estimate of the new velocity, 2g 
�

; 

� The second midpoint estimate of the new position, 3f
�

; 

� The second midpoint estimate of the new velocity, 3g
�

; 

� The third midpoint estimate of the new position, 4f
�

; 

� The third midpoint estimate of the new velocity, 4g
�

; 

� The fourth midpoint estimate of the new position, 5f
�

; 

� The fourth midpoint estimate of the new velocity, 5g
�

; 

� The endpoint estimate of the new position, 6f
�

; 

� The endpoint estimate of the new velocity, 6g
�

; 

and are respectively defined as (where curly brackets imply “a function of”) 
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The elliptical orbit numerical experiment performed earlier using the iterative power 

series solution of the relative two-body problem and RK4 is now repeated a second time 

using RK5.  Figure 3.10 shows the absolute error results returned by this investigation. 
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Figure 3.10: Absolute Error Results Using RK5 

a) Absolute Error, b) Simulation Time 

 
 
AA  VVaarriiaabbllee  TTiimmee  SStteepp  RRuunnggee--KKuuttttaa  AAllggoorriitthhmm  

The fourth-order and fifth-order Runge-Kutta numerical integration algorithms 

(RK4 and RK5, respectively) described above can be used to develop a numerical 

integrator that automatically adjusts the time step size being used during the course of a 

computation.  This process allows the integrator’s accuracy to increase by focusing its 

full computational power on portions of the satellite trajectory where significant changes 

occur (small time steps) and reducing this focus when the satellite experiences little 

change in its motion (large time steps).  What results is a highly efficient procedure that 

gives the trajectory designer the ability to analyze an N-body problem scenario with 

much less computer time than is required by a constant time step integrator while 

maintaining a considerable amount of accuracy.  Many variable time step integrators 

have been developed over the years because they are more reliable than their constant 

time step counterparts.  The author proposes the following variable time step numerical 
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integration algorithm.  Given a simulation time, τ, an initial relative position, 0r
�

∆ , and 

initial relative velocity, 0v
�

∆ , an initial time step size, ∆t, and a tolerance, T: 

� Evaluate a new state using RK4. 

� Evaluate a new state using RK5. 

� Determine the deviation between RK4 and RK5 using 

 4RK5RK rrDeviation
��

∆−∆=  (3.110) 

� If the deviation is greater than the tolerance, decrease the size of the current time 

step by dividing it by two and return to the first step of the algorithm. 

� If the deviation is less than the tolerance, the state returned by RK5 is the new 

relative position and velocity, 

 5RK1 rr
��

∆=∆  (3.111) 

 5RK1 vv
��

∆=∆  (3.112) 

� Increase the size of the current time step by multiplying it by two. 

� Repeat the entire process for the next state until the simulation time, τ, has been 

reached. 

This algorithm will be used for the remainder of this dissertation to make a direct 

comparison between the capabilities of the Runge-Kutta methods and the processes that 

will be developed by the author.  To see how well this variable time step algorithm 

actually performs, the highly elliptical trajectory is revisited.  However, because the 

amount of computer time needed to analyze the entire trajectory is greatly diminished by 

the variable time step procedure, the following analysis will investigate the absolute error 
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obtained in intervals of time equal to the orbit’s period.  Since the satellite’s relative 

position after each orbital period should be equal to the initial position, the absolute error 

after each period is once again evaluated using equation 3.80.  Figures 3.11 and 3.12 

show these absolute error results and the computer time needed to analyze the multiple 

orbital periods when tolerances of 10-6 km and 10-7 km are used. 

 

 
Figure 3.11: Absolute Error Results Using RK45 with a 10

-6
 Tolerance 

a) Absolute Error, b) Simulation Time 

 

 
Figure 3.12: Absolute Error Results Using RK45 with a 10

-7
 Tolerance 

a) Absolute Error, b) Simulation Time 
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These two figures demonstrate that the variable time step RK45 numerical 

integrator is both very accurate and very efficient.  However, the author will derive two 

new methods that are both more accurate and much more efficient than RK45 in the 

following chapter. 

 
 

DDIISSCCUUSSSSIIOONN  

As can be seen from the radius of convergence expressions given by equations 

3.67-3.72, the accuracy of the power series solution derived for the relative two-body 

problem is extremely limited.  For example, the radius of convergence of the power series 

solution for the elliptical orbit analyzed in this chapter is approximately 2,266 seconds.  

This is only 0.26% of the actual orbital period.  However, Figures 3.8-3.10 demonstrate 

that the power series solution of the relative two-body problem can be used iteratively to 

determine future states for any type of orbit with results that are more accurate than RK4 

and slightly less accurate than RK5.  The results show that as time step size increases, the 

absolute error returned by any of the three processes also increases.  The computer time 

needed to propagate the orbit decreases as time step size increases.  This is an expected 

outcome.  The important result obtained from this investigation is that the iterative power 

series process has the benefit of being able to predict a future state with less computer 

time than is required by either RK4 or RK5. 
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CCHHAAPPTTEERR  44  

NNEEWW  SSOOLLUUTTIIOONNSS  OOFF  TTHHEE  TTWWOO--BBOODDYY  PPRROOBBLLEEMM  

 

In this chapter, the relative two-body problem is transformed into a time 

dependent system using the power series solutions derived in Chapter 3.  A fourth-order, 

analytic solution is derived for the transformed system and the result is shown to be a 

useful alternative to the universal form of Kepler’s equation when working in any 

coordinate system.  A fifth order solution is derived for the case when a vehicle is 

initially located at the periapsis of a parabolic orbit. Two methods are proposed to solve 

the transformed problem when higher-order coefficients are implemented.  Finally, all of 

these results are used to develop two new variable time step propagators that are more 

accurate and more efficient than the variable time step Runge-Kutta numerical integrator. 

 
 

AA  NNEEWW  TTIIMMEE  TTRRAANNSSFFOORRMMAATTIIOONN  

The relative two-body problem described by equation 3.3 is a function of the 

second body’s position with respect to the first.  Additionally, equation 3.46 shows how 

the solution of the relative two-body problem can be stated in terms of a time dependent 

Taylor series expansion whose radius of convergence is finite.  Substituting equation 3.46 

into equation 3.3 and simplifying yields 
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This process transforms the relative two-body problem from a nonlinear, coupled, space 

dependent vector differential equation to a linear, uncoupled, time dependent vector 

differential equation whose solution can be stated as 

 
( )

21
2

2
3

22

00 cctdt
GFG2F

vGrF
r

��
��

�
++

β+λ+

∆+∆
α−=∆ ∫∫  (4.2) 

 
( )

1
2

3
22

00 cdt
GFG2F

vGrF
v

�
��

�
+

β+λ+

∆+∆
α−=∆ ∫  (4.3) 

where 1c
�

 and 2c
�

 are vector constants of integration. 

 
 

AA  FFOOUURRTTHH  OORRDDEERR  SSOOLLUUTTIIOONN  OOFF  TTHHEE  TTWWOO  BBOODDYY  PPRROOBBLLEEMM  

Equation 4.1 can be solved analytically if first-order Lagrange coefficients are 

used.  For this case, equation 3.46 can be written as the sum of the secondary body’s 

initial position and the product of time with its initial velocity, 
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Substituting equation 4.4 into equation 4.1 yields 
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This is a linear, uncoupled vector differential equation that is dependent on time and 

independent of space.  Defining the lower-case gamma polynomial, γ, as the cube root of 

the denominator in equation 4.5 such that 

 ( ) 222 tt21GFG2Ft β+λ+=β+λ+=γ  (4.6) 

equation 4.5 can be rewritten as 
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and the secondary body’s velocity can be found by integrating both sides of equation 4.7, 
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where 1c
�

 is the first vector constant of integration.  The value of this constant of 

integration is determined by substituting the initial conditions given by equation 3.8 into 

equation 4.8 and then simplifying, 
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Substituting equation 4.9 into equation 4.8 and then simplifying yields the unique relative 

velocity as a function of time, 
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The relative position can now be determined by integrating both sides of equation 4.10, 
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where 2c
�

 is the second vector constant of integration.  The value of this constant of 

integration is determined by substituting the initial conditions given by equation 3.8 into 

equation 4.11 and then simplifying, 
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Substituting equation 4.12 into equation 4.11 and then simplifying yields the unique 

relative position as a function of time, 
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With these results, the first-order state of the secondary body’s relative motion can be 

written as 
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where I3x3 is a 3x3 identity matrix and the modified Lagrange coefficients F
~

, G
~

, and 

their respective derivatives are defined as 
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Equation 4.14 and its components given by equations 4.15-4.18 can be looked at 

as a universal substitute to Kepler’s equation.  A future state can be determined by using 

this expression in a recursive manner similar to the process outlined for the power series 

solution of the relative two-body problem in the previous chapter.  The term universal is 

used to imply that it applies to any type of orbit that is governed by the relative two-body 

problem.  Although a universal variable formulation has been developed for Kepler’s 

equation, its results correspond to the perifocal coordinate system [75].  If a future state is 

desired with respect to an inertial coordinate system, the classical orbital element 

procedure also outlined in the previous chapter must be used after the universal variable 

Kepler’s equation has been solved iteratively.  Equation 4.14 bypasses all of these 

requirements and returns a future state in inertial coordinates in a couple of iterations, 

depending on the size of the time interval. 
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The accuracy of the results returned by equation 4.14 approaches the accuracy of 

a fourth-order power series solution of the relative two-body problem.  This can be seen 

by finding the Taylor series expansion of equation 4.13, 
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Comparing this result to the Lagrange coefficient terms of equations 3.59 and 

3.60, a fourth-order accurate iteration time can be derived by subtracting equation 4.19 

from the fourth-order form of equation 3.46, 
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T12
t

∆α
=∆  (4.20) 

where T is a user defined tolerance with units of length.  In other words, if equation 4.14 

is to be used as a substitute to Kepler’s equation, a new state should be computed every 

∆t time given by equation 4.20 until the final state corresponding to the propagation time 

required is obtained. 

 
 

AA  FFIIFFTTHH  OORRDDEERR  SSOOLLUUTTIIOONN  FFOORR  PPAARRAABBOOLLIICC  OORRBBIITTSS  

Equation 4.1 can also be solved analytically if second order Lagrange coefficients 

are used and the secondary body is assumed to be initially located at the periapsis of a 

parabolic orbit with respect to the primary.  With these assumptions, equation 3.46 can be 

written as, 



62 
 

 00
2

00 vtrt
2

1
1vGrFr

�����
∆+∆








α−=∆+∆=∆  (4.21) 

Substituting equation 4.21 into equation 4.1 yields 

 
( )

( ) 2
3

22
2

2

00
2

2
3

22

00

ttt
2
1

12t
2
1

1

vtrt
2
1

1

GFG2F

vGrF
r












β+








α−λ+








α−









∆+∆








α−α

−=
β+λ+

∆+∆α
−=∆

��

��

��
�

 (4.22) 

Recall that for a parabolic orbit, β = 2α, and λ = 0 at periapsis.  With these definitions, 

equation 4.22 reduces to 
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which can be simplified to 
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Integrating both sides of equation 4.24 with respect to time yields the relative velocity, 
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Applying initial conditions to equation 4.25 and simplifying yields the value of the first 

constant of integration, 
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Substituting equation 4.26 into equation 4.25 and simplifying yields the unique relative 

velocity 
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Integrating both sides of equation 4.27 with respect to time yields the relative position, 
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Applying initial conditions to equation 4.28 and simplifying yields the value of the 

second constant of integration, 
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Substituting equation 4.29 into equation 4.28 and simplifying yields the unique relative 

position, 
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With these results, the second order state of the secondary body’s relative motion can be 

written as 
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where the modified Lagrange coefficients F
~

, G
~

, and their respective derivatives are 

defined as 
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The accuracy of the results returned by equation 4.31 approaches the accuracy of 

a fifth order power series solution of the relative two-body problem.  This can be seen by 

finding the Taylor series expansion of equation 4.30, 
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Comparing this result to the Lagrange coefficient terms of equations 3.59 and 

3.60 (with β = 2α and λ = 0), a fifth order accurate iteration time can be derived by 

subtracting equation 4.31 from the fifth order form of equation 3.46, 
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2 v
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∆α
=∆  (4.32) 

where T is a user defined tolerance with units of length.  Just like the fourth order 

solution, a new state should be computed every ∆t time given by equation 4.32 until the 

final state corresponding to the propagation time required is obtained. 

 
 

HHIIGGHHEERR--OORRDDEERR  SSOOLLUUTTIIOONNSS  OOFF  TTHHEE  TTWWOO--BBOODDYY  PPRROOBBLLEEMM  

The time-dependent function that results when higher orders of Lagrange 

coefficients are substituted into equation 4.1 cannot be integrated directly.  This obstacle 

can be overcome in two different ways. 

 
 
TThhee  MMooddiiffiieedd  PPoowweerr  SSeerriieess  AApppprrooaacchh  

The first approach involves rewriting the transformed relative two-body problem 

given by equation 4.4 as a truncated, time dependent Taylor series expansion.  Writing 

the relative acceleration in terms of Lagrange coefficients of order ξ, 
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the series expansion becomes 
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where χ is the order of the truncated Taylor series.  Integrating both sides of equation 

4.25 with respect to time and then applying initial conditions yields the relative velocity, 
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Integrating both sides of equation 4.26 with respect to time and then applying initial 

conditions yields the relative position, 
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It can easily be shown that when χ = ξ, the modified Lagrange coefficients resulting from 

equation 4.27 will be exactly two orders higher than the original Lagrange coefficients 

used in equation 4.24.  In other words, if χ = ξ, then 
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An additional increase in accuracy is obtained by letting χ be greater than ξ; however, the 

F
~

 and G
~

 polynomials generated when ξ ≥ 5 become too cumbersome to implement.  As 

an example, the modified Lagrange coefficients generated when ξ = 5 and χ = 6 are given 

by 
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where F7 and G7 are the original seventh order Lagrange coefficients given by equations 

3.59 and 3.60. 

 
 
TThhee  GGaammmmaa  PPoollyynnoommiiaall  AApppprrooaacchh  

The second approach used to solve equation 4.4 is to rewrite the ratio of one to 

the denominator in terms of a truncated Taylor series expansion.  Recall the definition 

given by equation 4.9: 
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The truncated Taylor series expansion Γ0 is defined as 
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where ξ represents the order of the time dependent Lagrange coefficients being used.  

With this definition of the upper-case Gamma polynomial, equation 4.4 can now be 

rewritten as 
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Since equation 4.33 defines the relative acceleration as the product of finite-termed 

polynomials, an elegant representation of the relative velocity can be found using 

integration by parts on the right hand side.  Integrating both sides of equation 4.33 yields 
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where 1c
�

 is a vector constant of integration and Γk+1 is a repeated integral of the Gamma 

polynomial, such that 
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The value of the constant of integration is determined by substituting the initial 

conditions given by equation 3.8 into equation 4.34 and then simplifying, 
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Substituting equation 4.36 into equation 4.34 and then simplifying yields the unique 

relative velocity as a function of time, 
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The same procedure can be used to find the satellite’s position.  Integrating both sides of 

equation 4.37, solving for the second vector constant of integration, and then simplifying 

yields 
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Equation 4.38 can be simplified by using a double summation, 
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With these results, the ξ-order state of the secondary body’s motion relative to a primary 

body can be written as 
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where I3x3 is a 3x3 identity matrix and the modified Lagrange coefficients F
~

, G
~

, and 

their respective derivatives are defined as 
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While elegant, this second method of obtaining higher-order solutions of the 

relative two-body problem generates even larger expressions for the modified Lagrange 

coefficients than the truncated Taylor series approach. 
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NNEEWW  VVAARRIIAABBLLEE  TTIIMMEE  SSTTEEPP  PPRROOPPAAGGAATTOORRSS  

Previous numerical work conducted by the author shows that a true analytic 

solution of equation 4.4 will yield results that are more accurate than RK5 for any time 

step size if third-order Lagrange coefficients are implemented [76-77].  However, an 

analytic solution of equation 4.4 which can be expressed in terms elementary functions 

cannot be obtained when Lagrange coefficients of order two or higher are used.  

Consequently, the methods shown in the previous section yield approximate solutions 

which unfortunately, at best, return comparable results to the ones obtained when the 

original Lagrange coefficients are used recursively.  With this in mind, the remaining 

work in this dissertation will use the sixth-order and seventh-order version of equation 

3.46 and the fourth-order solution given by equations 4.13 and 4.16 to investigate orbital 

trajectories. 

 
 
TThhee  4477  VVaarriiaabbllee  TTiimmee  SStteepp  PPrrooppaaggaattoorr  

The fourth-order solution of the relative two-body problem given by equations 

4.13 and 4.16 can be used in conjunction with the seventh-order power series solution 

given by equations 3.46, 3.59, and 3.60 to develop a variable time step propagator that is 

both more accurate and more efficient than the variable time step RK45 numerical 

integrator derived earlier.  This fourth-order, seventh-order propagator (47P) uses the 

same algorithm developed for RK45.  The only difference lies in the algorithm’s first two 

steps.  Given a simulation time, τ, an initial relative position, 0r
�

∆ , and initial relative 

velocity, 0v
�

∆ , an initial time step size, ∆t, and a tolerance, T: 

� Evaluate a new state using the fourth-order solution given by equations 4.13 and 

4.16. 
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� Evaluate a new state using the seventh-order solution given by equation 3.46. 

� Determine the deviation between the fourth-order and seventh-order results using 

 47 rrDeviation =ξ=ξ ∆−∆=
��

 (4.45) 

� If the deviation is greater than the tolerance, decrease the size of the current time 

step by dividing it by two and return to the first step of the algorithm. 

� If the deviation is less than the tolerance, the state returned by the seventh-order 

solution is the new relative position and velocity, 

 71 rr =ξ∆=∆
��

 (4.46) 

 71 vv =ξ∆=∆
��  (4.47) 

� Increase the size of the current time step by multiplying it by two. 

� Repeat the entire process for the next state until the simulation time, τ, has been 

reached. 

This procedure will yield results that are more accurate and much more efficient than 

those obtained by RK45.  To demonstrate this, the elliptical orbit test conducted by the 

variable time step RK45 numerical integrator is repeated using the 47P algorithm just 

described.  The results of this investigation using a tolerance of 10-3 km are shown in 

Figure 4.3.  Figure 4.4 shows the results obtained when a tolerance of 10-4 km is used. 
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Figure 4.1: Absolute Error Results Using 47P with a 10

-3
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

 
Figure 4.2: Absolute Error Results Using 47P with a 10

-4
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 
When the results of Figure 4.2 are compared directly to the results of Figure 4.4, it can be 

seen that the 47P algorithm returned outcomes that were 46% more accurate than RK5.  

The 47P algorithm was also 59% faster than RK5.  Even better results can be obtained by 

47P when the tolerance is set lower; however, based on further experimentation, the 
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author recommends that the tolerance of the 47P algorithm not exceed 10-5.  The use of 

tolerances smaller than this value will yield results that are much more accurate, but the 

cost required to achieve this in terms of computer time begins to increase exponentially. 

 
 
TThhee  6677  VVaarriiaabbllee  TTiimmee  SStteepp  PPrrooppaaggaattoorr  

The sixth-order and seventh-order power series solution given by equations 3.46, 

3.59, and 3.60 can also be used to develop a variable time step propagator whose 

accuracy is comparable but more efficient than the variable time step RK45 numerical 

integrator derived earlier.  This sixth-order, seventh-order propagator (67P) uses the same 

algorithm developed for RK45 and the 47P algorithm.  Once again, the only difference 

lies in the algorithm’s first two steps.  Given a simulation time, τ, an initial relative 

position, 0r
�

∆ , and initial relative velocity, 0v
�

∆ , an initial time step size, ∆t, and a 

tolerance, T: 

� Evaluate a new state using the sixth-order solution given by equation 3.46. 

� Evaluate a new state using the seventh-order solution given by equation 3.46. 

� Determine the deviation between the sixth-order and seventh-order results using 

 67 rrDeviation =ξ=ξ ∆−∆=
��

 (4.48) 

� If the deviation is greater than the tolerance, decrease the size of the current time 

step by dividing it by two and return to the first step of the algorithm. 

� If the deviation is less than the tolerance, the state returned by the seventh-order 

solution is the new relative position and velocity, 

 71 rr =ξ∆=∆
��

 (4.49) 
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 71 vv =ξ∆=∆
��  (4.50) 

� Increase the size of the current time step by multiplying it by two. 

� Repeat the entire process for the next state until the simulation time, τ, has been 

reached. 

As was stated above, this procedure will yield results whose accuracy is comparable, but 

much more efficient than the accuracy of RK45.  To demonstrate this, the elliptical orbit 

test conducted by the variable time step RK45 numerical integrator is repeated using the 

67P algorithm just described.  The results of this investigation using a tolerance of 10-7 

km are shown in Figure 4.5.  Figure 4.6 shows the results obtained when a tolerance of 

10-8 km is used. 

 
 

 
Figure 4.3: Absolute Error Results Using 67P with a 10

-7
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 
These two figures show that the 67P algorithm has an accuracy that is comparable to 

RK5 and is much more efficient than both RK5 and 47P.  When the results of Figure 4.2 
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and 4.4 are compared directly to the results of Figure 4.6, it can be seen that the 67P 

algorithm was 77% faster than RK5, and 43% faster than 47P.  The tolerances used by 

67P were higher than those used by both RK5 and 47P.  Further numerical analysis 

reveals that increasing the 67P tolerance to 10-9 km will yield results that are slightly less 

accurate, but still more efficient than 47P. 

 
Figure 4.4: Absolute Error Results Using 67P with a 10

-8
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

DDIISSCCUUSSSSIIOONN  

Obviously, a large array of variable time step propagators can be developed using 

the power series solution of the relative two-body problem.  However, extensive 

numerical investigation conducted by the author has revealed that the 47P and 67P 

algorithms continuously produce results that are superior to any other order combination.  

This holds true for any type of orbit described by the relative two-body problem.  Even 

more important than this, as will be shown in the next chapter, is the fact that these two 

variable time step propagators (47P and 67P) can be used to solve the N-body problem 
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more efficiently than RK45 while maintaining the same levels of accuracy observed 

when the algorithms were used to solve the two-body problem. 
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CCHHAAPPTTEERR  55  

NNEEWW  SSOOLLUUTTIIOONNSS  OOFF  TTHHEE  NN--BBOODDYY  PPRROOBBLLEEMM  

 

In this chapter, a new power series solution, a fourth-order solution, and a higher-

order solution are derived for the N-body problem.  A variable time step numerical 

integration algorithm that extends the RK45, 47P, and 67P capabilities derived in the 

previous chapter to the solution of the N-body problem is introduced.  The algorithm is 

then used to solve periodic central configuration scenarios and non-periodic scenarios in 

the three-body and restricted three-body problem, respectively. 

 
 

PPOOWWEERR  SSEERRIIEESS  SSOOLLUUTTIIOONNSS  

In compact form, the N-body problem equations of motion with respect to the 

system’s barycenter (center of mass) are 

 
( )

∑∑
≠
=

≠
= ∆

∆µ
=

−

−µ
=

N

ij
1j

3
ji

jij
N

ij
1j

3

ij

ijj
i

r

r

rr

rr
r

�

��

��

��
�

 (5.1) 

In this expression, i is the index of the current body, j is an index that represents the effect 

of other bodies on the current object, r��
�

 and r
�

 are the current body’s acceleration and 

position vectors, respectively; 

 { }Tzyxr ��������
�

=  (5.2) 

 { }Tzyxr =
�

 (5.3) 

µj is the gravitational parameter of each respective body, and N represents the number of 

bodies being analyzed.  The N-body problem can be seen as a sum of relative two-body 
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problems; therefore, the fundamental invariants pertaining to the various relative two-

body accelerations are defined as 

 3
0,ji

j
ji

r∆

µ
=α  (5.4) 
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 (5.6) 

In general, 3N(N – 1) fundamental invariants must be evaluated to transform the 

N-body problem into a time dependent system of equations, while only 3(N – 1)2 are 

required to transform the restricted N-body problem.  Recall that the term “restricted” 

indicates that the mass of one of the particles being analyzed is negligible, causing it to 

have no gravitational influence on the motion of the remaining particles.  With these 

definitions, an approximate solution of equation 5.1 can be written as 
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�����

 (5.7) 
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where Fji, Gji, and their derivatives are based on the Lagrange coefficients of each 

respective two-body acceleration. 
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These expressions will be used by the 47P and the 67P algorithms when solving various 

scenarios pertaining to the N-body problem. 
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FFOOUURRTTHH--OORRDDEERR  SSOOLLUUTTIIOONNSS  

The N-body problem can be transformed into a linear, uncoupled, time dependent 

system of equations in the same manner as was done with the relative two-body problem, 

 
( ) ( )

( )
∑∑∑

≠
=

≠
=

≠
= β+λ+

∆+∆α
=→

∆

∆µ
=

−

−µ
=

N

ij
1j 2

3
2
jijijijiji

2
ji

0,jiji0,jijiji
i

N

ij
1j

3
ji

jij
N

ij
1j

3

ij

ijj
i

GGF2F

vGrF
r

r

r

rr

rr
r

��

��
�

�

��

��

��
�

 (5.13) 

When first order Lagrange coefficients are used, equation 5.13 reduces to 
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Using the following definition, 

 2
jijiji tt21 β+λ+=γ  (5.15) 

a fourth-order, time dependent solution of the N-body problem can be stated as 
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This expression will be used by the 47P algorithm when solving various scenarios 

pertaining to the N-body problem. 
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HHIIGGHHEERR  OORRDDEERR  SSOOLLUUTTIIOONNSS  

As occurred with the relative two-body problem, when higher orders of the Lagrange 

coefficients given by equations 5.9 and 5.10 are substituted into equation 5.13, the time 

dependent function that results cannot be integrated directly.  Defining the denominator 

of equation 5.13 as 
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ji GGF2F β+λ+=γ  (5.18) 

its truncated Taylor series expansion, Γji,0, is defined as 
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where ξ represents the order of the time dependent Lagrange coefficients being used.  

With this definition of the upper-case Gamma polynomial, equation 5.13 is now rewritten 

as 
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Since equation 5.20 defines the acceleration as the product of finite-termed polynomials, 

an elegant representation of the position and velocity for each point particle being 

analyzed can be found using integration by parts on the right hand side.  After initial 

conditions have been applied to the velocity and position outcomes and all expressions 

have been simplified, a higher-order solution of the N-body problem can then be stated as 
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where Γji,k+1 is a repeated integral of the Gamma polynomial, such that 

 ;dt  ;dt  ;dt 3
0,ji12,ji

2
0,ji11,ji0,ji10,ji ∫∫∫∫∫∫ Γ=ΓΓ=ΓΓ=Γ +++  etc. (5.23) 

This approximate, higher-order solution has been derived for completeness, but will not 

be used to solve the N-body problem iteratively because it produces polynomial 

expressions that are too cumbersome to implement. 

 
 

VVAARRIIAABBLLEE  TTIIMMEE  SSTTEEPP  AALLGGOORRIITTHHMM  FFOORR  TTHHEE  NN--BBOODDYY  PPRROOBBLLEEMM  

The following variable time step algorithm will be used by RK5, 47P, and 67P to 

solve various scenarios pertaining to the N-body problem.  The algorithm assumes that 

the particles being analyzed are ordered in terms of decreasing gravitational parameter.  

Given a simulation time, τ, the initial position of each particle, R0, (a matrix whose 

column vectors correspond to the position of each body being analyzed), 

 { }0,N0,20,10 rrrR
�

�
��

=  (5.24) 

the initial velocity of each particle, V0, (a matrix whose column vectors correspond to the 

velocity of each body being analyzed), 

 { }0,N0,20,10 vvvV
�

�
��

=  (5.25) 
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an initial time step size, ∆t, and a tolerance, T: 

� A new state is evaluated using the lower-order integrator (RK4 in the case of 

RK45, the fourth-order solution in the case of 47P, or the sixth-order power series 

solution in the case of 67P). 

� A new state is evaluated using the higher-order integrator (RK5 in the case of 

RK45 or the seventh-order power series solution in the case of 47P and 67P). 

� Determine the deviation between the lower-order and higher-order results by 

evaluating the change in position corresponding to the body with the smallest 

gravitational parameter, 

 lowhigh rrDeviation
��

∆−∆=  (5.24) 

� If the deviation is greater than the tolerance, decrease the size of the current time 

step by dividing it by two and return to the first step of the algorithm. 

� If the deviation is less than the tolerance, the state returned by the higher-order 

solution is the new relative position and velocity, 

 high1 RR =  (5.25) 

 high1 VV =  (5.26) 

� Increase the size of the current time step by multiplying it by two. 

� Repeat the entire process for the next state until the simulation time, τ, has been 

reached. 

The algorithm will now be used to solve periodic and non-periodic scenarios of the three-

body and restricted three-body problem. 
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CCEENNTTRRAALL  CCOONNFFIIGGUURRAATTIIOONN  TTRRAAJJEECCTTOORRIIEESS  

Beginning with equation 5.1, the equations of motion for the three-body problem 

are given by 
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Lagrange derived analytic solutions for many special cases of the three-body 

problem, including a family of solutions known as central configurations which lie at the 

vertices of a rotating equilateral triangle that can shrink and expand periodically.  One 

such central configuration solution involves three point particles with equal gravitational 

parameters orbiting their common center of mass in a circular orbit.  A second type of 

central configuration solution involves three point particles with different gravitational 

parameters orbiting their common center of mass.  The geometry of these two scenarios 

was shown in Figures 2.8 and 2.9. 

In order to derive a solution for any three-body central configuration setting, 

equations 5.27-5.29 are rewritten as 
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The angular velocities ω1, ω2, and ω3 are defined as 
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where µ1, µ2, µ3 are the gravitational parameters of the three point particles, respectively, 

and d is the constant distance between each body, such that 
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Using differential operator notation, equations 5.30-5.32 can be rewritten as a single 

system of equations, 
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where D2 is a differential operator defined as 
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The characteristic equation of this system is found by evaluating the determinant of the 

matrix on the left hand side and simplifying, 
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The solution of equation 5.39 that corresponds to a periodic outcome is given by 
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where i is the imaginary unit.  The final, periodic solution of the three-body central 

configuration in state form can now be written as 
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where the angular speed of the system, ω, is defined as 
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The initial conditions used in conjunction with equation 5.41 can be computed using 

equation 5.36 and the gravitational parameters of each point particle: 
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In order to compare the performance of RK45, 47P, and 67P to the exact results 

provided by the central configuration results just discussed, consider a case in which the 

motions of three fictitious point particles with equal gravitational parameters are 

governed by the central configuration expressions given by equations 5.41-5.48.  The 

gravitational parameters of the three particles are set equal to 30,000 km3/s2 and the 

constant distance between each particle was assumed to be 25,000 km.  Figure 5.1 shows 

a portion of the exact trajectories just described. 
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Figure 5.1: Three-Body Equal Mass Central Configuration 

 
 

The RK45, 47P, and 67P algorithms are now evaluated for the first five periods of 

this central configuration.  The orbital period of the entire system is approximately 23 

hours.  For each algorithm, the absolute error is evaluated after each orbital period along 

with the amount of computer time needed to reach that outcome.  Figures 5.2-5.4 show 

the results of this investigation using different tolerances for each algorithm. 
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Figure 5.2: Equal Mass Central Configuration Using RK45 with a 10

-7
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

 
Figure 5.3: Equal Mass Central Configuration Using 47P with a 10

-4
 Tolerance 

a) Absolute Error, b) Simulation Time 
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Figure 5.4: Equal Mass Central Configuration Using 67P with a 10

-8
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 
The experiment is repeated for the case of three unequal masses, whose gravitational 

parameters are equal to 30,000 km3/s2, 20,000 km3/s2, and 10,000 km3/s2, respectively.  

The constant distance between the three particles is assumed to be 25,000 km.  Figure 5.5 

shows a portion of the exact trajectories just described. 
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Figure 5.5: Three-Body Unequal Mass Central Configuration 

 
 

The RK45, 47P, and 67P algorithms are now evaluated for the first five periods of 

this central configuration.  The orbital period of the entire system is approximately 28 

hours.  As with the equal mass system, the absolute error is evaluated after each orbital 

period along with the amount of computer time needed to reach that outcome for each 

algorithm.  Figures 5.6-5.8 show the results of this investigation using different 

tolerances for each algorithm. 
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Figure 5.6: Unequal Mass Central Configuration Using RK45 with a 10

-7
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

 
Figure 5.7: Unequal Mass Central Configuration Using 47P with a 10

-4
 Tolerance 

a) Absolute Error, b) Simulation Time 
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Figure 5.8: Unequal Mass Central Configuration Using 67P with a 10

-8
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

AA  HHOOHHMMAANNNN  TTRRAANNSSFFEERR  IINN  TTHHEE  RREESSTTRRIICCTTEEDD  TTHHRREEEE--BBOODDYY  PPRROOBBLLEEMM  

Consider a two-dimensional, restricted three-body application, consisting of the 

Earth, the Moon, and a satellite on a translunar trajectory.  The gravitational parameters 

of the Earth and Moon are set equal to 398,600 km3/s2 and 4,903 km3/s2, respectively.  

The Earth and the Moon are initially on the X-axis and in counter-clockwise, elliptical 

orbits with respect to each other.  The semimajor axis and eccentricity of the Moon with 

respect to the Earth are assumed to be 384,400 km and 0.0549, respectively.  The initial 

conditions of these two bodies are given by 
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where µ1 and µ2 are the gravitational parameters of the Earth and the Moon, respectively, 

mr
�

∆  is the initial position of the moon relative to the Earth, 

 ( )Îe1ar mmm −=∆
�

 (5.53) 

mv
�

∆  is the initial velocity of the moon relative to the Earth, 
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 (5.54) 

am is the semimajor axis of the moon with respect to the Earth and em is the eccentricity 

of the moon with respect to the Earth.  The initial positions of each body can be seen 

Figure 5.9. 

 
 

 
Figure 5.9: Hohmann Transfer in the Restricted Three-Body Problem 
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A satellite with a negligible gravitational parameter that is initially in a 300 km 

altitude low Earth orbit (rp = 6678 km) is placed on a Hohmann transfer towards the 

Moon.  The Hohmann transfer’s apse line initially makes a θ = 65º angle with the X-axis 

and the transfer’s apoapsis is on the orbit of the Moon.  The initial state of the satellite is 

given by 

 ( ) ( ){ }ĴsinÎcosrrr p0,10,3 θ+θ−=
��

 (5.55) 

 ( ) ( ){ }ĴcosÎsinvvv 0,10,3 θ−θ+=
��

 (5.56) 

where v is the Hohmann transfer speed with respect to the Earth, 

 
( )

p

p1

ar

ra2
v

−µ
=  (5.57) 

and a is the Hohmann transfer’s semimajor axis (a = 195539 km).  Figure 5.10 shows the 

orbit of the moon and the satellite with respect to the Earth and the trajectory of the 

satellite with respect to the Moon during the course of one lunar period (approximately 

27.3 days). 
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Figure 5.10: Hohmann Transfer in the Earth-Moon System 

a) Satellite Trajectory with Respect to the Earth, b) Satellite Trajectory with Respect to the Moon 

 
 
As expected, Figure 5.10 reveals that the satellite remains on its Hohmann transfer 

trajectory until it reaches the Moon’s sphere of influence, which has a radius of 66,200 

km or 10.3 Earth radii, approximately 4.9 days into the mission.  At this point, a gravity 

assist provided by the Moon causes the satellite’s trajectory to become retrograde and 

non-periodic with respect to the Earth-Moon system’s barycenter until it leaves the lunar 

sphere of influence approximately 1.4 days later (6.3 days into the mission).  This can be 

seen in Figure 5.11. 
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Figure 5.11: Satellite Transit through Lunar Sphere of Influence 

a) Satellite Trajectory with Respect to the Earth, b) Satellite Trajectory with Respect to the Moon 

 
 

This non-periodic satellite trajectory provides an ideal environment in which to 

test the accuracy and efficiency of a variable time step numerical integrator.  The RK45, 

47P, and 67P algorithms are now evaluated for a period equal to five lunar periods.  The 

orbital period of the Moon is approximately 27.3 days.  The correct orbital positions of 

each body after five periods were determined by numerically integrating the restricted 

three-body problem with a constant time step, fifth order Runge-Kutta algorithm.  For 

each variable time step algorithm, the absolute error is evaluated after each orbital period 

along with the amount of computer time needed to reach that outcome.  Figures 5.12-5.14 

show the results of this investigation using different tolerances for each algorithm. 
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Figure 5.12: Three-Body Hohmann Transfer Using RK45 with a 10

-8
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

 
Figure 5.13: Three-Body Hohmann Transfer Using 47P with a 10

-5
 Tolerance 

a) Absolute Error, b) Simulation Time 



99 
 

 
Figure 5.14: Three-Body Hohmann Transfer Using 67P with a 10

-9
 Tolerance 

a) Absolute Error, b) Simulation Time 

 
 

DDIISSCCUUSSSSIIOONN  

The absolute error graphs produced for the central configuration and restricted 

three-body problem scenarios were plotted using a logarithmic scale.  This was done 

because it was observed that absolute error increased approximately by an order of 

magnitude with each orbital period.  This outcome can be attributed to the chaotic nature 

of the three-body problem.  The central configuration solution derived earlier in this 

chapter is only marginally stable.  As a result, small changes in the objects’ state over 

time will eventually result in disordered motion.  No matter how accurate a numerical 

propagator may be, round-off error will always accumulate as propagation time increases.  

In the case of the restricted three-body problem, this can result in orbits whose evolution 

is so sensitive to minor changes, that they essentially become unpredictable. 

These details explain why the tolerances used by the author to solve the periodic 

and non-periodic three-body problem were higher than the tolerances used to solve the 

relative two-body problem.  The goal was to maintain an adequate level of accuracy that 
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was comparable to the accuracy obtained when the relative two-body problem as 

analyzed.  In the end, the results obtained for the three-body problem were not as 

accurate, but when one considers the large amount time that each scenario was 

propagated, this is an expected outcome. 

For all the situations analyzed in this chapter, the 47P and 67P algorithms 

returned results that were at least slightly more accurate than their RK45 counterpart.  

But more importantly is the amount of computer time that 47P and 67P needed to obtain 

these outcomes.  This computer time was consistently much shorter than RK45.  From 

these observations, it can be concluded that the 47P and 67P algorithms are more 

accurate and much more efficient than the variable time step RK45 numerical integrator 

when various N-body problem scenarios are investigated. 
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CCHHAAPPTTEERR  66  

CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUUTTUURREE  WWOORRKK  

 

SSUUMMMMAARRYY  

A brief history of the N-body problem has been given and a list of technical 

sources has been provided that will help the reader navigate through the various 

theoretical aspects of this problem.  The equations of motion of the two-body problem 

were presented and discussed in detail.  An analytic, time dependent solution for the case 

of circular orbits was derived.  The classical orbital element method used to determine 

future states for elliptical, parabolic, and hyperbolic orbits was also outlined and 

discussed. 

Time dependent, power series solutions of the relative two-body problem were 

presented and analyzed.  The fundamental invariants corresponding to these power series 

were introduced and their characteristics were analyzed in detail.  Recursion relationships 

for the time dependent Lagrange coefficients were presented and their radius of 

convergence was discussed for the various types of orbits predicted by the relative two-

body problem.  A seventh order series solution was used iteratively to propagate a highly 

elliptical trajectory with respect to the Earth with very good results.  The process was 

repeated using a fourth-order and fifth-order constant time step Runge-Kutta (RK4 and 

RK5, respectively) numerical integration algorithm.  The results returned by the iterative 

use of the seventh-order power series were more accurate than the outcomes returned by 

RK4 and slightly less accurate than the results returned by RK5.  More importantly, the 

power series solution required much less computer time to reach a solution.  A variable 

time step algorithm was introduced and used to achieve accurate trajectory design results 

in conjunction with RK4 and RK5 in an efficient manner (RK45).  The capabilities of 
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RK45 were used as a comparison benchmark to evaluate the capabilities of the 

algorithms introduced by the author. 

The relative two-body problem was then transformed into a time dependent 

system using the power series solutions derived earlier.  A fourth-order, analytic solution 

was derived for the transformed system and the result was shown to be a useful 

alternative to the universal form of Kepler’s equation when working in inertial 

coordinates.  The fourth-order solution and the seventh-order power series solution of the 

relative two-body problem were substituted into the RK45 variable time step algorithm as 

a replacement to RK4 and RK5.  This new algorithm (47P) returned trajectory design 

results that were much more accurate and much more efficient than RK45.  A second 

variable time step algorithm was developed by substituting the fourth-order solution with 

a sixth-order power series expression (67P).  While this second algorithm returned results 

that were only slightly more accurate than RK45, its efficiency exceeded the performance 

of both RK45 and 47P considerably.  These outcomes remained consistent when periodic 

scenarios were analyzed in the two-body problem and three-body problem and a non-

periodic scenario was analyzed in the restricted three-body problem. 

 
 

CCOONNCCLLUUSSIIOONNSS  

The performance of the 47P and 67P algorithms has been shown to exceed the 

performance capabilities of RK45.  This can be attributed to the way these procedures 

were derived.  The various Runge-Kutta integrators that have been developed over the 

years are intended to be robust.  That is, they can be applied to a wide array of problems 

and still maintain an acceptable level of accuracy and efficiency.  The 47P and 67P 

algorithms, on the other hand, were derived from the actual equations of motion that are 
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specifically being solved in this work.  This causes them to be more accurate than a 

generic, robust integrator.  More importantly, the increase in accuracy comes with a 

considerable increase in efficiency as the methods developed by the author require fewer 

function evaluations per time step than RK45.  Based on additional numerical work, the 

author recommends that the 47P algorithm be used when short simulation times are 

needed and the 67P algorithm be used for larger time scales.  Larger simulation times 

require that the tolerance of the 47P algorithm be lowered beyond 10-5.  Although the 

accuracy returned will be greater than the accuracy obtained when larger tolerances are 

used, the efficiency of 47P begins to degrade drastically as tolerance decreases beyond 

10-5.  This phenomenon is not observed with 67P. 

 
 

RREELLEEVVAANNCCEE  

This work is relevant because it provides a useful trajectory design alternative to 

the methods that have been developed in the past.  The time dependent equations derived 

in this dissertation are based on fundamental invariants of the two-body problem.  

Because of this, they can be applied to any coordinate system.  As was shown in Chapter 

3, propagating an orbit given an initial state in an inertial coordinate system requires a 

considerable number of steps, which includes solving Kepler’s equation iteratively for the 

respective type of orbit that is being analyzed.  On the other hand, the methods proposed 

by the author require only one step to find a time dependent outcome.  Furthermore, 

Kepler’s equation cannot be extended to the problem of N-bodies.  The equations derived 

by the author can.  Moreover, as will be shown in the next section, the fourth-order 

solution of the relative two-body problem along with the 47P and 67P procedures can 

also be extended to include other types of perturbations that are encountered by trajectory 
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designers in everyday orbit determination.  The results of this future work will be able to 

be viewed as new time dependent Kepler equations that cover a larger range of 

perturbations than the original. 

 
 

FFUUTTUURREE  WWOORRKK  

HHiigghheerr  OOrrddeerr  SSoolluuttiioonnss  

The transformed relative two-body problem given by equation 4.4 (restated here 

for convenience) 
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was solved using first-order Lagrange coefficients, 
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The time-dependent expressions that result when coefficients of order two or higher are 

implemented are known as Abelian integrals (also known as hyperelliptic integrals) [78].  

A possible avenue of future research would be to try to develop expressions that 

analytically solve equation 6.1 when Lagrange coefficients of order two and three are 

used.  Coefficients of order two will yield an analytic solution whose accuracy 

approaches firth-order and a solution using coefficients of order three will yield an 

outcome whose accuracy approaches sixth-order.  Extensive numerical work conducted 

by the author has shown that these two analytic solutions return results that are more 

accurate than RK4 and RK5, respectively, for any size time step.  In addition to having 

two new time-dependent expressions that are more accurate than equation 6.2 and could 
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be used as alternatives to the universal formulation of Kepler’s equation, the two 

solutions could also be used to form a 56P variable time step propagator whose efficiency 

would rival and maybe even possibly exceed the performance of 47P and 67P. 

 
 
LLiinneeaarr  OOrrbbiitt  TThheeoorryy  

The relative motion between two satellites (a target and a chaser) whose 

gravitational parameters are negligible when compared to the parameter of a primary 

body can be described by the Hill-Clohessy-Wiltshire (HCW) equations.  These 

equations are well known in the orbital mechanics world, having been first introduced for 

natural bodies by Hill and applied by Clohessy and Wilshire for man-made satellites [79].  

The reader is referred to any number of texts on Astrodynamics for the derivation of 

these equations [80-81].  The HCW expressions are only valid for scenarios where the 

ratio of the distance between the target and chase vehicle to the distance of the primary 

body to the chase vehicle is much less than one.  This distance requirement could easily 

be alleviated by using equation 6.2 as a substitute for the HCW equations.  By changing 

the constraining variable from distance to time, the target and chaser could be located 

anywhere with respect to the primary body.  Future research into this would develop 

radius of convergence expressions that would allow the trajectory designer to determine 

when an update in initial conditions would be needed to continue using equation 6.2 

accurately. 

 
 
TThhrruusstt  AApppplliiccaattiioonnss  

The transformed problem given by equation 6.1 can be modified to include both 

finite thrust and continuous thrust applications, 
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where ( )tT
�

 is the thrust vector and m(t) is the vehicle’s mass, both of which are functions 

of time.  Future research into equation 6.3 would shed light into the accuracy of this 

expression and would also reveal the conditions and limitations of its application to real-

world scenarios. 

 
 
PPeerrttuurrbbaattiioonnss  DDeeppeennddeenntt  oonn  PPoossiittiioonn  aanndd  VVeelloocciittyy  

The methods introduced in this dissertation can be extended beyond the N-body 

problem to include any perturbation that relies on a satellite’s relative position and 

velocity.  Such perturbations include non-spherical mass distributions and atmospheric 

drag, which are dependent on satellite position and velocity, respectively.  Research into 

this area would develop analytic expressions that could potentially be used iteratively 

much like 47P and 67P.  It is predicted by the author that these new iterative solutions 

would be more accurate and much more efficient than RK45 making them a useful tool 

for trajectory design. 
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