
The Pennsylvania State University 
 

The Graduate School 
 

College of Engineering 

EVOLUTIONARY COMPUTATION FOR 

SPACECRAFT TRAJECTORY OPTIMIZATION 

  A Thesis in  
 

Aerospace Engineering 
 

by 
 

Bradley Joseph Sottile 

 

 

 2013 Bradley Joseph Sottile 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Master of Science 
 
 

August 2013 
 
 



 

ii 
 

 
 
The thesis of Bradley Joseph Sottile was reviewed and approved* by the following: 

 
 

Robert G. Melton 
Professor of Aerospace Engineering 
Thesis Advisor 

 
 
David B. Spencer 
Professor of Aerospace Engineering 
 
 
 
 
George A. Lesieutre 
Professor of Aerospace Engineering 
Head of the Department of Aerospace Engineering 

 

 

 

 

 

 

 

 
*Signatures are on file in the Graduate School 
 



 

iii 
 

ABSTRACT 

 Evolutionary Computation has exploded in use in engineering and the applied 

sciences. For this thesis, three algorithms – Particle Swarm Optimization (PSO), Bacteria 

Foraging Optimization (BFO) and Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES) – are compared against each other to solve a classic problem in 

astrodynamics, the Hohmann transfer. The role of fixed and varying penalties is explored 

for each algorithm and compared. Each algorithm was run 1000 times and the 

performance metrics were compared. PSO using fixed penalties ran with an average 

central processing unit (CPU) time of 0.138 seconds and yielded a mean error of 1.30% 

and a median error of 0.48%. Using varying penalties, the algorithm ran with an average 

CPU time of 0.107 seconds and yielded a mean error of 1.78% and a median error of 

0.43%. BFO with fixed penalties had a mean CPU time of 0.655 seconds and yielded a 

2.19% mean percent error and 1.91% median percent error. For the varying penalty case, 

BFO averaged a CPU time of 0.727 seconds, a mean percent error of 0.27% and a median 

0.36%. CMA-ES with fixed penalties yielded a mean CPU time of 0.572 seconds, a mean 

percent error of 0.26% and a median percent error of 0.00%. The varying penalty case for 

CMA-ES yielded a mean CPU time of 0.582 seconds, a mean percent error of 0.43% and 

a median percent error of 0.43%. The algorithms all excelled in some areas and had poor 

performance in others, especially as the penalty case varied. A clear result is that 

algorithm selection is problem-dependent. Suggestions for future work and applications 

to other problems are provided.  
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Chapter 1  
 

Introduction 

The field of astrodynamics is several hundred years old. Over that period of time, many 

significant advances have been made that have advanced general knowledge in the field. Giants 

such as Johannes Kepler (Kepler’s laws), Isaac Newton (Philosophiæ Naturalis Principia 

Mathematica), Leonard Euler (numerous contributions in the mathematics and the methods of 

astrodynamics) and Joseph-Louis Lagrange (Lagrange points), among others, have paved the way 

for more recent advances by those such as Albert Einstein (relativity) and Walter Hohmann (the 

Hohmann Transfer). This thesis seeks to make a contribution to this large body of work as well, 

particularly in the area of optimization.  

1.1 Thesis Motivation 

Optimization is one of the oldest problems to plague mankind. A primitive example of an 

optimization problem (though one many people still tackle on a daily basis) is to find the shortest 

distance or path between two points. This problem may be constrained in some way – for 

example, one may only be able to travel on public roads in order to reach a given destination. 

Another problem might be to find the largest volume possible that could be folded from a finite 

area of paper. Constraints, of course, greatly affect the optimization process and outcome. In 

engineering, optimization is an overarching goal. For aerospace engineers, an optimization 

problem may take the form of minimizing the weight of an aircraft’s frame without losing 

strength, or designing the optimal shape of an airfoil to produce the best lift to drag ratio.  
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Aerospace vehicle trajectory optimization is an important problem that has been studied 

in both aircraft and spacecraft. This thesis restricts its attention to spacecraft trajectory 

optimization. An important question to resolve is what specifically is to be optimized. One may 

desire in practice to minimize both time of flight and propellant use. In the problem presented 

here, the single objective goal is to minimize the change in spacecraft velocity (Δ𝑣) needed for a 

particular trajectory. This corresponds to a minimization of propellant use regardless of what 

propellant formulation is used. By minimizing the amount of propellant needed for a given 

mission, one is directly able to reduce cost.  

1.2 A Brief Overview of Evolutionary Computation 

 Recently, the use of Evolutionary Computation has exploded in use in the applied 

sciences and engineering. In this thesis, two branches of Evolutionary Computation – 

Evolutionary Algorithms and Evolutionary Strategies – are explored. In their most basic 

formulations, Evolutionary Algorithms and Evolutionary Strategies are population-based 

heuristic search techniques that often model physical or biological processes such as mating, 

mutation or swarm behavior. Evolutionary Algorithms and Evolutionary Strategies are useful 

tools when one is unwilling or unable to employ the traditional gradient-based optimization 

techniques. Like many other disciplines in engineering, the use of Evolutionary Computation has 

found a home in astrodynamics – particularly in areas such as the optimization of spacecraft 

trajectories or in spacecraft attitude dynamics. 
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1.3 Thesis Overview and Organization 

 Chapter 2 provides an overview of evolutionary computation, with particular emphasis on 

evolutionary algorithms and evolutionary strategies. Detailed descriptions of the algorithms use in 

this work are presented. Chapter 3 describes the Hohmann transfer, proves a proof of the 

Hohmann transfer and presents the classic problem of the optimal two-impulsive transfer between 

two circular, co-planar orbits. Chapter 4 presents the numeric results from the problem developed 

in Chapter 3 and discusses the implications of those results. Finally, Chapter 5 discusses the 

conclusions of this work based on the results from the algorithms and presents suggestions for 

future work.  
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Chapter 2  
 

Evolutionary Computation and Algorithm Descriptions 

Evolutionary Computation is a relatively recent phenomenon in the literature. Aided by 

[1], it is possible to present a brief overview of the early history of evolutionary computation. The 

origins of Evolutionary Computation trace back to the late 1950’s; examples from this era include 

[2], [3], [4] and [5]. Mostly due to the lack of processing power, this area was largely neglected 

early on in the literature. Eventually, during the 1970’s, this situation began to change, and the 

foundational works by Holland [6], Rechenberg [7], Schwefel [8], and Fogel [9] lead to a shift 

and a renewal of interest in Evolutionary Computation. Assuming Moore’s Law [10] continues to 

hold true, one could reasonably expect interest in Evolutionary Computation to continue unabated 

into the near future. This chapter introduces three specific algorithms and describes them at 

length. This development lays the foundation for the practical implementation of these algorithms 

seen later in Chapter 4.  It is generally accepted that the principal differences between 

Evolutionary Strategies (ESs) and Evolutionary Algorithms (EAs) are that ESs:  1.) employ 

search steps that are deterministic and 2.) almost always work with vectors of real numbers that 

are representations of the solution; EAs use stochastic processes coupled with selection to 

produce ever-improving potential solutions. A further difference is in the notation used by the 

two classes of techniques. 

2.1 Particle Swarm Optimization (PSO) 

 Particle Swarm Optimization (PSO) was first introduced by James Kennedy and Russell 

Eberhart in 1995 [11] and is classified as a swarm intelligence method. PSO is an easy to use 

algorithm, in part, because there are very few parameters that need to be adjusted. A very simple 
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description of PSO is given by Poli [12]. Inspired by flocking behavior, a number of particles 

(each particle is an array of parameter values that constitutes a possible solution) placed in a 

parameter space of some problem. The fitness function (also known as the objective or cost 

function) then evaluates the fitness at that particle’s location in the solution space. Based on its 

history, and the fitness of other particles, the particle then moves through the parameter space 

with a velocity determined from the fitness of other particles, along with a perturbing effect. In 

this sense, the particles interact with each other much like a flock of birds would interact with 

each other while searching for food.  

 For an N dimensional problem, the position and velocity of each particle are represented 

as a vector with N elements. The velocity vector is then given by 

 𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) +  𝜓1𝜙1 �𝑥𝑠𝑖 − 𝑥𝑖(𝑡)� + 𝜓2𝜙2 �𝑥𝑝𝑖 − 𝑥𝑖(𝑡)� (2.1) 

where 𝑥𝑠𝑖 is the ith component of the best point visited by the particles neighbors, 𝑥𝑖(𝑡) is the ith 

component of the particle’s location, 𝑥𝑝𝑖 is the ith component of the particle’s best value, 𝜙1 and 

𝜙2 are two independent random variables uniformly distributed 𝜖 [0, 1], 𝜔 is a constant known as 

the inertia weight [13], and 𝜓1 and 𝜓2 are the acceleration coefficients. The acceleration 

coefficients control the relative proportion of social interaction in the swarm. This formula is 

applied to all particles. The position of the particle is then updated every time step via 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2.2) 

After all of the particles have moved, the next iteration occurs. For a more extensive discussion of 

the PSO algorithm, see [14].  

  An extensive survey was done reviewing publications on the applications of PSO [12]. 

5.8% of papers in the IEEE Xplore database at that time using PSO were in the area of antenna 

design. Likewise, 4.8% had to do with biomedical applications, 4.4% had to do with 

communication networks and 7.0% had to do with the area of control applications. Design was 
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not left out either – 4.4% percent of papers were design-oriented. Engines and motors constituted 

1.4%, entertainment (including music generation and games) consisted of another 1.4% and 

scheduling problems (5.6%) were also examined. Clearly, PSO has been applied in many areas of 

interest across various engineering disciplines.  

2.2 Bacterial Foraging Optimization (BFO) 

 Passino first proposed Bacterial Foraging Optimization (BFO) in [15]. In his original 

paper, he described the biology and physics underlying the foraging (chemotactic) behavior of the 

Escherichia coli (E. coli) bacteria. E. Coli occur naturally as part of the normal flora of the 

gastrointestinal system and produce vitamin K2 [16]. While they have a reputation for being 

harmful, E. coli is a large and diverse strain of bacteria and the vast majority of strains are 

harmless. They are readily found in the environment, in food products and in the intestines of 

humans and animals [17].  

 The following description is from [18], while the original formulation of BFO can be 

found in [19]. Define 𝒖𝑖 as a random vector with uniformly distributed elements ∈ [−1, 1] with 

|𝒖𝑖| = 1. Further define 𝑩 to be a vector of parameters known as a bacterium. One can initialize a 

population of 𝑁 bacteria set between some upper and lower limit bounds. Set the number of swim 

steps 𝑁𝑆 during chemotaxis. Chemotaxis is the process by which bacteria direct their movements 

in order to find nutrients. Now, set the swim step size to be 𝐶0 = 𝐾
𝑁𝑆

. The value of 𝐾 is chosen to 

be the maximum allowable change in any element of 𝑩 during one iteration. The condition for 

elimination and dispersal is 𝑃𝑒𝑑 ∈ [0, 1]; this condition is important because it reduces the 

probability that stagnation will occur. Finally, define 𝑟 to be a random number uniformally 

distributed ∈ [0, 1]. Noting that 𝐽 represents the result of the fitness function evaluation, it is then 

possible to write the following pseudocode: 
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 for 𝑘 = 1:𝑁𝑖𝑡𝑒𝑟 do 
 
  Tumble and Swim (Chemotaxis) 
  for 𝑖 = 1:𝑁 do 
   Generate 𝒖𝑖 
   𝑩𝑖

′ = 𝑩𝑖 + 𝐶(𝑘) 𝒖𝑖, a trial bacterium 
   𝐶(𝑘) = 𝐶0 −

0.75𝐶0(𝑘−1)
𝑁𝑖𝑡𝑒𝑟

 
   Set the step counter 𝑚 = 0 
   While 𝐽(𝑩𝑖

′) < 𝐽(𝑩𝑖) and 𝑚 ≤ 𝑁𝑆 do 
    𝑩𝑖 = 𝑩𝑖

′ 
    𝑩𝑖

′ = 𝑩𝑖 + 𝐶(𝑘) 𝒖𝑖 
    𝑚 = 𝑚 + 1 
   end while 
  end for 
 
  Reproduction  

Sort the bacteria in ascending order of 𝐽. Replace the worst 𝑁
2
 bacteria (i.e. those 

with the highest 𝐽 values) with copies of the best 𝑁
2
 bacteria 

 
  Elimination and Dispersal 
  for 𝑖 = 1:𝑁 do 

if 𝑟 < 𝑃𝑒𝑑 then  
replace 𝐵𝑖 with a randomly generated bacterium within a 
specified bounds 

  end if 
 end for 
 
end for 

 
   
 Bacterial Foraging Optimization has found a niche in the literature. In [20], several 

applications are collected. BFO has been used to train a wavelet-based neural network [21]. 

Pattern recognition (for example, [22] and [23]) is a problem that has been studied as well using 

various variants of BFO. Dynamic resource allocation for Multiple Input, Multiple Output 

(MIMO) experimental platforms was tackled in [24]. In terms of estimation theory, BFO was 

applied in [25] to improve the quality of solutions for the Extended Kalman Filter (EKF) with a 

focus on applications to solve the simultaneous localization and mapping (SLAM) problem.  The 

famous scheduling problem was tackled by numerous authors, including, for example [26]. 

Furthermore, in control theory [27] used a modified BFO algorithm to optimize coefficients of a 
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proportional-integral (PI) controller. It is readily apparent that BFO has found many dynamic uses 

in the applied sciences and engineering.   

2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

Covariance Matrix Adaption Evolutionary Strategy was originally set out in [28] and is a 

matrix-based algorithm designed to have a computational cost of 𝑂(𝑛2). Hansen’s paper 

introducing the algorithm relies heavily on [29].  The Generating Set Adaptation (GSA) was 

proposed in [29] as the first evolutionary strategy invariant to coordinate system rotations and that 

learned a particular problem’s scaling. GSA did not include the formal covariance matrix in the 

algorithm. Then, using this foundation, Hansen in [28] introduced the (1, 𝜆)-ES (where 𝜇 = 1) 

CMA-ES algorithm. The new algorithm used a covariance matrix with great success, yielding an 

algorithm that, while still heuristic, has a more concrete theoretical basis in statistical analysis 

than many other algorithms found in evolutionary computation.  

After declarations and initializations, the details of CMA-ES can be written in around 20 

lines of MATLAB code. Hansen provides source code on his website [30], so rather than going 

into extensive theoretical detail, an outline of the algorithm is presented based on [28]. Given the 

search space dimension 𝑛 and the iteration step 𝑘, it is possible to define the following five 

variables. Define 𝑚𝑘 ∈ ℝ𝑛 to be the distribution mean and current favored solution. Further 

define and set 𝜎𝑘 > 0 to be the step size. Then, notate 𝐶𝑘 to be a symmetric positive definite 

𝑛 𝑥 𝑛 covariance matrix, initialized with 𝐶0 = 𝐼, the identity matrix. Finally, define 𝑝𝜎 ∈ ℝ𝑛 and 

𝑝𝑐 ∈ ℝ𝑛 to be two evolution paths initially defined as the zero vector. Select 𝜆, the number of 

samples per iteration (also known as the population size). The algorithm is dependent on the 

selection of 𝜆, making the algorithm quasi-parameter free for the user.  This is an advantage of 
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CMA-ES over other algorithms that sometimes have many parameters that need to be defined 

through trial and error.  

The candidate solutions are 𝑥𝑖  ~ 𝒩(𝑚𝑘 ,𝜎𝑘2𝐶𝐾). It is then possible to denote the 

candidate solutions as 

 {𝑥𝑖:𝜆 | 𝑖 = 𝑖… 𝜆} = {𝑥𝑖 | 𝑖 = 1 … 𝜆} (2.3) 

and  

 𝑓(𝑥1:𝜆) ≤ ⋯ ≤ 𝑓�𝑥𝜇:𝜆� ≤ 𝑓�𝑥𝜇+1:𝜆�… (2.4) 

The new mean is then easily computed via  

 
𝑚𝑘+1 = �𝑤𝑖𝑥𝑖:𝜆

𝜇

𝑖=1

= 𝑚𝑘 +�𝑤𝑖(𝑥𝑖:𝜆 −𝑚𝑘)
𝜇

𝑖=1

 (2.5) 

where the recombination weights 𝑤𝑖, where 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝜇 > 0 all sum to one. Typically, 

one would select 𝜇 ≤ 𝜆
2
 and with weights 𝜇𝑤 = 1

∑ 𝑤𝑖
2𝜇

𝑖=1
≈ 𝜆

4
. The step size is updated using the 

cumulative step-size adaptation (CSA). Define 𝑐𝜎−1 ≈
𝑛
3

> 1 to be the backwards time horizon for 

the evolution path 𝑝𝜎. Further define 𝜇𝑤 = �∑ 𝑤𝑖2
𝜇
𝑖=1 �−1 to be the variance effective selection 

mass, noting that by virtue of how 𝑤𝑖 is defined that 1 ≤ 𝜇𝑤 ≤ 𝜇. A unique symmetric square 

root of the inverse of 𝐶𝑘 is 𝐶𝑘
−1 2⁄ = ��𝐶𝑘�

−1
= �𝐶𝑘−1. Additionally, define 𝑑𝜎 to be a damping 

parameter, usually close to one; note that as 𝑑𝜎 → ∞ or 𝑐𝜎 → 0 that the step-size does not change. 

It is then possible to begin the iteration. It is now possible to write equations that update 𝑝𝜎 and 

𝜎𝑘+1, namely 

 𝑝𝜎+1 = (1 − 𝑐𝜎)𝑝𝜎 + �1 − (1 − 𝑐𝜎)2�𝜇𝑤𝐶𝑘
−1 2⁄ 𝑚𝑘+1 − 𝑚𝑘

𝜎𝑘
 (2.6) 

and 
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𝜎𝑘+1 = 𝜎𝑘 exp�

𝑐𝜎
𝑑𝜎

�
‖𝑝𝜎‖

𝐸‖𝒩(0, 𝐼)‖
− 1�� (2.7) 

Now, 𝜎𝑘 will be increased if and only if ‖𝑝𝜎‖ is larger than the expected value 

 
𝐸‖𝒩(0, 𝐼)‖ = √2

Γ �𝑛 + 1
2 �

Γ �𝑛2�
≈ √𝑛 �1 −

1
4𝑛

+
1

21𝑛2
� (2.8) 

 Otherwise, if the expectation is smaller, it will be decreased. Finally, the covariance matrix is 

updated. Define again 𝑐𝑐−1 ≈
𝑛
4

> 1 to be the backwards time horizon for the evolution path 𝑝𝑐. 

Let 𝛼 ≈ 1.5. The indicator function 𝟏�0,𝜎√𝑛�(‖𝑝𝜎‖) evaluates to one if and only if (which 

normally is the case) ‖𝑝𝜎‖ ≤ 𝛼√𝑛. Additionally, 𝑐1 ≈
2
𝑛2

 is the learning rate for the rank one 

update of the covariance matrix. Furthermore, 𝑐𝜇 ≈
𝜇𝑤
𝑛2

 is the learning rate for the rank 𝜇 update 

of the covariance matrix; this may not exceed 1 − 𝑐1. Piecing together these definitions, now 

define the value for 𝑐𝑠 = (1 − 𝟏�0,𝜎√𝑛�(‖𝑝‖)2)𝑐1𝑐𝑐(2 − 𝑐𝑐). It is now finally possible to write 

 𝑝𝑐+1 = (1 − 𝑐𝑐)𝑝𝑐 + 𝟏�0,𝜎√𝑛�(‖𝑝𝜎‖)�1− (1 − 𝑐𝑐)2�𝜇𝑤
𝑚𝑘+1 − 𝑚𝑘

𝜎𝑘
 (2.9) 

and  

 
𝐶𝐾+1 = �1 − 𝑐1 − 𝑐𝜇 + 𝑐𝑠�𝐶𝑘 + 𝑐1𝑝𝑐𝑝𝑐𝑇 + 𝑐𝜇�𝑤𝑖

𝑥𝑖:𝜆 − 𝑚𝑘

𝜎𝑘
�
𝑥𝑖:𝜆 − 𝑚𝑘

𝜎𝑘
�
𝑇

𝜇

𝑖=1

 (2.10) 

The covariance matrix update tends to increase the likelihood for 𝑝𝑐 and for 𝑥𝑖:𝜆−𝑚𝑘
𝜎𝑘

 to be sampled 

from 𝒩 ~ (0,𝐶𝑘+1). This concludes the update step. The algorithm then continues to iterate until 

terminated by a termination procedure determined by the user.  

CMA-ES has been used often in the literature, so only a few highlights are presented 

here. In [31], CMA-ES was employed to aid in forensic identification. More applicable to the 

discipline of aerospace engineering would be the application in [32] where the authors worked on 

turbulent friction drag reduction. Optimization is a pressing matter in the design of control 
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systems; many papers (for example, see [32]) use CMA-ES to optimize feedback controllers. In 

[34], CMA-ES was employed to optimize noise sensor selection. CMA-ES has also been used in 

relation to other areas in evolutionary computation; in [35], CMA-ES was use to optimize neural 

field models. Another aerospace application that has been explored is the optimization of 

compressor blades [36]. The problem of lens design was tackled in [37]. This particular 

evolutionary strategy has also made its way into the medical field, yielding papers such as [38] 

where CMA-ES was employed towards the heuristic design of cancer chemotherapies. Clearly, 

CMA-ES has become a popular algorithm of choice for many researchers, in part because it is 

easy to use and implement. 
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Chapter 3  
 

Optimal Two-Impulse Transfers Between Circular Orbits 

The Hohmann transfer is a famous problem in astrodynamics. The Hohmann transfer and 

its proof are discussed in detail in Section 3.1. For this purposes of this thesis, the Hohmann 

transfer provides an opportunity to explore the performance of the algorithms to a problem that 

has a well-known solution. Section 3.2 presents the problem statement used in Chapter 4 and 

Section 3.3 discusses the numerical implementation of that problem statement. Ideally, the results 

from the algorithm should approach the limit of the Hohmann results. 

3.1 Hohmann Transfer background 

 Walter Hohmann in 1925 first postulated that an orbital transfer between two circular co-

planar orbits under the standard assumptions would be the minimum energy transfer between 

those orbits [39]. The mechanics of this transfer would involve a first impulse to remove the 

spacecraft from its initial circular orbit onto an elliptical transfer orbit. Then, once the spacecraft 

has traveled from the one apse point of the transfer ellipse to the other apse point, a second 

impulse is applied to circularize the spacecraft into its new orbit. The fundamental assumption is 

that the thrusts are impulsive: in other words that the orbital radii do not change (in theory, at all – 

in practice, appreciably) over the duration of the thrust.  

 Define for convenience 𝛽 = 𝑅2
𝑅1

, where 𝑅1 represents the radius of the inner circular orbit 

and 𝑅2 represents the radius of the outer circular orbit. The Hohmann transfer is only optimal 

over a specific range of values. As presented in [40], the following table holds true.  
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Table 3.1. Range of 𝛃 Values and Effect on Optimality 

Range of 𝜷 Conclusion 

𝛽 ∈ (0, 11.94) The Hohmann transfer is optimal 

𝛽 ∈ (11.94, 15.58) Sometimes the Hohmann transfer is optimal; need to test for optimality 

𝛽 ∈ (15.58,∞) The bi-elliptic transfer can be superior 

 

The finite end points of the ranges are known as the critical limits of the transfer problem. As 

noted above, when 𝛽 ∈ (11.94, 15.58), an additional test is needed to determine the optimality of 

the Hohmann transfer. Escobal in [41] presents a test and provides equations to test for the 

conditions needed.  

 Various proofs of the Hohmann transfer have been given over the years. A proof using 

the calculus of variations are given in [42] and in [43]. Some more creative approaches and 

alternative proofs are given in [44] (using Green’s Theorem), [45] (using graphical construction) 

and [46] (using Lagrange multipliers). More recent work includes a proof by Palmore [47] using 

the techniques of elementary calculus. While the Hohmann transfer itself is relatively easy to 

calculate, one must calculate all possible alternative transfers in order to complete the proof – not 

an easy task in most cases.  

 The proof presented below was originally inspired by Prussing [48] and makes 

comparisons to the proof presented by Palmore. In Palmore’s proof, every possible transfer orbit 

is listed using nonlinear functions of the semi-latus rectum 𝑝 and eccentricity 𝑒. The boundaries 

of the relevant region of the (𝑝, 𝑒) plane that then contain the feasible regions for the possible 

transfers contain difficult curves. It then follows that the gradient of the characteristic velocity of 

the orbital maneuver with respect to these two variables can be calculated to determine the 

minimum Δ𝑣, which corresponds to minimization of the propellant needed. Instead, make two 

changes to Palmore’s approach. The first adaptation is the use the variables of the semi-latus 
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rectum and eccentricity themselves, instead of non-linear functions thereof in Palmore’s 

presentation. The second adaptation is to use only the partial derivative of the characteristic 

velocity with respect to eccentricity.  

 In order for one to find the boundaries of the feasible region, one needs to recall the orbit 

equation, a polar equation for orbital radius as a function of true anomaly 𝑓 

 𝑟 =
𝑝

1 + 𝑒 cos𝑓
 (3.1) 

It is simple to note that the semi-latus rectum (also known as the parameter by some authors) is 

defined from analytic geometry to be 

 𝑝 = 𝑎(1 − 𝑒2) (3.2) 

where 𝑎 represents the semi-major axis of the orbit. One can readily observe that the semi-latus 

rectum is a function of the size and shape of a given orbit. A feasible region means that the 

transfer orbit will intersect both 𝑅1 and 𝑅2. Assume that 𝛽 > 1 holds true. An orbit can be labeled 

as infeasible if either the periapsis lies outside the smaller terminal radius or the apoapsis lies 

within the larger terminal orbit. Then, from Equation (3.1), the following two conditions need to 

be satisfied 

 𝑟𝑝 =
𝑝

1 + 𝑒
≤ 𝑟1 (3.3) 

and 

 𝑟𝑎 =
𝑝

1 − 𝑒
≥ 𝑟2 (3.4) 

Equations (3.3) and (3.4) can be rather easily rewritten to find the semi-latus rectum. Carrying 

this out reveals 

 𝑝 ≤ 𝑟1(1 + 𝑒) (3.5) 

and 

 𝑝 ≥ 𝑟2(1− 𝑒) (3.6) 



 

15 
 

Every possible transfer orbit can be written as functions of semi-latus rectum and eccentricity and 

takes its place as a point in the (𝑝, 𝑒) plane. The inequalities given by Equations (3.5) and (3.6) 

define the region of all of the possible transfer orbits. It then follows that the boundaries of these 

regions will be straight lines.  

 The law of cosines provides the formula for the magnitude of the velocity change to enter 

a circular orbit or depart from a circular orbit at radius 𝑟 = 𝑟𝑘 

 (Δ𝑣)2 = 𝑣2 + 𝑣𝑐2 − 2𝑣𝑐𝑣𝜃 (3.7) 

where 𝑘 = 1, 2, 𝑣𝑐 is the circular orbital speed and 𝑣𝜃 is the component of the velocity vector that 

is normal or perpendicular to the radius. Note the equations for the conservation of angular 

momentum 

 
𝑣𝜃 =

ℎ
𝑟

=
�𝜇𝑝
𝑟

 (3.8) 

where ℎ is the specific angular momentum of the orbit (often simply called angular momentum) 

and 𝜇 is the standard gravitational parameter. Further, the velocity can be found from the vis-viva 

integral 

 𝑣2 = 𝜇 �
2
𝑟
−

1
𝑎
� (3.9) 

For historical reasons, it should be noted that integral in this sense has the archaic meaning of 

“constant” that predates the more modern definition of the word seen in elementary calculus. It 

can then be easily shown that   

 𝑣𝑐2 =
𝜇
𝑟

 (3.10) 

Through substitution, Equation (3.9) can be rewritten as   

 
𝑣2 = 𝜇 �

2
𝑟

+
𝑒2 − 1
𝑝 � (3.11) 

The characteristic velocity is  
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 Δ𝑣𝑇 = Δ𝑣1 + Δ𝑣2 (3.12) 

where, to ensure consistent notation, Δ𝑣1 occurs at a radius of 𝑅1 and Δ𝑣2 occurs at a radius of 

𝑅2. Upon calculating the partial derivate with respect to eccentricity one finds that 

 ∂Δ𝑣𝑇
𝜕𝑒

=
𝜕Δ𝑣1
𝜕𝑒

+
𝜕Δ𝑣2
𝜕𝑒

 (3.13) 

By way of Equations (3.7) and (3.11), it is then possible to write  

 
Δ𝑣𝑘

𝜕Δ𝑣𝑘
𝜕𝑒

= 𝑣𝑘
𝜕𝑣𝑘
𝜕𝑒

=
𝑒𝜇
𝑝

 (3.14) 

It then immediately follows that  

 𝜕Δ𝑣𝑇
𝜕𝑒

=
𝑒𝜇
𝑝
�

1
Δ𝑣1

+
1
Δ𝑣2

� > 0 (3.15) 

 It is possible to note that since the partial derivative is positive then any point on the 

interior of the feasible region can be lowered by lowering the value of eccentricity while holding 

semi-latus rectum constant. Define 𝑟𝑝 to be the radius at periapsis and 𝑟𝑎 to be the radius at 

apoapsis. This implies that minimum characteristics velocity will lie on the intersection of 

𝑟𝑎 = 𝑅2 and 𝑟𝑝 = 𝑅1. What needs to be shown is that if the characteristic velocity is constrained 

to the boundary its derivative with respect to eccentricity will remain positive. In other words, the 

optimal solution lies at the minimum value of eccentricity on the boundary.  

 The most feasible way to do this is to recognize that the expression for the characteristic 

velocity is constrained to the boundary. Now it is possible to substitute for the value of the semi-

latus rectum along each portion of the boundary, namely with 𝑝 = 𝑅2(1− 𝑒) on the left and 

𝑝 = 𝑅1(1 + 𝑒) on the right. It is then possible to write the characteristic velocity as a function of 

eccentricity. Define Δ𝑣� to be the velocity change constrained to the boundary. Equation (3.7) then 

takes the form 

 
(Δ𝑣�)2 = 𝜇 �

2
𝑟

+
𝑒2 − 1

𝑅2(1− 𝑒)� +
𝜇
𝑟
− 2�

𝜇
𝑟
�𝜇𝑅2(1− 𝑒)

𝑟
 (3.16) 
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By differentiating with respect to eccentricity and noting that 𝐵 > 1 and 𝑒 ∈ (0, 1) for an ellipse, 

one finds that  

 
2Δ𝑣�1

𝑑Δ𝑣�1
𝑑𝑒

=
𝜇
𝑟 �

β
3
2

√1 − 𝑒
− 1� > 0 (3.17) 

and  

 
2Δ𝑣�2

𝑑Δ𝑣�2
𝑑𝑒

=
𝜇
𝑟2
�

1
√1 − 𝑒

− 1� > 0 (3.18) 

Similar to what was seen with Equation (3.15), on the left portion of the boundary 𝑑Δ𝑣�𝑇
𝑑𝑒

> 0. 

Likewise, on the right portion of the boundary 

 
(Δ𝑣�)2 = 𝜇 �

2
𝑟

+
𝑒2 − 1

𝑅1(1 + 𝑒)� +
𝜇
𝑟
− 2�

𝜇
𝑟
�𝜇𝑅1(1 + 𝑒)

𝑟
 (3.19) 

Differentiating yields 

 
2Δ𝑣�1

𝑑Δ𝑣�1
𝑑𝑒

=
𝜇
𝑟1
�1 −

1
√1 + 𝑒

� > 0 (3.20) 

and  

 
2Δ𝑣�2

𝑑Δ𝑣�2
𝑑𝑒

=
𝜇
𝑟 �

1 −
1

𝛽
3
2√1 + 𝑒

� > 0 (3.21) 

Following the similar trend, 𝑑Δ𝑣�𝑇
𝑑𝑒

> 0 holds on the right side of the boundary as well. The 

derivative of Δ𝑣�𝑇 with respect to the eccentricity is positive for all points on the boundary. It then 

reasonably follows that the optimal solution lies at the point of minimum eccentricity on the 

boundary – in other words, with the Hohmann transfer.  
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3.2 Problem Statement 

Now that the theory is understood, it is possible to turn one’s attention to numerical 

demonstrations. As originally presented in [14], this problem involves finding the optimal 

locations, directions and magnitudes of two impulses. We seek to minimize the fitness (also 

known as the objective or cost) function 

 𝐽 = Δ𝑣1 + Δ𝑣2 (3.22) 

where the magnitudes of the two impulsive changes in velocity are represented by Δ𝑣1 and Δ𝑣2, 

respectively. Define 𝜇𝐵 as the standard gravitational parameter of the attracting body. Then, the 

initial conditions at time 𝑡0− are  

 𝑣𝑟(𝑡0−) = 0 (3.23) 

 
𝑣𝜃(𝑡0−) = �

𝜇𝐵
𝑅1

 (3.24) 

and  

 𝑟(𝑡0−) = 𝑅1 (3.25) 

where 𝑣𝑟 and 𝑣𝜃 denote the radial and the horizontal component of the velocity vector 𝑣, 

respectively, and 𝑟 is defined as the radius of the orbit. The terminal conditions at time 𝑡𝑓+are then 

captured by  

 𝑣𝑟�𝑡𝑓+� = 0 (3.26) 

 
𝑣𝜃�𝑡𝑓+� = �

𝜇𝐵
𝑅2

 (3.27) 

and  

 𝑟�𝑡𝑓+� = 𝑅2 (3.28) 

The velocity components 𝑣𝑟 and 𝑣𝜃 change to the following expressions after the first impulse 
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 𝑣𝑟(𝑡0+) = 𝑣𝑟(𝑡0−) + Δ𝑣1 sin𝛿1 (3.29) 

and 

 𝑣𝜃(𝑡0+) = 𝑣𝜃(𝑡0−) + Δ𝑣1 cos𝛿1 (3.30) 

Note, of course, that 𝑟(𝑡0+) = 𝑟(𝑡0−) = 𝑅1 due to the impulsive approximation; in other words, the 

radius does not change appreciably over the duration of the orbital maneuver. One is able to 

define the time of the second impulse as time 𝑡𝑓. Then, during the time period between impulses, 

𝑡 ∈ �𝑡0+, 𝑡𝑓−�, the trajectory is modeled as Keplerian. Note that 𝑎 is the classical orbital element 

that represents the semi-major axis and that e is the classical orbital element that represents the 

eccentricity of the Keplerian arc of the spacecraft’s trajectory Due to this construction, these 

equations  

 
𝑎 =

𝜇𝐵𝑟(𝑡0+)

2𝜇𝐵 − 𝑟(𝑡0+) �𝑣𝑟2(𝑡0+) + 𝑣𝜃2(𝑡0+)�
 (3.31) 

and 

 
𝑒 = �1 −

𝑟2(𝑡0+)𝑣𝜃2(𝑡0+)
𝜇𝐵𝑎

 (3.32) 

hold true. Recalling the definition of the semi-latus rectum from Equation (3.2), one can then 

write an expression for true anomaly through the forms 

 
cos�𝑓(𝑡0+)� =

𝑣𝜃(𝑡0+)
𝑒 �

𝑝
𝜇𝐵

−
1
𝑒

 (3.33) 

and 

 
sin�𝑓(𝑡0+)� =

𝑣𝑟(𝑡0+)
𝑒 �

𝑝
𝜇𝐵

 (3.34) 

where 𝑓(𝑡0−) denotes the true anomaly at time 𝑡0+.  One can easily reason that the coasting arc 

must terminate when the radius becomes 𝑅2. By extension, the true anomaly 𝑓(𝑡0+) immediately 

before the second impulse is given by 
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 𝑓�𝑡𝑓−� = cos−1 �
𝑝 − 𝑅2
𝑅2𝑒

� (3.35) 

At time 𝑡𝑓−, 𝑣𝑟 and 𝑣𝜃 can be written as  

 
𝑣𝑟�𝑡𝑓−� = �

𝜇𝐵
𝑝
𝑒 sin �𝑓�𝑡𝑓−�� (3.36) 

and 

  
𝑣𝜃�𝑡𝑓−� = �

𝜇𝐵
𝑝 �1 +  𝑒 cos �𝑓�𝑡𝑓−��� (3.37) 

Equations (3.26), (3.27) and (3.28), the terminal conditions, instruct that  

 𝑣𝑟�𝑡𝑓+� = 𝑣𝑟�𝑡𝑓−� + Δ𝑣2 sin𝛿2 = 0 (3.38) 

and 

 
𝑣𝜃�𝑡𝑓+� = 𝑣𝜃�𝑡𝑓−� + Δ𝑣2 cos𝛿2 = �

𝜇𝐵
𝑅2

 (3.39) 

 These equations can be used to find the magnitude and direction of the second impulse 

 

Δ𝑣2 = �𝑣𝑟2�𝑡𝑓−� + ��
𝜇𝐵
𝑅2

− 𝑣𝜃�𝑡𝑓−��   (3.40) 

 

cos𝛿2 =
�
𝜇𝐵
𝑅2

− 𝑣𝜃�𝑡𝑓−�

Δ𝑣2
 (3.41) 

and  

 
sin𝛿2 = −

𝑣𝑟�𝑡𝑓−�
Δ𝑣2

 (3.42) 

It then reasonably follows that these two inequality constraints must be satisfied by any feasible 

transfer trajectory 

 𝑎 > 0 (3.43) 
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and  

 𝑎(1 + 𝑒) ≥ 𝑅2 (3.44) 

In other words, the transfer orbit must be elliptic, and the apoapsis radius must be greater than or 

equal to the final radius 𝑅2. As defined, this problem is non-linear programming problem subject 

to the inequality constraints of Equations (3.43) and (3.44). The two unknown parameters are Δ𝑣1 

and 𝛿1, the impulse magnitude and direction, respectively.  

3.3 Numerical Implementation 

Each candidate solution contains the two unknown parameters 

 𝜒 = [Δ𝑣1 𝛿1]𝑇 (3.45) 

Canonical units are employed in order to use a normalized set of units. The initial radius 

represents the distance unit (DU) and the time unit (TU) is defined using the standard 

gravitational parameter such that 𝜇𝐵 = 1 DU3/TU2. Now, for PSO and BFO the optimal values of 

the two unknown parameters are bounded by  

 0 
𝐷𝑈
𝑇𝑈

≤ Δ𝑣1 ≤ 1
𝐷𝑈
𝑇𝑈

 (3.46) 

and 

 −𝜋 ≤ 𝛿1 ≤ 𝜋 (3.47) 

The candidate solution may not violate Equations (3.43) or (3.44), the inequality constraints. 

CMA-ES does not support parameter bounding de jure by its very nature, so a penalty was added 

to the objective function to simulate the parameter bounding de facto if these boundaries were 

violated as described further below.  

 Two penalty cases were examined. The first (hereinafter known as the fixed penalty case) 

involved applying fixed penalties of magnitude 100 if the inequality constraints were violated. 
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The second (hereinafter the varying penalty case) involved applying varying penalties of 100|𝑎| 

if Equation (3.43) was violated and 100(𝑎(1 + 𝑒) − 𝑅2)2 if Equation (3.44) was violated. Since 

CMA-ES does not support parameter bounding, for the fixed penalty case the additional penalty 

was 100 for each violation of a parameter’s bound. For the varying penalty case, the additional 

penalty was 100|𝜒𝑖| for each violation of a parameter’s bound.  

 To guard against the occasional divergence scenario, if an algorithm returned a result 

with error greater than 25%, the algorithm was restarted and the initial results were thrown out. 

PSO was run with 30 particles for 500 iterations using cognitive and social scaling parameters of 

1.49445 and an inertial weight of 1+𝑟𝑎𝑛𝑑(𝑛)
2

, where 𝑟𝑎𝑛𝑑(𝑛) denotes a uniformly distributed 

random number ∈ (0, 1). BFO was run 30 bacteria that each swam for 100 steps for 500 

generations a swim step size of 0.000001.  The probably of elimination and dispersal used for 

BFO was 0.25. CMA-ES was initialized with a step size of 0.1. The foregoing was then 

implemented numerically and results are presented as Chapter 4.  
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Chapter 4  
 

Results and Discussion 

The choice of programming language one may use is often problem specific. Many 

researchers have had great success with programming various algorithms in Evolutionary 

Computation in C++ or Java, especially when parallelization has been a concern. For this 

experiment, it was deemed that MATLAB would be sufficient for this task since MATLAB has 

excellent support of the extensive matrix operations needed to carry out CMA-ES. The numerical 

simulation described in Chapter 3 was easy to implement in MATLAB, the results of which are 

presented in Section 4.1 and analyzed in Section 4.2  

4.1 Numerical Results 

Since PSO was the algorithm used in [14], it made sense to begin with that algorithm 

here. Using the settings listed in Section 3.3, the algorithm was run once using fixed penalties.  

 

Figure 4.1. Fitness vs. Iterations of β = 2 for a Single Run of PSO using Fixed Penalties 
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Fitness is defined throughout as the calculated objective function minus the known result, i.e. the 

Hohmann results. As can be seen in Figure 4.1, the fitness improves quickly over a relatively 

small number of iterations. It is then possible to look at the performance metrics.  

 

Table 4.1. Performance Metrics of β = 2 for a Single Run of PSO using Fixed Penalties 

𝜷 CPU Time [secs] Theoretical 
Total 𝚫𝒗 [TU/DU] 

Calculated 
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.140 0.284 0.297 4.55% 
 

Table 4.1 presents the performance metrics for the run in Figure 4.1 Note that due to rounding, 

percent errors may not line up exactly with the values in the table. The MATLAB function 

cputime was used to calculate the central processing unit (CPU) time needed to run the algorithm. 

The processing was done using a quad core Intel i5-2400 processor. As can be readily seen from 

Table 4.1, the algorithm is fast – carrying out the sub-second function evaluations rather quickly. 

The percent error calculated is less than 5%, which is not bad considering no gradients were used 

to carry out the optimization. Next, the algorithm was run 10 times to see if changing 𝛽 = 𝑅2
𝑅1

 

would affect the algorithm’s performance. The results are presented below in Figure 4.2  

 

Figure 4.2. Fitness vs. Iterations of Various β for Single Runs of PSO using Fixed Penalties 
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As can be seen in Figure 4.2, the fitness improves so rapidly that the resolution of the graph 

doesn’t immediately provide useful information. Figure 4.3 below provides a zoom of the fitness 

history for a selected range of iterations.  

 

Figure 4.3. Detailed View of Fitness vs. Iterations of Various β for Single Runs of PSO using Fixed Penalties 

It is readily apparent from Figure 4.3 that the algorithm performs well across a range of β. The 

upper limit of β is selected, of course, with consideration to Table 3.1 knowing the limitation of 

the Hohmann formulation. As before, it is possible to look at performance metrics for the results 

that had the best fitness. These are tabulated below in Table 4.2.   

Table 4.2. Performance Metrics of Various β for a Single Run of PSO with Fixed Penalties 

𝜷 CPU Time [secs] Theoretical  
Total 𝚫𝒗 [TU/DU] 

Calculated  
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.140 0.284 0.293 2.99% 
3 0.125 0.394 0.397 0.74% 
4 0.140 0.449 0.449 0.13% 
5 0.109 0.480 0.481 0.24% 
6 0.109 0.499 0.499 0.00% 
7 0.125 0.512 0.514 0.43% 
8 0.109 0.520 0.520 0.00% 
9 0.125 0.526 0.526 0.00% 
10 0.094 0.530 0.532 0.50% 
11 0.125 0.532 0.534 0.23% 
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Upon examination of Table 4.2, it is difficult to discern a pattern as 𝛽 varies. The reasonable 

conclusion, then, is that the choice of 𝛽 did not affect the performance of the algorithm for the 

fixed penalty case. Now, running the code 1000 times gives one the opportunity to assess the 

statistics of the algorithm’s performance. Figure 4.4 shows a box plot of the percent error of PSO 

using fixed penalties. Figure 4.5 shows a box plot of the CPU time for the same 1000 runs.  

 

Figure 4.4.  Box Plot of β = 2 for 1000 Runs of PSO with Fixed Penalties for Percent Error 
 

 

Figure 4.5. Box Plot of β = 2 for 1000 Runs of PSO with Fixed Penalties for Time Elapsed 
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All box plots in this thesis use the following notation: the box contains values between the 25th 

and 75th percentiles, the central mark in the box indicates the median value, the vertical bars 

outside of the box indicate the extremes and the “+” signs denote outliers, if present. Figure 4.4 

indicates that there is skewing in the error sample, with the occasional high outlier. This is 

reasonable – not every initial guess is going to return a great result with a fixed number of 

function evaluations (NFE). Figure 4.5 shows a fairly small range of CPU times, which justifies 

not calculating the median CPU time in the performance metrics. These performance metrics are 

found below in Table 4.3.  

 

Table 4.3. Performance Metrics of β = 2 for 1000 Runs of PSO using Fixed Penalties 

𝜷 

Mean  
CPU 
Time  
[secs] 

Theoretical 
Total 𝚫𝒗 
[TU/DU] 

Mean  
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Median 
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Mean 
Percent 
Error 

Median 
Percent 
Error 

2 0.137905 0.284 0.288 0.286 1.40% 0.48% 
 

The results for 1000 runs are excellent. Once again, the skewing is visible in comparing the mean 

and median percent error, though they are not terribly far apart. This suggests once again that the 

occasional bad initial guess can propagate through the algorithm and cause slower optimization 

when the algorithm gets hung up on local extrema. Now it is possible to examine the varying 

penalty case. Figure 4.6 shows a graph of fitness against iteration for a single run of PSO, this 

time with the varying penalties. Figure 4.7 shows a detailed view of Figure 4.6.  
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Figure 4.6. Fitness vs. Iterations of β = 2 for a Single Run of PSO using Varying Penalties 

 

Figure 4.7. Detailed View of Fitness vs. Iterations of β = 2 for a Single Run of PSO using Varying Penalties 

 

On casual observation, one could observe that the algorithm seems to settle towards optimum 

more quickly than in the fixed penalty case though one must be careful not to draw too much 

information from a single run of the algorithm. The performance metrics from this run are shown 

in Table 4.4.  
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Table 4.4. Performance Metrics of β = 2 for a Single Run of PSO using Varying Penalties 

𝜷 CPU Time [secs] Theoretical 
Total 𝚫𝒗 [TU/DU] 

Calculated 
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.125 0.284 0.286 0.59% 
 

The percent error seen in Table 4.4 for this run is quite good and the CPU time is faster than had 

been seen in the single run of the fixed penalty case.  Now, letting 𝛽 vary again, it is possible to 

present Figure 4.8.  

 

Figure 4.8. Fitness vs. Iterations of Various β for Single Runs of PSO using Varying Penalties 

 

Similar performance as before was achieved, though the resolution is once again a little difficult 

for the casual observer to make out.  Since the algorithm converges rather quickly, a detailed 

view of this plot is presented as Figure 4.9.  
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Figure 4.9. Detailed View of Fitness vs. Iterations of Various β for Single Runs of PSO using Varying Penalties 

It should be noted that the lines for fitness are so close together that they are on top of each other. 

The performance metrics were tabulated once again and are presented below in Table 4.5. 

 

Table 4.5. Performance Metrics of Various β for a Single Run of PSO with Varying Penalties 

𝜷 CPU Time [secs] Theoretical  
Total 𝚫𝒗 [TU/DU] 

Calculated  
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.109 0.284 0.286 0.55% 
3 0.094 0.394 0.398 1.07% 
4 0.094 0.449 0.458 2.17% 
5 0.094 0.480 0.480 0.06% 
6 0.109 0.499 0.512 2.48% 
7 0.156 0.512 0.560 9.46% 
8 0.109 0.520 0.548 5.43% 
9 0.094 0.526 0.550 4.53% 
10 0.094 0.530 0.545 2.83% 
11 0.109 0.532 0.533 0.03% 

 

Once again, the trend appears to be that the choice of 𝛽 has minimal impact on the accuracy of 

the solution. This speaks well to the robustness of PSO. Now, the algorithm was run 1000 times. 

The boxplots for percent error is presented in Figure 4.10.  
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Figure 4.10. Box Plot of β = 2 for 1000 Runs of PSO with Varying Penalties for Percent Error 

 

Additionally, the box plot for CPU time is found below in Figure 4.11. 

 

Figure 4.11. Box Plot of β = 2 for 1000 Runs of PSO with Varying Penalties for Time Elapsed 

 

The mean percent error is lower to the first quartile than it was in the fixed penalty case and the 

mean run time has improved. This improvement is perhaps most obvious when viewing Table 

4.6, in which the performance metrics are tabulated.  
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Table 4.6. Performance Metrics of β = 2 for 1000 Runs of PSO using Varying Penalties 

𝜷 

Mean  
CPU 
Time  
[secs] 

Theoretical 
Total 𝚫𝒗 
[TU/DU] 

Mean  
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Median 
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Mean 
Percent 
Error 

Median 
Percent 
Error 

2 0.107 0.284 0.289 0.285 1.78% 0.43% 
 

Since the CPU time decreased, one’s initial reaction may be to expect the error to improve 

markedly as well. This reaction, however, is not substantiated by Table 4.6; while the median 

error does decrease the mean error increases, though neither difference is especially large.  

 Now that the performance of PSO has been characterized, it is possible to look at BFO. 

Continuing with the same pattern as before, BFO was run once with fixed penalties. The fitness 

plot is presented below in Figure 4.12.  

 

Figure 4.12. Fitness vs. Iterations of β = 2 for a Single Run of BFO using Fixed Penalties 

 

The plot has stronger spikes to it because each bacterium is allows to swim, though the fitness 

seems to center not far from the known solution (i.e. fitness that is zero). The performance 

metrics are tabulated in Table 4.7.  
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Table 4.7. Performance Metrics of β = 2 for a Single Run of BFO using Fixed Penalties 

𝜷 CPU Time [secs] Theoretical 
Total 𝚫𝒗 [TU/DU] 

Calculated 
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.624 0.284 0.287 0.76% 
 

While the percent error seems to be along the lines of that seen with PSO, it is obvious that the 

CPU time has gone up; this is likely a function of the need to simulate the 100 swim steps of each 

bacterium. Now, vary 𝛽 and it is possible to develop Figures 4.13 and 4.14.  

 

Figure 4.13. Fitness vs. Iterations of Various β for Single Runs of BFO using Fixed Penalties 

 

Figure 4.14. Detailed View of Fitness vs. Iterations of Various β for Single Runs of BFO using Fixed Penalties 
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The spikes in fitness degrade the appearance of the plots. Figure 4.14 offers a closer look on what 

is occurring in Figure 4.13. The performance metrics are then presented in Table 4.8.  

 

Table 4.8. Performance Metrics of Various β for a Single Run of BFO with Fixed Penalties 

𝜷 CPU Time [secs] Theoretical  
Total 𝚫𝒗 [TU/DU] 

Calculated  
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.702 0.284 0.293 3.09% 
3 0.608 0.394 0.399 1.37% 
4 0.671 0.449 0.460 2.58% 
5 0.640 0.480 0.493 2.61% 
6 0.671 0.499 0.505 1.15% 
7 0.686 0.512 0.526 2.83% 
8 0.655 0.520 0.529 1.75% 
9 0.686 0.526 0.531 0.97% 
10 0.702 0.530 0.534 0.82% 
11 0.624 0.532 0.541 1.68% 

 

The algorithm appears to perform no better on large values of 𝛽 than it does for small values of 𝛽 

and the results are fairly good overall. Now, the code was run 1000 times again. The box plot of 

percent error follows below as Figure 4.15. 

 

Figure 4.15. Box Plot of β = 2 for 1000 Runs of BFO with Fixed Penalties for Percent Error 
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Along the same lines, Figure 4.16 is the box plot of the CPU time for the fixed penalty case of 

BFO.  

 

Figure 4.16. Box Plot of β = 2 for 1000 Runs of BFO with Fixed Penalties for Time Elapsed 

 

The box plot in Figure 4.15 suggests a fairly small range of errors for the 1000 runs. Likewise, 

the spread of CPU times is fairly small as well. The performance metrics are tabulated below as 

Table 4.9.  

 

Table 4.9. Performance Metrics of β = 2 for 1000 Runs of BFO using Fixed Penalties 

𝜷 

Mean  
CPU 
Time  
[secs] 

Theoretical 
Total 𝚫𝒗 
[TU/DU] 

Mean  
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Median 
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Mean 
Percent 
Error 

Median 
Percent 
Error 

2 0.655 0.284 0.291 0.290 2.19% 1.91% 
 

The mean and median errors are fairly close together, which matches the impression given by 

Figure 4.15. The fairly large mean time for this application stands out as noteworthy. Now, the 

varying penalty case can be implemented. The single run iteration history follows in Figure 4.17.   
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Figure 4.17. Fitness vs. Iterations of β = 2 for a Single Run of BFO using Varying Penalties 

 

Once again, similar spiky performance is seen as each bacterium swims. The performance metric 

for this run follow in Table 4.10.  

 

Table 4.10. Performance Metrics of β = 2 for a Single Run of BFO using Varying Penalties 

𝜷 CPU Time [secs] Theoretical 
Total 𝚫𝒗 [TU/DU] 

Calculated 
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.749 0.284 0.284 0.15% 
 

The CPU time appears to have increased again, though one must continue to be careful not to 

read too much from a single run of the code. The eye is drawn towards the remarkably low 

percent error – this suggests paying attention to the error for this case. Figure 4.17 on the next 

page shows the iteration history for various values of 𝛽. This plot is much cleaner than Figure 

4.13, and therefore needs no detailed view. It appears that fitness does occasionally spike very 

high, but that these occurrences are fairly rare.  
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Figure 4.18. Fitness vs. Iterations of Various β for Single Runs of BFO using Varying Penalties 

 

The performance metrics from these varying cases are tabulated and appear below in Table 4.11. 

On the whole, the CPU time appear high again, though the percent errors achieved appear to be 

excellent.  

 

Table 4.11. Performance Metrics of Various β for a Single Run of BFO with Varying Penalties 

𝜷 CPU Time [secs] Theoretical  
Total 𝚫𝒗 [TU/DU] 

Calculated  
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.718 0.284 0.285 0.09% 
3 0.702 0.394 0.405 2.72% 
4 0.671 0.449 0.453 0.87% 
5 0.702 0.480 0.483 0.68% 
6 0.718 0.499 0.500 0.07% 
7 0.686 0.512 0.515 0.71% 
8 0.780 0.520 0.521 0.16% 
9 0.671 0.526 0.526 0.04% 
10 0.718 0.530 0.549 3.62% 
11 0.733 0.532 0.538 1.01% 

 

The code is then run 1000 times with an eye towards viewing the statistical trends once again. 

Figure 4.19 the box plot for the error, while Figure 4.20 shows the box plot of the CPU time.  



 

38 
 

 

Figure 4.19. Box Plot of β = 2 for 1000 Runs of BFO with Varying Penalties for Percent Error 

 

Figure 4.20. Box Plot of β = 2 for 1000 Runs of BFO with Varying Penalties for Time Elapsed 

 

There appears to be a fair number of outliers for the percent error as seen in Figure 4.18, though 

the error itself looks to be fairly good. This is likely a function of the relatively small interquartile 

range. The trend of fairly large run times that had been seen in single runs is confirmed by the 

box plot in Figure 4.20.  
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Table 4.12. Performance Metrics of β = 2 for 1000 Runs of BFO using Varying Penalties 

𝜷 

Mean  
CPU 
Time  
[secs] 

Theoretical 
Total 𝚫𝒗 
[TU/DU] 

Mean  
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Median 
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Mean 
Percent 
Error 

Median 
Percent 
Error 

2 0.727 0.284 0.285 0.285 0.27% 0.36% 
 

The performance metrics for the varying penalty case are tabulated above in Table 4.12. The 

mean CPU time is around three quarters of a second, which is remarkably high considering each 

function evaluation is sub-second in duration. While the run time is up, the percent errors are 

down and the closeness between the mean and median percent errors suggests there is not as 

much skewing of this data set.  

 The last algorithm examined is CMA-ES. Continuing with the pattern of single runs, a 

single run was performed with the modified fixed penalty case developed in Section 3.3.  

 

Figure 4.21. Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Fixed Penalties 

 

This plot, at first glance, appears to be nonsense. However, upon zooming in on the plot, it 

because readily apparent that the fitness value is oscillating from iteration to iteration. 

Performance metrics follow in Table 4.13.    
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Table 4.13. Performance Metrics of β = 2 for a Single Run of CMA-ES using Fixed Penalties 

𝜷 CPU Time [secs] Theoretical 
Total 𝚫𝒗 [TU/DU] 

Calculated 
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.546 0.284 0.284 0.00% 
 

The percent error, as evidenced in Table 4.13, achieved in this single run is surprising, especially 

when viewed in light of the CPU time.  

 

Figure 4.22. Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Fixed Penalties 

 

Figure 4.23. Detailed View of Fitness vs. Iterations of  
Various β for Single Runs of CMA-ES using Fixed Penalties 
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The iteration history is shown in Figures 4.22 and 4.23. Once again, the resolution of the global 

plot is fairly poor in Figure 4.22, so a zoomed view is presented in Figure 4.23. The first plot is 

clarified once the reader notices that the colors of the various lines are blurring to produce colors 

such as brown and magenta. The second plot is the more interesting of the two and really displays 

the oscillation of the fitness values. Table 4.14 presents the performance metrics from these runs.  

 

Table 4.14. Performance Metrics of Various β for a Single Run of CMA-ES with Fixed Penalties 

𝜷 CPU Time [secs] Theoretical  
Total 𝚫𝒗 [TU/DU] 

Calculated  
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.546 0.284 0.284 0.00% 
3 0.562 0.394 0.406 3.11% 
4 0.546 0.449 0.449 0.00% 
5 0.562 0.480 0.480 0.00% 
6 0.562 0.499 0.507 1.49% 
7 0.562 0.512 0.512 0.00% 
8 0.546 0.520 0.520 0.00% 
9 0.593 0.526 0.560 6.45% 
10 0.577 0.530 0.530 0.00% 
11 0.577 0.532 0.553 3.84% 

 

The performance metrics once again are good; the consistency in CPU run time stands out.   

 

Figure 4.24. Box Plot of β = 2 for 1000 Runs of CMA-ES with Fixed Penalties for Percent Error 
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Figure 4.25. Box Plot of β = 2 for 1000 Runs of CMA-ES with Fixed Penalties for Time Elapsed 

 

Figures 4.24 and 4.25 show the box plots for percent error and time elapsed, respectively. In 

Figure 4.24, one can see that the interquartile range collapses because most of the errors are 

approaching 0%. The time elapsed range is fairly small for the interquartile range; there are not 

many outliers.  The performance metrics follow below in Table 4.15.  

 

Table 4.15. Performance Metrics of β = 2 for 1000 Runs of CMA-ES using Fixed Penalties 

𝜷 

Mean  
CPU 
Time  
[secs] 

Theoretical 
Total 𝚫𝒗 
[TU/DU] 

Mean  
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Median 
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Mean 
Percent 
Error 

Median 
Percent 
Error 

2 0.572 0.284 0.285 0.284 0.26% 0.00% 
 

The median percent error is striking, and the mean percent error is fantastic as well. The mean 

CPU time matches the consistently seen in previous runs of the algorithm. The question that leads 

from this data is if this trend will hold up for the varying penalty case. A single run of that case 

follows in Figure 4.26. A detailed view then follows in Figure 4.27.  
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Figure 4.26. Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Varying Penalties 

 

 

Figure 4.27. Detailed View of Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Varying Penalties 

 

The fitness improves exponentially over just a few iterations of the algorithm. This is desirable 

behavior because longer evaluation CPU times cost more computationally and, by extension, 

financially. The performance metrics for this case are then tabulated and presented in Table 4.16.  
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Table 4.16. Performance Metrics of β = 2 for a Single Run of CMA-ES using Varying Penalties 

𝜷 CPU Time [secs] Theoretical 
Total 𝚫𝒗 [TU/DU] 

Calculated 
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.593 0.284 0.283 0.42% 
 

The CPU time seen in Table 4.16 is consistent with what had been seen before and remains 

respectable.  The percent error also compares well to runs of the other algorithms.  

 

Figure 4.28. Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Varying Penalties 

 

Figure 4.29. Detailed View of Fitness vs. Iterations of  
Various β for Single Runs of CMA-ES using Varying Penalties 
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The previous two figures represent 10 runs for various values of β. The exponential decay 

continues to be seen, as are the fitness spikes. Interestingly, however, the spikes occur less 

frequently for the varying penalty case than they do for the fixed penalty case. The spikes, 

admittedly, are higher, though the algorithm seems to do a better job of realizing it has come 

across a poor guess and it quickly moves away from it. The performance metrics are presented 

below in Figure 4.17. The percent error for these 10 runs appears to be rather small for the most 

part, though the percent error for the 𝛽 = 2 case doesn’t seem to follow the trend. 

 

Table 4.17. Performance Metrics of Various β for a Single Run of CMA-ES with Varying Penalties 

𝜷 CPU Time [secs] Theoretical  
Total 𝚫𝒗 [TU/DU] 

Calculated  
Total 𝚫𝒗 [TU/DU] Percent Error 

2 0.562 0.284 0.283 0.43% 
3 0.608 0.394 0.394 0.08% 
4 0.577 0.449 0.449 0.03% 
5 0.577 0.480 0.480 0.01% 
6 0.562 0.499 0.499 0.01% 
7 0.562 0.512 0.512 0.00% 
8 0.593 0.520 0.520 0.00% 
9 0.593 0.526 0.526 0.00% 
10 0.577 0.530 0.530 0.00% 
11 0.562 0.532 0.532 0.00% 

 

 

Figure 4.30. Box Plot of β = 2 for 1000 Runs of CMA-ES with Varying Penalties for Percent Error 
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The trend is then further explored for 1000 iterations. The box plot of percent error is presented in 

Figure 4.30.  The percent error for the 1000 runs is striking. It appears that the error strongly 

centers on 0.425%, and exhibits behavior that appears to mimic a constant bias. The box plot of 

the CPU times follows in Figure 4.31.  

 

Figure 4.31. Box Plot of β = 2 for 1000 Runs of CMA-ES with Varying Penalties for Time Elapsed 

 

The median appears to collapse onto the first quartile of data, with lower CPU times appearing to 

be more likely as outliers than high CPU times. The detailed performance metrics are presented 

below in Table 4.18.  

 

Table 4.18. Performance Metrics of β = 2 for 1000 Runs of CMA-ES using Varying Penalties 

𝜷 

Mean  
CPU 
Time  
[secs] 

Theoretical 
Total 𝚫𝒗 
[TU/DU] 

Mean  
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Median 
Calculated 
Total 𝚫𝒗 
[TU/DU] 

Mean 
Percent 
Error 

Median 
Percent 
Error 

2 0.582 0.284 0.283 0.283 0.43% 0.43% 
 

What is most striking about CMA-ES with the varying penalties is its consistency. In addition to 

the CPU times being fairly uniform, the mean and median error are one and the same. This 
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suggests the complete absence of skewing, which is confirmed from the box plot of the percent 

error.  

4.2 Discussion 

PSO and BFO are more alike to each other than either of them is similar to CMA-ES. 

This is understandable since both are Evolutionary Algorithms designed beyond the traditional 

genetic algorithm approach. PSO models swarming behavior; BFO models bacterial foraging. 

CMA-ES is a somewhat more rigorous (while still heuristic) example of an Evolutionary 

Strategy. The differences between Evolutionary Algorithms and Evolutionary Strategies are 

largely historical in nature, the result of two varying viewpoints in how algorithms are designed 

in the Evolutionary Computation community.  

 In terms of CPU time, PSO performed strongly in this study due to its ease of 

implementation and relatively low computational overhead. CMA-ES involved more 

computations due to its matrix-based design, but performed faster in MATLAB than BFO did. 

This revelation is not surprising since MATLAB is optimized for matrix operations and is 

notoriously slow at handling loops and other control structures. BFO appears to lag behind the 

other algorithms because of the necessary simulation of the swimming behavior of each 

individual bacterium.  

 Only CMA-ES required the restarts described in Section 3.3. For the fixed penalty case, 

the single run performed required a restart. The 10 runs for the varying 𝛽 cases together needed 

42 restarts. This trend continues with the 1000 runs as well for fixed penalties. It is obvious that 

CMA-ES had trouble traversing the sudden penalties imposed by the constraint violation. For the 

varying penalty case, no restarts were needed for the single run, and only 2 restarts were needed 

to do the 10 runs for the varying 𝛽 cases. This problem of the Hohmann-like transfer was a good 
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test subject because the solution is well known, and can be proven analytically as was done in 

Chapter 2. The question this poses, then, is how would a user know to restart CMA-ES if the 

algorithm were to diverge? Despite the algorithm’s pseudo-rigorous nature, no one has to date 

been able to demonstrate convergence or divergence criteria for the algorithm and the fact that the 

algorithm is quasi-parameter free does not leave a lot of parameters to experiment with to try to 

improve convergence.  

 On the subject of parameters, BFO’s performance was likely influenced by the choice of 

search parameters. The parameters for all of the algorithms were chosen experientially because 

they appeared to give good results. The problem with BFO is that there are a larger number of 

parameters that need to be set. This criticism is one often attached to genetic algorithms as well. 

If one had the computational resources, one could use Evolutionary Computation to optimize the 

algorithm to optimize this problem. This smacks very strongly of Zero’s dichotomy paradox in 

that to the inexperienced user the task will then appear to be hopeless. This naturally greatly 

increases the time and skill needed to achieve good results. Another approach that is meta-

heuristic could be to create an outer loop that adjusts the parameters and repeatedly solves the 

problem until both the optimum parameters and the problem solution are found.  

 A common criticism of Evolutionary Computation is that the algorithms are 

computationally expensive. This is true. Evolutionary should not be applied to problems when it 

is possible or feasible to calculate gradients. Gradient-based optimization is still generally 

preferable. However, it is not always possible to calculate a gradient – the gradient may not exist, 

or it may be difficult to find as is often the case in science and engineering problems. Based on 

this, Evolutionary Computation has a niche in the world of optimization and Evolutionary 

Computation will continue to be used to solve difficult problems. 
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Chapter 5  
 

Conclusions and Future Work 

As noted by many authors, Evolutionary Computation has exploded in popularity in the 

applied science and engineering fields. Many Evolutionary Algorithms and Evolutionary 

Strategies are tremendously easy to use and implement. Performance of these algorithms is often 

a function of problem complexity and difficulty. The problem studied in this thesis has the 

advantage of being well-known and it has a well-studied solution; due to this, it is a good choice 

as a test problem.  

5.1 Lessons Learned 

There are many lessons that can be learned from this thesis. One of the most obvious 

results is that algorithm superiority is generally a myth. It is impossible to demonstrate rigorously 

the performance of an algorithm for all kinds of problems, though many authors have tried to 

demonstrate it for a variety of individual cases. Some algorithms will perform better on some 

problems and this will often vary as a function of problem difficulty and complexity. 

Programming language choice also makes a difference. CMA-ES has a lot of overhead with 

matrix operations, yet it performed faster in terms of CPU time than BFO because MATLAB, the 

language of choice for this study, is optimized for matrix operation and is well known to lag for 

control structures such as loops. This observed behavior is likely to vary as a function of problem 

size. The role of constraints and penalties play a critical role in the implementation of these 

algorithms, yet their role is often inconsistent and hard to pin down. Some algorithms like CMA-
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ES don’t natively support constraints and so a work-around has to be developed to enforce that 

the algorithm should not search outside of the constraints.   

5.2 Future Work 

Future work in Evolutionary Computation as applied to space trajectory optimization is 

bright. This thesis focused mainly on the standard versions of PSO, BFO and CMA-ES. Many 

variants exist in the literature that tackle some of the flaws that these algorithms inherently have. 

Another problem of strong interest is the finite-thrust case (the so called “burn-coast-burn” 

trajectory), which is more difficult to simulate because of the need for numeric integration. 

Outside of single-objective optimization, many authors are working on multi-objective algorithms 

that are able to optimize multiple variables simultaneously (e.g. cost and time). Regardless of 

which approach will be tackled next, Evolutionary Computation truly remains a ripe area of 

research in the field of astrodynamics. 
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