
The Pennsylvania State University

The Graduate School

College of Engineering

EVOLUTIONARY COMPUTATION FOR

SPACECRAFT TRAJECTORY OPTIMIZATION

 A Thesis in

Aerospace Engineering

by

Bradley Joseph Sottile

 2013 Bradley Joseph Sottile

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

August 2013

ii

The thesis of Bradley Joseph Sottile was reviewed and approved* by the following:

Robert G. Melton
Professor of Aerospace Engineering
Thesis Advisor

David B. Spencer
Professor of Aerospace Engineering

George A. Lesieutre
Professor of Aerospace Engineering
Head of the Department of Aerospace Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

 Evolutionary Computation has exploded in use in engineering and the applied

sciences. For this thesis, three algorithms – Particle Swarm Optimization (PSO), Bacteria

Foraging Optimization (BFO) and Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) – are compared against each other to solve a classic problem in

astrodynamics, the Hohmann transfer. The role of fixed and varying penalties is explored

for each algorithm and compared. Each algorithm was run 1000 times and the

performance metrics were compared. PSO using fixed penalties ran with an average

central processing unit (CPU) time of 0.138 seconds and yielded a mean error of 1.30%

and a median error of 0.48%. Using varying penalties, the algorithm ran with an average

CPU time of 0.107 seconds and yielded a mean error of 1.78% and a median error of

0.43%. BFO with fixed penalties had a mean CPU time of 0.655 seconds and yielded a

2.19% mean percent error and 1.91% median percent error. For the varying penalty case,

BFO averaged a CPU time of 0.727 seconds, a mean percent error of 0.27% and a median

0.36%. CMA-ES with fixed penalties yielded a mean CPU time of 0.572 seconds, a mean

percent error of 0.26% and a median percent error of 0.00%. The varying penalty case for

CMA-ES yielded a mean CPU time of 0.582 seconds, a mean percent error of 0.43% and

a median percent error of 0.43%. The algorithms all excelled in some areas and had poor

performance in others, especially as the penalty case varied. A clear result is that

algorithm selection is problem-dependent. Suggestions for future work and applications

to other problems are provided.

iv

TABLE OF CONTENTS

List of Figures .. v

List of Tables ... vii

Acknowledgements .. viii

Chapter 1 Introduction ... 1

1.1 Thesis Motivation .. 1
1.2 A Brief Overview of Evolutionary Computation ... 2
1.3 Thesis Overview and Organization .. 3

Chapter 2 Evolutionary Computation and Algorithm Descriptions ... 4

2.1 Particle Swarm Optimization (PSO) .. 4
2.2 Bacterial Foraging Optimization (BFO) .. 6
2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 8

Chapter 3 Optimal Two-Impulse Transfers Between Circular Orbits 12

3.1 Hohmann Transfer background.. 12
3.2 Problem Statement ... 18
3.3 Numerical Implementation... 21

Chapter 4 Results and Discussion .. 23

4.1 Numerical Results .. 23
4.2 Discussion .. 47

Chapter 5 Conclusions and Future Work ... 49

5.1 Lessons Learned ... 49
5.2 Future Work ... 50

References .. 51

v

LIST OF FIGURES

Figure 4.1. Fitness vs. Iterations of β = 2 for a Single Run of PSO using Fixed Penalties 23

Figure 4.2. Fitness vs. Iterations of Various β for Single Runs of PSO using Fixed Penalties 24

Figure 4.3. Detailed View of Fitness vs. Iterations of Various β for Single Runs of PSO using Fixed

Penalties .. 25

Figure 4.4. Box Plot of β = 2 for 1000 Runs of PSO with Fixed Penalties for Percent Error 26

Figure 4.5. Box Plot of β = 2 for 1000 Runs of PSO with Fixed Penalties for Time Elapsed 26

Figure 4.6. Fitness vs. Iterations of β = 2 for a Single Run of PSO using Varying Penalties 28

Figure 4.7. Detailed View of Fitness vs. Iterations of β = 2 for a Single Run of PSO using Varying

Penalties .. 28

Figure 4.8. Fitness vs. Iterations of Various β for Single Runs of PSO using Varying Penalties 29

Figure 4.9. Detailed View of Fitness vs. Iterations of Various β for Single Runs of PSO using Varying

Penalties .. 30

Figure 4.10. Box Plot of β = 2 for 1000 Runs of PSO with Varying Penalties for Percent Error 31

Figure 4.11. Box Plot of β = 2 for 1000 Runs of PSO with Varying Penalties for Time Elapsed 31

Figure 4.12. Fitness vs. Iterations of β = 2 for a Single Run of BFO using Fixed Penalties 32

Figure 4.13. Fitness vs. Iterations of Various β for Single Runs of BFO using Fixed Penalties 33

Figure 4.14. Detailed View of Fitness vs. Iterations of Various β for Single Runs of BFO using Fixed

Penalties .. 33

Figure 4.15. Box Plot of β = 2 for 1000 Runs of BFO with Fixed Penalties for Percent Error 34

Figure 4.16. Box Plot of β = 2 for 1000 Runs of BFO with Fixed Penalties for Time Elapsed 35

Figure 4.17. Fitness vs. Iterations of β = 2 for a Single Run of BFO using Varying Penalties 36

Figure 4.18. Fitness vs. Iterations of Various β for Single Runs of BFO using Varying Penalties 37

Figure 4.19. Box Plot of β = 2 for 1000 Runs of BFO with Varying Penalties for Percent Error 38

Figure 4.20. Box Plot of β = 2 for 1000 Runs of BFO with Varying Penalties for Time Elapsed 38

Figure 4.21. Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Fixed Penalties 39

Figure 4.22. Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Fixed Penalties 40

vi

Figure 4.23. Detailed View of Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Fixed

Penalties .. 40

Figure 4.24. Box Plot of β = 2 for 1000 Runs of CMA-ES with Fixed Penalties for Percent Error 41

Figure 4.25. Box Plot of β = 2 for 1000 Runs of CMA-ES with Fixed Penalties for Time Elapsed 42

Figure 4.26. Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Varying Penalties 43

Figure 27. Detailed View of Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Varying

Penalties .. 43

Figure 4.28. Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Varying Penalties 44

Figure 4.29. Detailed View of Fitness vs. Iterations of Various β for Single Runs of CMA-ES using

Varying Penalties .. 44

Figure 4.30. Box Plot of β = 2 for 1000 Runs of CMA-ES with Varying Penalties for Percent Error 45

Figure 4.31. Box Plot of β = 2 for 1000 Runs of CMA-ES with Varying Penalties for Time Elapsed 46

vii

LIST OF TABLES

Table 3.1. Range of β Values and Effect on Optimality.. 13

Table 4.1. Performance Metrics of β = 2 for a Single Run of PSO using Fixed Penalties 24

Table 4.2. Performance Metrics of Various β for a Single Run of PSO with Fixed Penalties 25

Table 4.3. Performance Metrics of β = 2 for 1000 Runs of PSO using Fixed Penalties 27

Table 4.4. Performance Metrics of β = 2 for a Single Run of PSO using Varying Penalties 29

Table 4.5. Performance Metrics of Various β for a Single Run of PSO with Varying Penalties 30

Table 4.6. Performance Metrics of β = 2 for 1000 Runs of PSO using Varying Penalties 32

Table 4.7. Performance Metrics of β = 2 for a Single Run of BFO using Fixed Penalties 33

Table 4.8. Performance Metrics of Various β for a Single Run of BFO with Fixed Penalties 34

Table 4.9. Performance Metrics of β = 2 for 1000 Runs of BFO using Fixed Penalties 35

Table 4.10. Performance Metrics of β = 2 for a Single Run of BFO using Varying Penalties 36

Table 4.11. Performance Metrics of Various β for a Single Run of BFO with Varying Penalties 37

Table 4.12. Performance Metrics of β = 2 for 1000 Runs of BFO using Varying Penalties 39

Table 4.13. Performance Metrics of β = 2 for a Single Run of CMA-ES using Fixed Penalties 40

Table 4.14. Performance Metrics of Various β for a Single Run of CMA-ES with Fixed Penalties 41

Table 4.15. Performance Metrics of β = 2 for 1000 Runs of CMA-ES using Fixed Penalties 42

Table 4.16. Performance Metrics of β = 2 for a Single Run of CMA-ES using Varying Penalties 44

Table 4.17. Performance Metrics of Various β for a Single Run of CMA-ES with Varying Penalties 45

Table 4.18. Performance Metrics of β = 2 for 1000 Runs of CMA-ES using Varying Penalties 46

viii

ACKNOWLEDGEMENTS

Several people made contributions to this work that I would be remiss to neglect mentioning. I

would like to thank Dr. Robert G. Melton for his mentorship over the last couple of years.

Without his patience and gentle advice, this project would have never come to completion. In

addition, Dr. David B. Spencer has also been a great mentor as I have walked the sometimes

winding road of graduate education. I would also like to thank my collaborator, Daniel Rueda, for

the stimulating conversations about Evolutionary Computation and his help in the code

debugging process. Many others, including Philip Myers and Michael Policelli, made

contributions small and large and have been great friends as I have undertaken this work; I have

spent more late nights with them than I care to remember. Finally, I would like to thank all of the

friends and family who have patiently suffered through the development of this thesis; your

support means more than you will ever know.

1

Chapter 1

Introduction

The field of astrodynamics is several hundred years old. Over that period of time, many

significant advances have been made that have advanced general knowledge in the field. Giants

such as Johannes Kepler (Kepler’s laws), Isaac Newton (Philosophiæ Naturalis Principia

Mathematica), Leonard Euler (numerous contributions in the mathematics and the methods of

astrodynamics) and Joseph-Louis Lagrange (Lagrange points), among others, have paved the way

for more recent advances by those such as Albert Einstein (relativity) and Walter Hohmann (the

Hohmann Transfer). This thesis seeks to make a contribution to this large body of work as well,

particularly in the area of optimization.

1.1 Thesis Motivation

Optimization is one of the oldest problems to plague mankind. A primitive example of an

optimization problem (though one many people still tackle on a daily basis) is to find the shortest

distance or path between two points. This problem may be constrained in some way – for

example, one may only be able to travel on public roads in order to reach a given destination.

Another problem might be to find the largest volume possible that could be folded from a finite

area of paper. Constraints, of course, greatly affect the optimization process and outcome. In

engineering, optimization is an overarching goal. For aerospace engineers, an optimization

problem may take the form of minimizing the weight of an aircraft’s frame without losing

strength, or designing the optimal shape of an airfoil to produce the best lift to drag ratio.

2

Aerospace vehicle trajectory optimization is an important problem that has been studied

in both aircraft and spacecraft. This thesis restricts its attention to spacecraft trajectory

optimization. An important question to resolve is what specifically is to be optimized. One may

desire in practice to minimize both time of flight and propellant use. In the problem presented

here, the single objective goal is to minimize the change in spacecraft velocity (Δ𝑣) needed for a

particular trajectory. This corresponds to a minimization of propellant use regardless of what

propellant formulation is used. By minimizing the amount of propellant needed for a given

mission, one is directly able to reduce cost.

1.2 A Brief Overview of Evolutionary Computation

 Recently, the use of Evolutionary Computation has exploded in use in the applied

sciences and engineering. In this thesis, two branches of Evolutionary Computation –

Evolutionary Algorithms and Evolutionary Strategies – are explored. In their most basic

formulations, Evolutionary Algorithms and Evolutionary Strategies are population-based

heuristic search techniques that often model physical or biological processes such as mating,

mutation or swarm behavior. Evolutionary Algorithms and Evolutionary Strategies are useful

tools when one is unwilling or unable to employ the traditional gradient-based optimization

techniques. Like many other disciplines in engineering, the use of Evolutionary Computation has

found a home in astrodynamics – particularly in areas such as the optimization of spacecraft

trajectories or in spacecraft attitude dynamics.

3

1.3 Thesis Overview and Organization

 Chapter 2 provides an overview of evolutionary computation, with particular emphasis on

evolutionary algorithms and evolutionary strategies. Detailed descriptions of the algorithms use in

this work are presented. Chapter 3 describes the Hohmann transfer, proves a proof of the

Hohmann transfer and presents the classic problem of the optimal two-impulsive transfer between

two circular, co-planar orbits. Chapter 4 presents the numeric results from the problem developed

in Chapter 3 and discusses the implications of those results. Finally, Chapter 5 discusses the

conclusions of this work based on the results from the algorithms and presents suggestions for

future work.

4

Chapter 2

Evolutionary Computation and Algorithm Descriptions

Evolutionary Computation is a relatively recent phenomenon in the literature. Aided by

[1], it is possible to present a brief overview of the early history of evolutionary computation. The

origins of Evolutionary Computation trace back to the late 1950’s; examples from this era include

[2], [3], [4] and [5]. Mostly due to the lack of processing power, this area was largely neglected

early on in the literature. Eventually, during the 1970’s, this situation began to change, and the

foundational works by Holland [6], Rechenberg [7], Schwefel [8], and Fogel [9] lead to a shift

and a renewal of interest in Evolutionary Computation. Assuming Moore’s Law [10] continues to

hold true, one could reasonably expect interest in Evolutionary Computation to continue unabated

into the near future. This chapter introduces three specific algorithms and describes them at

length. This development lays the foundation for the practical implementation of these algorithms

seen later in Chapter 4. It is generally accepted that the principal differences between

Evolutionary Strategies (ESs) and Evolutionary Algorithms (EAs) are that ESs: 1.) employ

search steps that are deterministic and 2.) almost always work with vectors of real numbers that

are representations of the solution; EAs use stochastic processes coupled with selection to

produce ever-improving potential solutions. A further difference is in the notation used by the

two classes of techniques.

2.1 Particle Swarm Optimization (PSO)

 Particle Swarm Optimization (PSO) was first introduced by James Kennedy and Russell

Eberhart in 1995 [11] and is classified as a swarm intelligence method. PSO is an easy to use

algorithm, in part, because there are very few parameters that need to be adjusted. A very simple

5

description of PSO is given by Poli [12]. Inspired by flocking behavior, a number of particles

(each particle is an array of parameter values that constitutes a possible solution) placed in a

parameter space of some problem. The fitness function (also known as the objective or cost

function) then evaluates the fitness at that particle’s location in the solution space. Based on its

history, and the fitness of other particles, the particle then moves through the parameter space

with a velocity determined from the fitness of other particles, along with a perturbing effect. In

this sense, the particles interact with each other much like a flock of birds would interact with

each other while searching for food.

 For an N dimensional problem, the position and velocity of each particle are represented

as a vector with N elements. The velocity vector is then given by

 𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝜓1𝜙1 �𝑥𝑠𝑖 − 𝑥𝑖(𝑡)� + 𝜓2𝜙2 �𝑥𝑝𝑖 − 𝑥𝑖(𝑡)� (2.1)

where 𝑥𝑠𝑖 is the ith component of the best point visited by the particles neighbors, 𝑥𝑖(𝑡) is the ith

component of the particle’s location, 𝑥𝑝𝑖 is the ith component of the particle’s best value, 𝜙1 and

𝜙2 are two independent random variables uniformly distributed 𝜖 [0, 1], 𝜔 is a constant known as

the inertia weight [13], and 𝜓1 and 𝜓2 are the acceleration coefficients. The acceleration

coefficients control the relative proportion of social interaction in the swarm. This formula is

applied to all particles. The position of the particle is then updated every time step via

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2.2)

After all of the particles have moved, the next iteration occurs. For a more extensive discussion of

the PSO algorithm, see [14].

 An extensive survey was done reviewing publications on the applications of PSO [12].

5.8% of papers in the IEEE Xplore database at that time using PSO were in the area of antenna

design. Likewise, 4.8% had to do with biomedical applications, 4.4% had to do with

communication networks and 7.0% had to do with the area of control applications. Design was

6

not left out either – 4.4% percent of papers were design-oriented. Engines and motors constituted

1.4%, entertainment (including music generation and games) consisted of another 1.4% and

scheduling problems (5.6%) were also examined. Clearly, PSO has been applied in many areas of

interest across various engineering disciplines.

2.2 Bacterial Foraging Optimization (BFO)

 Passino first proposed Bacterial Foraging Optimization (BFO) in [15]. In his original

paper, he described the biology and physics underlying the foraging (chemotactic) behavior of the

Escherichia coli (E. coli) bacteria. E. Coli occur naturally as part of the normal flora of the

gastrointestinal system and produce vitamin K2 [16]. While they have a reputation for being

harmful, E. coli is a large and diverse strain of bacteria and the vast majority of strains are

harmless. They are readily found in the environment, in food products and in the intestines of

humans and animals [17].

 The following description is from [18], while the original formulation of BFO can be

found in [19]. Define 𝒖𝑖 as a random vector with uniformly distributed elements ∈ [−1, 1] with

|𝒖𝑖| = 1. Further define 𝑩 to be a vector of parameters known as a bacterium. One can initialize a

population of 𝑁 bacteria set between some upper and lower limit bounds. Set the number of swim

steps 𝑁𝑆 during chemotaxis. Chemotaxis is the process by which bacteria direct their movements

in order to find nutrients. Now, set the swim step size to be 𝐶0 = 𝐾
𝑁𝑆

. The value of 𝐾 is chosen to

be the maximum allowable change in any element of 𝑩 during one iteration. The condition for

elimination and dispersal is 𝑃𝑒𝑑 ∈ [0, 1]; this condition is important because it reduces the

probability that stagnation will occur. Finally, define 𝑟 to be a random number uniformally

distributed ∈ [0, 1]. Noting that 𝐽 represents the result of the fitness function evaluation, it is then

possible to write the following pseudocode:

7

 for 𝑘 = 1:𝑁𝑖𝑡𝑒𝑟 do

 Tumble and Swim (Chemotaxis)
 for 𝑖 = 1:𝑁 do
 Generate 𝒖𝑖
 𝑩𝑖

′ = 𝑩𝑖 + 𝐶(𝑘) 𝒖𝑖, a trial bacterium
 𝐶(𝑘) = 𝐶0 −

0.75𝐶0(𝑘−1)
𝑁𝑖𝑡𝑒𝑟

 Set the step counter 𝑚 = 0
 While 𝐽(𝑩𝑖

′) < 𝐽(𝑩𝑖) and 𝑚 ≤ 𝑁𝑆 do
 𝑩𝑖 = 𝑩𝑖

′
 𝑩𝑖

′ = 𝑩𝑖 + 𝐶(𝑘) 𝒖𝑖
 𝑚 = 𝑚 + 1
 end while
 end for

 Reproduction

Sort the bacteria in ascending order of 𝐽. Replace the worst 𝑁
2
 bacteria (i.e. those

with the highest 𝐽 values) with copies of the best 𝑁
2
 bacteria

 Elimination and Dispersal
 for 𝑖 = 1:𝑁 do

if 𝑟 < 𝑃𝑒𝑑 then
replace 𝐵𝑖 with a randomly generated bacterium within a
specified bounds

 end if
 end for

end for

 Bacterial Foraging Optimization has found a niche in the literature. In [20], several

applications are collected. BFO has been used to train a wavelet-based neural network [21].

Pattern recognition (for example, [22] and [23]) is a problem that has been studied as well using

various variants of BFO. Dynamic resource allocation for Multiple Input, Multiple Output

(MIMO) experimental platforms was tackled in [24]. In terms of estimation theory, BFO was

applied in [25] to improve the quality of solutions for the Extended Kalman Filter (EKF) with a

focus on applications to solve the simultaneous localization and mapping (SLAM) problem. The

famous scheduling problem was tackled by numerous authors, including, for example [26].

Furthermore, in control theory [27] used a modified BFO algorithm to optimize coefficients of a

8

proportional-integral (PI) controller. It is readily apparent that BFO has found many dynamic uses

in the applied sciences and engineering.

2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Covariance Matrix Adaption Evolutionary Strategy was originally set out in [28] and is a

matrix-based algorithm designed to have a computational cost of 𝑂(𝑛2). Hansen’s paper

introducing the algorithm relies heavily on [29]. The Generating Set Adaptation (GSA) was

proposed in [29] as the first evolutionary strategy invariant to coordinate system rotations and that

learned a particular problem’s scaling. GSA did not include the formal covariance matrix in the

algorithm. Then, using this foundation, Hansen in [28] introduced the (1, 𝜆)-ES (where 𝜇 = 1)

CMA-ES algorithm. The new algorithm used a covariance matrix with great success, yielding an

algorithm that, while still heuristic, has a more concrete theoretical basis in statistical analysis

than many other algorithms found in evolutionary computation.

After declarations and initializations, the details of CMA-ES can be written in around 20

lines of MATLAB code. Hansen provides source code on his website [30], so rather than going

into extensive theoretical detail, an outline of the algorithm is presented based on [28]. Given the

search space dimension 𝑛 and the iteration step 𝑘, it is possible to define the following five

variables. Define 𝑚𝑘 ∈ ℝ𝑛 to be the distribution mean and current favored solution. Further

define and set 𝜎𝑘 > 0 to be the step size. Then, notate 𝐶𝑘 to be a symmetric positive definite

𝑛 𝑥 𝑛 covariance matrix, initialized with 𝐶0 = 𝐼, the identity matrix. Finally, define 𝑝𝜎 ∈ ℝ𝑛 and

𝑝𝑐 ∈ ℝ𝑛 to be two evolution paths initially defined as the zero vector. Select 𝜆, the number of

samples per iteration (also known as the population size). The algorithm is dependent on the

selection of 𝜆, making the algorithm quasi-parameter free for the user. This is an advantage of

9

CMA-ES over other algorithms that sometimes have many parameters that need to be defined

through trial and error.

The candidate solutions are 𝑥𝑖 ~ 𝒩(𝑚𝑘 ,𝜎𝑘2𝐶𝐾). It is then possible to denote the

candidate solutions as

 {𝑥𝑖:𝜆 | 𝑖 = 𝑖… 𝜆} = {𝑥𝑖 | 𝑖 = 1 … 𝜆} (2.3)

and

 𝑓(𝑥1:𝜆) ≤ ⋯ ≤ 𝑓�𝑥𝜇:𝜆� ≤ 𝑓�𝑥𝜇+1:𝜆�… (2.4)

The new mean is then easily computed via

𝑚𝑘+1 = �𝑤𝑖𝑥𝑖:𝜆

𝜇

𝑖=1

= 𝑚𝑘 +�𝑤𝑖(𝑥𝑖:𝜆 −𝑚𝑘)
𝜇

𝑖=1

 (2.5)

where the recombination weights 𝑤𝑖, where 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝜇 > 0 all sum to one. Typically,

one would select 𝜇 ≤ 𝜆
2
 and with weights 𝜇𝑤 = 1

∑ 𝑤𝑖
2𝜇

𝑖=1
≈ 𝜆

4
. The step size is updated using the

cumulative step-size adaptation (CSA). Define 𝑐𝜎−1 ≈
𝑛
3

> 1 to be the backwards time horizon for

the evolution path 𝑝𝜎. Further define 𝜇𝑤 = �∑ 𝑤𝑖2
𝜇
𝑖=1 �−1 to be the variance effective selection

mass, noting that by virtue of how 𝑤𝑖 is defined that 1 ≤ 𝜇𝑤 ≤ 𝜇. A unique symmetric square

root of the inverse of 𝐶𝑘 is 𝐶𝑘
−1 2⁄ = ��𝐶𝑘�

−1
= �𝐶𝑘−1. Additionally, define 𝑑𝜎 to be a damping

parameter, usually close to one; note that as 𝑑𝜎 → ∞ or 𝑐𝜎 → 0 that the step-size does not change.

It is then possible to begin the iteration. It is now possible to write equations that update 𝑝𝜎 and

𝜎𝑘+1, namely

 𝑝𝜎+1 = (1 − 𝑐𝜎)𝑝𝜎 + �1 − (1 − 𝑐𝜎)2�𝜇𝑤𝐶𝑘
−1 2⁄ 𝑚𝑘+1 − 𝑚𝑘

𝜎𝑘
 (2.6)

and

10

𝜎𝑘+1 = 𝜎𝑘 exp�

𝑐𝜎
𝑑𝜎

�
‖𝑝𝜎‖

𝐸‖𝒩(0, 𝐼)‖
− 1�� (2.7)

Now, 𝜎𝑘 will be increased if and only if ‖𝑝𝜎‖ is larger than the expected value

𝐸‖𝒩(0, 𝐼)‖ = √2

Γ �𝑛 + 1
2 �

Γ �𝑛2�
≈ √𝑛 �1 −

1
4𝑛

+
1

21𝑛2
� (2.8)

 Otherwise, if the expectation is smaller, it will be decreased. Finally, the covariance matrix is

updated. Define again 𝑐𝑐−1 ≈
𝑛
4

> 1 to be the backwards time horizon for the evolution path 𝑝𝑐.

Let 𝛼 ≈ 1.5. The indicator function 𝟏�0,𝜎√𝑛�(‖𝑝𝜎‖) evaluates to one if and only if (which

normally is the case) ‖𝑝𝜎‖ ≤ 𝛼√𝑛. Additionally, 𝑐1 ≈
2
𝑛2

 is the learning rate for the rank one

update of the covariance matrix. Furthermore, 𝑐𝜇 ≈
𝜇𝑤
𝑛2

 is the learning rate for the rank 𝜇 update

of the covariance matrix; this may not exceed 1 − 𝑐1. Piecing together these definitions, now

define the value for 𝑐𝑠 = (1 − 𝟏�0,𝜎√𝑛�(‖𝑝‖)2)𝑐1𝑐𝑐(2 − 𝑐𝑐). It is now finally possible to write

 𝑝𝑐+1 = (1 − 𝑐𝑐)𝑝𝑐 + 𝟏�0,𝜎√𝑛�(‖𝑝𝜎‖)�1− (1 − 𝑐𝑐)2�𝜇𝑤
𝑚𝑘+1 − 𝑚𝑘

𝜎𝑘
 (2.9)

and

𝐶𝐾+1 = �1 − 𝑐1 − 𝑐𝜇 + 𝑐𝑠�𝐶𝑘 + 𝑐1𝑝𝑐𝑝𝑐𝑇 + 𝑐𝜇�𝑤𝑖

𝑥𝑖:𝜆 − 𝑚𝑘

𝜎𝑘
�
𝑥𝑖:𝜆 − 𝑚𝑘

𝜎𝑘
�
𝑇

𝜇

𝑖=1

 (2.10)

The covariance matrix update tends to increase the likelihood for 𝑝𝑐 and for 𝑥𝑖:𝜆−𝑚𝑘
𝜎𝑘

 to be sampled

from 𝒩 ~ (0,𝐶𝑘+1). This concludes the update step. The algorithm then continues to iterate until

terminated by a termination procedure determined by the user.

CMA-ES has been used often in the literature, so only a few highlights are presented

here. In [31], CMA-ES was employed to aid in forensic identification. More applicable to the

discipline of aerospace engineering would be the application in [32] where the authors worked on

turbulent friction drag reduction. Optimization is a pressing matter in the design of control

11

systems; many papers (for example, see [32]) use CMA-ES to optimize feedback controllers. In

[34], CMA-ES was employed to optimize noise sensor selection. CMA-ES has also been used in

relation to other areas in evolutionary computation; in [35], CMA-ES was use to optimize neural

field models. Another aerospace application that has been explored is the optimization of

compressor blades [36]. The problem of lens design was tackled in [37]. This particular

evolutionary strategy has also made its way into the medical field, yielding papers such as [38]

where CMA-ES was employed towards the heuristic design of cancer chemotherapies. Clearly,

CMA-ES has become a popular algorithm of choice for many researchers, in part because it is

easy to use and implement.

12

Chapter 3

Optimal Two-Impulse Transfers Between Circular Orbits

The Hohmann transfer is a famous problem in astrodynamics. The Hohmann transfer and

its proof are discussed in detail in Section 3.1. For this purposes of this thesis, the Hohmann

transfer provides an opportunity to explore the performance of the algorithms to a problem that

has a well-known solution. Section 3.2 presents the problem statement used in Chapter 4 and

Section 3.3 discusses the numerical implementation of that problem statement. Ideally, the results

from the algorithm should approach the limit of the Hohmann results.

3.1 Hohmann Transfer background

 Walter Hohmann in 1925 first postulated that an orbital transfer between two circular co-

planar orbits under the standard assumptions would be the minimum energy transfer between

those orbits [39]. The mechanics of this transfer would involve a first impulse to remove the

spacecraft from its initial circular orbit onto an elliptical transfer orbit. Then, once the spacecraft

has traveled from the one apse point of the transfer ellipse to the other apse point, a second

impulse is applied to circularize the spacecraft into its new orbit. The fundamental assumption is

that the thrusts are impulsive: in other words that the orbital radii do not change (in theory, at all –

in practice, appreciably) over the duration of the thrust.

 Define for convenience 𝛽 = 𝑅2
𝑅1

, where 𝑅1 represents the radius of the inner circular orbit

and 𝑅2 represents the radius of the outer circular orbit. The Hohmann transfer is only optimal

over a specific range of values. As presented in [40], the following table holds true.

13

Table 3.1. Range of 𝛃 Values and Effect on Optimality

Range of 𝜷 Conclusion

𝛽 ∈ (0, 11.94) The Hohmann transfer is optimal

𝛽 ∈ (11.94, 15.58) Sometimes the Hohmann transfer is optimal; need to test for optimality

𝛽 ∈ (15.58,∞) The bi-elliptic transfer can be superior

The finite end points of the ranges are known as the critical limits of the transfer problem. As

noted above, when 𝛽 ∈ (11.94, 15.58), an additional test is needed to determine the optimality of

the Hohmann transfer. Escobal in [41] presents a test and provides equations to test for the

conditions needed.

 Various proofs of the Hohmann transfer have been given over the years. A proof using

the calculus of variations are given in [42] and in [43]. Some more creative approaches and

alternative proofs are given in [44] (using Green’s Theorem), [45] (using graphical construction)

and [46] (using Lagrange multipliers). More recent work includes a proof by Palmore [47] using

the techniques of elementary calculus. While the Hohmann transfer itself is relatively easy to

calculate, one must calculate all possible alternative transfers in order to complete the proof – not

an easy task in most cases.

 The proof presented below was originally inspired by Prussing [48] and makes

comparisons to the proof presented by Palmore. In Palmore’s proof, every possible transfer orbit

is listed using nonlinear functions of the semi-latus rectum 𝑝 and eccentricity 𝑒. The boundaries

of the relevant region of the (𝑝, 𝑒) plane that then contain the feasible regions for the possible

transfers contain difficult curves. It then follows that the gradient of the characteristic velocity of

the orbital maneuver with respect to these two variables can be calculated to determine the

minimum Δ𝑣, which corresponds to minimization of the propellant needed. Instead, make two

changes to Palmore’s approach. The first adaptation is the use the variables of the semi-latus

14

rectum and eccentricity themselves, instead of non-linear functions thereof in Palmore’s

presentation. The second adaptation is to use only the partial derivative of the characteristic

velocity with respect to eccentricity.

 In order for one to find the boundaries of the feasible region, one needs to recall the orbit

equation, a polar equation for orbital radius as a function of true anomaly 𝑓

 𝑟 =
𝑝

1 + 𝑒 cos𝑓
 (3.1)

It is simple to note that the semi-latus rectum (also known as the parameter by some authors) is

defined from analytic geometry to be

 𝑝 = 𝑎(1 − 𝑒2) (3.2)

where 𝑎 represents the semi-major axis of the orbit. One can readily observe that the semi-latus

rectum is a function of the size and shape of a given orbit. A feasible region means that the

transfer orbit will intersect both 𝑅1 and 𝑅2. Assume that 𝛽 > 1 holds true. An orbit can be labeled

as infeasible if either the periapsis lies outside the smaller terminal radius or the apoapsis lies

within the larger terminal orbit. Then, from Equation (3.1), the following two conditions need to

be satisfied

 𝑟𝑝 =
𝑝

1 + 𝑒
≤ 𝑟1 (3.3)

and

 𝑟𝑎 =
𝑝

1 − 𝑒
≥ 𝑟2 (3.4)

Equations (3.3) and (3.4) can be rather easily rewritten to find the semi-latus rectum. Carrying

this out reveals

 𝑝 ≤ 𝑟1(1 + 𝑒) (3.5)

and

 𝑝 ≥ 𝑟2(1− 𝑒) (3.6)

15

Every possible transfer orbit can be written as functions of semi-latus rectum and eccentricity and

takes its place as a point in the (𝑝, 𝑒) plane. The inequalities given by Equations (3.5) and (3.6)

define the region of all of the possible transfer orbits. It then follows that the boundaries of these

regions will be straight lines.

 The law of cosines provides the formula for the magnitude of the velocity change to enter

a circular orbit or depart from a circular orbit at radius 𝑟 = 𝑟𝑘

 (Δ𝑣)2 = 𝑣2 + 𝑣𝑐2 − 2𝑣𝑐𝑣𝜃 (3.7)

where 𝑘 = 1, 2, 𝑣𝑐 is the circular orbital speed and 𝑣𝜃 is the component of the velocity vector that

is normal or perpendicular to the radius. Note the equations for the conservation of angular

momentum

𝑣𝜃 =

ℎ
𝑟

=
�𝜇𝑝
𝑟

 (3.8)

where ℎ is the specific angular momentum of the orbit (often simply called angular momentum)

and 𝜇 is the standard gravitational parameter. Further, the velocity can be found from the vis-viva

integral

 𝑣2 = 𝜇 �
2
𝑟
−

1
𝑎
� (3.9)

For historical reasons, it should be noted that integral in this sense has the archaic meaning of

“constant” that predates the more modern definition of the word seen in elementary calculus. It

can then be easily shown that

 𝑣𝑐2 =
𝜇
𝑟

 (3.10)

Through substitution, Equation (3.9) can be rewritten as

𝑣2 = 𝜇 �

2
𝑟

+
𝑒2 − 1
𝑝 � (3.11)

The characteristic velocity is

16

 Δ𝑣𝑇 = Δ𝑣1 + Δ𝑣2 (3.12)

where, to ensure consistent notation, Δ𝑣1 occurs at a radius of 𝑅1 and Δ𝑣2 occurs at a radius of

𝑅2. Upon calculating the partial derivate with respect to eccentricity one finds that

 ∂Δ𝑣𝑇
𝜕𝑒

=
𝜕Δ𝑣1
𝜕𝑒

+
𝜕Δ𝑣2
𝜕𝑒

 (3.13)

By way of Equations (3.7) and (3.11), it is then possible to write

Δ𝑣𝑘

𝜕Δ𝑣𝑘
𝜕𝑒

= 𝑣𝑘
𝜕𝑣𝑘
𝜕𝑒

=
𝑒𝜇
𝑝

 (3.14)

It then immediately follows that

 𝜕Δ𝑣𝑇
𝜕𝑒

=
𝑒𝜇
𝑝
�

1
Δ𝑣1

+
1
Δ𝑣2

� > 0 (3.15)

 It is possible to note that since the partial derivative is positive then any point on the

interior of the feasible region can be lowered by lowering the value of eccentricity while holding

semi-latus rectum constant. Define 𝑟𝑝 to be the radius at periapsis and 𝑟𝑎 to be the radius at

apoapsis. This implies that minimum characteristics velocity will lie on the intersection of

𝑟𝑎 = 𝑅2 and 𝑟𝑝 = 𝑅1. What needs to be shown is that if the characteristic velocity is constrained

to the boundary its derivative with respect to eccentricity will remain positive. In other words, the

optimal solution lies at the minimum value of eccentricity on the boundary.

 The most feasible way to do this is to recognize that the expression for the characteristic

velocity is constrained to the boundary. Now it is possible to substitute for the value of the semi-

latus rectum along each portion of the boundary, namely with 𝑝 = 𝑅2(1− 𝑒) on the left and

𝑝 = 𝑅1(1 + 𝑒) on the right. It is then possible to write the characteristic velocity as a function of

eccentricity. Define Δ𝑣� to be the velocity change constrained to the boundary. Equation (3.7) then

takes the form

(Δ𝑣�)2 = 𝜇 �

2
𝑟

+
𝑒2 − 1

𝑅2(1− 𝑒)� +
𝜇
𝑟
− 2�

𝜇
𝑟
�𝜇𝑅2(1− 𝑒)

𝑟
 (3.16)

17

By differentiating with respect to eccentricity and noting that 𝐵 > 1 and 𝑒 ∈ (0, 1) for an ellipse,

one finds that

2Δ𝑣�1

𝑑Δ𝑣�1
𝑑𝑒

=
𝜇
𝑟 �

β
3
2

√1 − 𝑒
− 1� > 0 (3.17)

and

2Δ𝑣�2

𝑑Δ𝑣�2
𝑑𝑒

=
𝜇
𝑟2
�

1
√1 − 𝑒

− 1� > 0 (3.18)

Similar to what was seen with Equation (3.15), on the left portion of the boundary 𝑑Δ𝑣�𝑇
𝑑𝑒

> 0.

Likewise, on the right portion of the boundary

(Δ𝑣�)2 = 𝜇 �

2
𝑟

+
𝑒2 − 1

𝑅1(1 + 𝑒)� +
𝜇
𝑟
− 2�

𝜇
𝑟
�𝜇𝑅1(1 + 𝑒)

𝑟
 (3.19)

Differentiating yields

2Δ𝑣�1

𝑑Δ𝑣�1
𝑑𝑒

=
𝜇
𝑟1
�1 −

1
√1 + 𝑒

� > 0 (3.20)

and

2Δ𝑣�2

𝑑Δ𝑣�2
𝑑𝑒

=
𝜇
𝑟 �

1 −
1

𝛽
3
2√1 + 𝑒

� > 0 (3.21)

Following the similar trend, 𝑑Δ𝑣�𝑇
𝑑𝑒

> 0 holds on the right side of the boundary as well. The

derivative of Δ𝑣�𝑇 with respect to the eccentricity is positive for all points on the boundary. It then

reasonably follows that the optimal solution lies at the point of minimum eccentricity on the

boundary – in other words, with the Hohmann transfer.

18

3.2 Problem Statement

Now that the theory is understood, it is possible to turn one’s attention to numerical

demonstrations. As originally presented in [14], this problem involves finding the optimal

locations, directions and magnitudes of two impulses. We seek to minimize the fitness (also

known as the objective or cost) function

 𝐽 = Δ𝑣1 + Δ𝑣2 (3.22)

where the magnitudes of the two impulsive changes in velocity are represented by Δ𝑣1 and Δ𝑣2,

respectively. Define 𝜇𝐵 as the standard gravitational parameter of the attracting body. Then, the

initial conditions at time 𝑡0− are

 𝑣𝑟(𝑡0−) = 0 (3.23)

𝑣𝜃(𝑡0−) = �

𝜇𝐵
𝑅1

 (3.24)

and

 𝑟(𝑡0−) = 𝑅1 (3.25)

where 𝑣𝑟 and 𝑣𝜃 denote the radial and the horizontal component of the velocity vector 𝑣,

respectively, and 𝑟 is defined as the radius of the orbit. The terminal conditions at time 𝑡𝑓+are then

captured by

 𝑣𝑟�𝑡𝑓+� = 0 (3.26)

𝑣𝜃�𝑡𝑓+� = �

𝜇𝐵
𝑅2

 (3.27)

and

 𝑟�𝑡𝑓+� = 𝑅2 (3.28)

The velocity components 𝑣𝑟 and 𝑣𝜃 change to the following expressions after the first impulse

19

 𝑣𝑟(𝑡0+) = 𝑣𝑟(𝑡0−) + Δ𝑣1 sin𝛿1 (3.29)

and

 𝑣𝜃(𝑡0+) = 𝑣𝜃(𝑡0−) + Δ𝑣1 cos𝛿1 (3.30)

Note, of course, that 𝑟(𝑡0+) = 𝑟(𝑡0−) = 𝑅1 due to the impulsive approximation; in other words, the

radius does not change appreciably over the duration of the orbital maneuver. One is able to

define the time of the second impulse as time 𝑡𝑓. Then, during the time period between impulses,

𝑡 ∈ �𝑡0+, 𝑡𝑓−�, the trajectory is modeled as Keplerian. Note that 𝑎 is the classical orbital element

that represents the semi-major axis and that e is the classical orbital element that represents the

eccentricity of the Keplerian arc of the spacecraft’s trajectory Due to this construction, these

equations

𝑎 =

𝜇𝐵𝑟(𝑡0+)

2𝜇𝐵 − 𝑟(𝑡0+) �𝑣𝑟2(𝑡0+) + 𝑣𝜃2(𝑡0+)�
 (3.31)

and

𝑒 = �1 −

𝑟2(𝑡0+)𝑣𝜃2(𝑡0+)
𝜇𝐵𝑎

 (3.32)

hold true. Recalling the definition of the semi-latus rectum from Equation (3.2), one can then

write an expression for true anomaly through the forms

cos�𝑓(𝑡0+)� =

𝑣𝜃(𝑡0+)
𝑒 �

𝑝
𝜇𝐵

−
1
𝑒

 (3.33)

and

sin�𝑓(𝑡0+)� =

𝑣𝑟(𝑡0+)
𝑒 �

𝑝
𝜇𝐵

 (3.34)

where 𝑓(𝑡0−) denotes the true anomaly at time 𝑡0+. One can easily reason that the coasting arc

must terminate when the radius becomes 𝑅2. By extension, the true anomaly 𝑓(𝑡0+) immediately

before the second impulse is given by

20

 𝑓�𝑡𝑓−� = cos−1 �
𝑝 − 𝑅2
𝑅2𝑒

� (3.35)

At time 𝑡𝑓−, 𝑣𝑟 and 𝑣𝜃 can be written as

𝑣𝑟�𝑡𝑓−� = �

𝜇𝐵
𝑝
𝑒 sin �𝑓�𝑡𝑓−�� (3.36)

and

𝑣𝜃�𝑡𝑓−� = �

𝜇𝐵
𝑝 �1 + 𝑒 cos �𝑓�𝑡𝑓−��� (3.37)

Equations (3.26), (3.27) and (3.28), the terminal conditions, instruct that

 𝑣𝑟�𝑡𝑓+� = 𝑣𝑟�𝑡𝑓−� + Δ𝑣2 sin𝛿2 = 0 (3.38)

and

𝑣𝜃�𝑡𝑓+� = 𝑣𝜃�𝑡𝑓−� + Δ𝑣2 cos𝛿2 = �

𝜇𝐵
𝑅2

 (3.39)

 These equations can be used to find the magnitude and direction of the second impulse

Δ𝑣2 = �𝑣𝑟2�𝑡𝑓−� + ��
𝜇𝐵
𝑅2

− 𝑣𝜃�𝑡𝑓−�� (3.40)

cos𝛿2 =
�
𝜇𝐵
𝑅2

− 𝑣𝜃�𝑡𝑓−�

Δ𝑣2
 (3.41)

and

sin𝛿2 = −

𝑣𝑟�𝑡𝑓−�
Δ𝑣2

 (3.42)

It then reasonably follows that these two inequality constraints must be satisfied by any feasible

transfer trajectory

 𝑎 > 0 (3.43)

21

and

 𝑎(1 + 𝑒) ≥ 𝑅2 (3.44)

In other words, the transfer orbit must be elliptic, and the apoapsis radius must be greater than or

equal to the final radius 𝑅2. As defined, this problem is non-linear programming problem subject

to the inequality constraints of Equations (3.43) and (3.44). The two unknown parameters are Δ𝑣1

and 𝛿1, the impulse magnitude and direction, respectively.

3.3 Numerical Implementation

Each candidate solution contains the two unknown parameters

 𝜒 = [Δ𝑣1 𝛿1]𝑇 (3.45)

Canonical units are employed in order to use a normalized set of units. The initial radius

represents the distance unit (DU) and the time unit (TU) is defined using the standard

gravitational parameter such that 𝜇𝐵 = 1 DU3/TU2. Now, for PSO and BFO the optimal values of

the two unknown parameters are bounded by

 0
𝐷𝑈
𝑇𝑈

≤ Δ𝑣1 ≤ 1
𝐷𝑈
𝑇𝑈

 (3.46)

and

 −𝜋 ≤ 𝛿1 ≤ 𝜋 (3.47)

The candidate solution may not violate Equations (3.43) or (3.44), the inequality constraints.

CMA-ES does not support parameter bounding de jure by its very nature, so a penalty was added

to the objective function to simulate the parameter bounding de facto if these boundaries were

violated as described further below.

 Two penalty cases were examined. The first (hereinafter known as the fixed penalty case)

involved applying fixed penalties of magnitude 100 if the inequality constraints were violated.

22

The second (hereinafter the varying penalty case) involved applying varying penalties of 100|𝑎|

if Equation (3.43) was violated and 100(𝑎(1 + 𝑒) − 𝑅2)2 if Equation (3.44) was violated. Since

CMA-ES does not support parameter bounding, for the fixed penalty case the additional penalty

was 100 for each violation of a parameter’s bound. For the varying penalty case, the additional

penalty was 100|𝜒𝑖| for each violation of a parameter’s bound.

 To guard against the occasional divergence scenario, if an algorithm returned a result

with error greater than 25%, the algorithm was restarted and the initial results were thrown out.

PSO was run with 30 particles for 500 iterations using cognitive and social scaling parameters of

1.49445 and an inertial weight of 1+𝑟𝑎𝑛𝑑(𝑛)
2

, where 𝑟𝑎𝑛𝑑(𝑛) denotes a uniformly distributed

random number ∈ (0, 1). BFO was run 30 bacteria that each swam for 100 steps for 500

generations a swim step size of 0.000001. The probably of elimination and dispersal used for

BFO was 0.25. CMA-ES was initialized with a step size of 0.1. The foregoing was then

implemented numerically and results are presented as Chapter 4.

23

Chapter 4

Results and Discussion

The choice of programming language one may use is often problem specific. Many

researchers have had great success with programming various algorithms in Evolutionary

Computation in C++ or Java, especially when parallelization has been a concern. For this

experiment, it was deemed that MATLAB would be sufficient for this task since MATLAB has

excellent support of the extensive matrix operations needed to carry out CMA-ES. The numerical

simulation described in Chapter 3 was easy to implement in MATLAB, the results of which are

presented in Section 4.1 and analyzed in Section 4.2

4.1 Numerical Results

Since PSO was the algorithm used in [14], it made sense to begin with that algorithm

here. Using the settings listed in Section 3.3, the algorithm was run once using fixed penalties.

Figure 4.1. Fitness vs. Iterations of β = 2 for a Single Run of PSO using Fixed Penalties

24

Fitness is defined throughout as the calculated objective function minus the known result, i.e. the

Hohmann results. As can be seen in Figure 4.1, the fitness improves quickly over a relatively

small number of iterations. It is then possible to look at the performance metrics.

Table 4.1. Performance Metrics of β = 2 for a Single Run of PSO using Fixed Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.140 0.284 0.297 4.55%

Table 4.1 presents the performance metrics for the run in Figure 4.1 Note that due to rounding,

percent errors may not line up exactly with the values in the table. The MATLAB function

cputime was used to calculate the central processing unit (CPU) time needed to run the algorithm.

The processing was done using a quad core Intel i5-2400 processor. As can be readily seen from

Table 4.1, the algorithm is fast – carrying out the sub-second function evaluations rather quickly.

The percent error calculated is less than 5%, which is not bad considering no gradients were used

to carry out the optimization. Next, the algorithm was run 10 times to see if changing 𝛽 = 𝑅2
𝑅1

would affect the algorithm’s performance. The results are presented below in Figure 4.2

Figure 4.2. Fitness vs. Iterations of Various β for Single Runs of PSO using Fixed Penalties

25

As can be seen in Figure 4.2, the fitness improves so rapidly that the resolution of the graph

doesn’t immediately provide useful information. Figure 4.3 below provides a zoom of the fitness

history for a selected range of iterations.

Figure 4.3. Detailed View of Fitness vs. Iterations of Various β for Single Runs of PSO using Fixed Penalties

It is readily apparent from Figure 4.3 that the algorithm performs well across a range of β. The

upper limit of β is selected, of course, with consideration to Table 3.1 knowing the limitation of

the Hohmann formulation. As before, it is possible to look at performance metrics for the results

that had the best fitness. These are tabulated below in Table 4.2.

Table 4.2. Performance Metrics of Various β for a Single Run of PSO with Fixed Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.140 0.284 0.293 2.99%
3 0.125 0.394 0.397 0.74%
4 0.140 0.449 0.449 0.13%
5 0.109 0.480 0.481 0.24%
6 0.109 0.499 0.499 0.00%
7 0.125 0.512 0.514 0.43%
8 0.109 0.520 0.520 0.00%
9 0.125 0.526 0.526 0.00%
10 0.094 0.530 0.532 0.50%
11 0.125 0.532 0.534 0.23%

26

Upon examination of Table 4.2, it is difficult to discern a pattern as 𝛽 varies. The reasonable

conclusion, then, is that the choice of 𝛽 did not affect the performance of the algorithm for the

fixed penalty case. Now, running the code 1000 times gives one the opportunity to assess the

statistics of the algorithm’s performance. Figure 4.4 shows a box plot of the percent error of PSO

using fixed penalties. Figure 4.5 shows a box plot of the CPU time for the same 1000 runs.

Figure 4.4. Box Plot of β = 2 for 1000 Runs of PSO with Fixed Penalties for Percent Error

Figure 4.5. Box Plot of β = 2 for 1000 Runs of PSO with Fixed Penalties for Time Elapsed

27

All box plots in this thesis use the following notation: the box contains values between the 25th

and 75th percentiles, the central mark in the box indicates the median value, the vertical bars

outside of the box indicate the extremes and the “+” signs denote outliers, if present. Figure 4.4

indicates that there is skewing in the error sample, with the occasional high outlier. This is

reasonable – not every initial guess is going to return a great result with a fixed number of

function evaluations (NFE). Figure 4.5 shows a fairly small range of CPU times, which justifies

not calculating the median CPU time in the performance metrics. These performance metrics are

found below in Table 4.3.

Table 4.3. Performance Metrics of β = 2 for 1000 Runs of PSO using Fixed Penalties

𝜷

Mean
CPU
Time
[secs]

Theoretical
Total 𝚫𝒗
[TU/DU]

Mean
Calculated
Total 𝚫𝒗
[TU/DU]

Median
Calculated
Total 𝚫𝒗
[TU/DU]

Mean
Percent
Error

Median
Percent
Error

2 0.137905 0.284 0.288 0.286 1.40% 0.48%

The results for 1000 runs are excellent. Once again, the skewing is visible in comparing the mean

and median percent error, though they are not terribly far apart. This suggests once again that the

occasional bad initial guess can propagate through the algorithm and cause slower optimization

when the algorithm gets hung up on local extrema. Now it is possible to examine the varying

penalty case. Figure 4.6 shows a graph of fitness against iteration for a single run of PSO, this

time with the varying penalties. Figure 4.7 shows a detailed view of Figure 4.6.

28

Figure 4.6. Fitness vs. Iterations of β = 2 for a Single Run of PSO using Varying Penalties

Figure 4.7. Detailed View of Fitness vs. Iterations of β = 2 for a Single Run of PSO using Varying Penalties

On casual observation, one could observe that the algorithm seems to settle towards optimum

more quickly than in the fixed penalty case though one must be careful not to draw too much

information from a single run of the algorithm. The performance metrics from this run are shown

in Table 4.4.

29

Table 4.4. Performance Metrics of β = 2 for a Single Run of PSO using Varying Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.125 0.284 0.286 0.59%

The percent error seen in Table 4.4 for this run is quite good and the CPU time is faster than had

been seen in the single run of the fixed penalty case. Now, letting 𝛽 vary again, it is possible to

present Figure 4.8.

Figure 4.8. Fitness vs. Iterations of Various β for Single Runs of PSO using Varying Penalties

Similar performance as before was achieved, though the resolution is once again a little difficult

for the casual observer to make out. Since the algorithm converges rather quickly, a detailed

view of this plot is presented as Figure 4.9.

30

Figure 4.9. Detailed View of Fitness vs. Iterations of Various β for Single Runs of PSO using Varying Penalties

It should be noted that the lines for fitness are so close together that they are on top of each other.

The performance metrics were tabulated once again and are presented below in Table 4.5.

Table 4.5. Performance Metrics of Various β for a Single Run of PSO with Varying Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.109 0.284 0.286 0.55%
3 0.094 0.394 0.398 1.07%
4 0.094 0.449 0.458 2.17%
5 0.094 0.480 0.480 0.06%
6 0.109 0.499 0.512 2.48%
7 0.156 0.512 0.560 9.46%
8 0.109 0.520 0.548 5.43%
9 0.094 0.526 0.550 4.53%
10 0.094 0.530 0.545 2.83%
11 0.109 0.532 0.533 0.03%

Once again, the trend appears to be that the choice of 𝛽 has minimal impact on the accuracy of

the solution. This speaks well to the robustness of PSO. Now, the algorithm was run 1000 times.

The boxplots for percent error is presented in Figure 4.10.

31

Figure 4.10. Box Plot of β = 2 for 1000 Runs of PSO with Varying Penalties for Percent Error

Additionally, the box plot for CPU time is found below in Figure 4.11.

Figure 4.11. Box Plot of β = 2 for 1000 Runs of PSO with Varying Penalties for Time Elapsed

The mean percent error is lower to the first quartile than it was in the fixed penalty case and the

mean run time has improved. This improvement is perhaps most obvious when viewing Table

4.6, in which the performance metrics are tabulated.

32

Table 4.6. Performance Metrics of β = 2 for 1000 Runs of PSO using Varying Penalties

𝜷

Mean
CPU
Time
[secs]

Theoretical
Total 𝚫𝒗
[TU/DU]

Mean
Calculated
Total 𝚫𝒗
[TU/DU]

Median
Calculated
Total 𝚫𝒗
[TU/DU]

Mean
Percent
Error

Median
Percent
Error

2 0.107 0.284 0.289 0.285 1.78% 0.43%

Since the CPU time decreased, one’s initial reaction may be to expect the error to improve

markedly as well. This reaction, however, is not substantiated by Table 4.6; while the median

error does decrease the mean error increases, though neither difference is especially large.

 Now that the performance of PSO has been characterized, it is possible to look at BFO.

Continuing with the same pattern as before, BFO was run once with fixed penalties. The fitness

plot is presented below in Figure 4.12.

Figure 4.12. Fitness vs. Iterations of β = 2 for a Single Run of BFO using Fixed Penalties

The plot has stronger spikes to it because each bacterium is allows to swim, though the fitness

seems to center not far from the known solution (i.e. fitness that is zero). The performance

metrics are tabulated in Table 4.7.

33

Table 4.7. Performance Metrics of β = 2 for a Single Run of BFO using Fixed Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.624 0.284 0.287 0.76%

While the percent error seems to be along the lines of that seen with PSO, it is obvious that the

CPU time has gone up; this is likely a function of the need to simulate the 100 swim steps of each

bacterium. Now, vary 𝛽 and it is possible to develop Figures 4.13 and 4.14.

Figure 4.13. Fitness vs. Iterations of Various β for Single Runs of BFO using Fixed Penalties

Figure 4.14. Detailed View of Fitness vs. Iterations of Various β for Single Runs of BFO using Fixed Penalties

34

The spikes in fitness degrade the appearance of the plots. Figure 4.14 offers a closer look on what

is occurring in Figure 4.13. The performance metrics are then presented in Table 4.8.

Table 4.8. Performance Metrics of Various β for a Single Run of BFO with Fixed Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.702 0.284 0.293 3.09%
3 0.608 0.394 0.399 1.37%
4 0.671 0.449 0.460 2.58%
5 0.640 0.480 0.493 2.61%
6 0.671 0.499 0.505 1.15%
7 0.686 0.512 0.526 2.83%
8 0.655 0.520 0.529 1.75%
9 0.686 0.526 0.531 0.97%
10 0.702 0.530 0.534 0.82%
11 0.624 0.532 0.541 1.68%

The algorithm appears to perform no better on large values of 𝛽 than it does for small values of 𝛽

and the results are fairly good overall. Now, the code was run 1000 times again. The box plot of

percent error follows below as Figure 4.15.

Figure 4.15. Box Plot of β = 2 for 1000 Runs of BFO with Fixed Penalties for Percent Error

35

Along the same lines, Figure 4.16 is the box plot of the CPU time for the fixed penalty case of

BFO.

Figure 4.16. Box Plot of β = 2 for 1000 Runs of BFO with Fixed Penalties for Time Elapsed

The box plot in Figure 4.15 suggests a fairly small range of errors for the 1000 runs. Likewise,

the spread of CPU times is fairly small as well. The performance metrics are tabulated below as

Table 4.9.

Table 4.9. Performance Metrics of β = 2 for 1000 Runs of BFO using Fixed Penalties

𝜷

Mean
CPU
Time
[secs]

Theoretical
Total 𝚫𝒗
[TU/DU]

Mean
Calculated
Total 𝚫𝒗
[TU/DU]

Median
Calculated
Total 𝚫𝒗
[TU/DU]

Mean
Percent
Error

Median
Percent
Error

2 0.655 0.284 0.291 0.290 2.19% 1.91%

The mean and median errors are fairly close together, which matches the impression given by

Figure 4.15. The fairly large mean time for this application stands out as noteworthy. Now, the

varying penalty case can be implemented. The single run iteration history follows in Figure 4.17.

36

Figure 4.17. Fitness vs. Iterations of β = 2 for a Single Run of BFO using Varying Penalties

Once again, similar spiky performance is seen as each bacterium swims. The performance metric

for this run follow in Table 4.10.

Table 4.10. Performance Metrics of β = 2 for a Single Run of BFO using Varying Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.749 0.284 0.284 0.15%

The CPU time appears to have increased again, though one must continue to be careful not to

read too much from a single run of the code. The eye is drawn towards the remarkably low

percent error – this suggests paying attention to the error for this case. Figure 4.17 on the next

page shows the iteration history for various values of 𝛽. This plot is much cleaner than Figure

4.13, and therefore needs no detailed view. It appears that fitness does occasionally spike very

high, but that these occurrences are fairly rare.

37

Figure 4.18. Fitness vs. Iterations of Various β for Single Runs of BFO using Varying Penalties

The performance metrics from these varying cases are tabulated and appear below in Table 4.11.

On the whole, the CPU time appear high again, though the percent errors achieved appear to be

excellent.

Table 4.11. Performance Metrics of Various β for a Single Run of BFO with Varying Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.718 0.284 0.285 0.09%
3 0.702 0.394 0.405 2.72%
4 0.671 0.449 0.453 0.87%
5 0.702 0.480 0.483 0.68%
6 0.718 0.499 0.500 0.07%
7 0.686 0.512 0.515 0.71%
8 0.780 0.520 0.521 0.16%
9 0.671 0.526 0.526 0.04%
10 0.718 0.530 0.549 3.62%
11 0.733 0.532 0.538 1.01%

The code is then run 1000 times with an eye towards viewing the statistical trends once again.

Figure 4.19 the box plot for the error, while Figure 4.20 shows the box plot of the CPU time.

38

Figure 4.19. Box Plot of β = 2 for 1000 Runs of BFO with Varying Penalties for Percent Error

Figure 4.20. Box Plot of β = 2 for 1000 Runs of BFO with Varying Penalties for Time Elapsed

There appears to be a fair number of outliers for the percent error as seen in Figure 4.18, though

the error itself looks to be fairly good. This is likely a function of the relatively small interquartile

range. The trend of fairly large run times that had been seen in single runs is confirmed by the

box plot in Figure 4.20.

39

Table 4.12. Performance Metrics of β = 2 for 1000 Runs of BFO using Varying Penalties

𝜷

Mean
CPU
Time
[secs]

Theoretical
Total 𝚫𝒗
[TU/DU]

Mean
Calculated
Total 𝚫𝒗
[TU/DU]

Median
Calculated
Total 𝚫𝒗
[TU/DU]

Mean
Percent
Error

Median
Percent
Error

2 0.727 0.284 0.285 0.285 0.27% 0.36%

The performance metrics for the varying penalty case are tabulated above in Table 4.12. The

mean CPU time is around three quarters of a second, which is remarkably high considering each

function evaluation is sub-second in duration. While the run time is up, the percent errors are

down and the closeness between the mean and median percent errors suggests there is not as

much skewing of this data set.

 The last algorithm examined is CMA-ES. Continuing with the pattern of single runs, a

single run was performed with the modified fixed penalty case developed in Section 3.3.

Figure 4.21. Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Fixed Penalties

This plot, at first glance, appears to be nonsense. However, upon zooming in on the plot, it

because readily apparent that the fitness value is oscillating from iteration to iteration.

Performance metrics follow in Table 4.13.

40

Table 4.13. Performance Metrics of β = 2 for a Single Run of CMA-ES using Fixed Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.546 0.284 0.284 0.00%

The percent error, as evidenced in Table 4.13, achieved in this single run is surprising, especially

when viewed in light of the CPU time.

Figure 4.22. Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Fixed Penalties

Figure 4.23. Detailed View of Fitness vs. Iterations of
Various β for Single Runs of CMA-ES using Fixed Penalties

41

The iteration history is shown in Figures 4.22 and 4.23. Once again, the resolution of the global

plot is fairly poor in Figure 4.22, so a zoomed view is presented in Figure 4.23. The first plot is

clarified once the reader notices that the colors of the various lines are blurring to produce colors

such as brown and magenta. The second plot is the more interesting of the two and really displays

the oscillation of the fitness values. Table 4.14 presents the performance metrics from these runs.

Table 4.14. Performance Metrics of Various β for a Single Run of CMA-ES with Fixed Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.546 0.284 0.284 0.00%
3 0.562 0.394 0.406 3.11%
4 0.546 0.449 0.449 0.00%
5 0.562 0.480 0.480 0.00%
6 0.562 0.499 0.507 1.49%
7 0.562 0.512 0.512 0.00%
8 0.546 0.520 0.520 0.00%
9 0.593 0.526 0.560 6.45%
10 0.577 0.530 0.530 0.00%
11 0.577 0.532 0.553 3.84%

The performance metrics once again are good; the consistency in CPU run time stands out.

Figure 4.24. Box Plot of β = 2 for 1000 Runs of CMA-ES with Fixed Penalties for Percent Error

42

Figure 4.25. Box Plot of β = 2 for 1000 Runs of CMA-ES with Fixed Penalties for Time Elapsed

Figures 4.24 and 4.25 show the box plots for percent error and time elapsed, respectively. In

Figure 4.24, one can see that the interquartile range collapses because most of the errors are

approaching 0%. The time elapsed range is fairly small for the interquartile range; there are not

many outliers. The performance metrics follow below in Table 4.15.

Table 4.15. Performance Metrics of β = 2 for 1000 Runs of CMA-ES using Fixed Penalties

𝜷

Mean
CPU
Time
[secs]

Theoretical
Total 𝚫𝒗
[TU/DU]

Mean
Calculated
Total 𝚫𝒗
[TU/DU]

Median
Calculated
Total 𝚫𝒗
[TU/DU]

Mean
Percent
Error

Median
Percent
Error

2 0.572 0.284 0.285 0.284 0.26% 0.00%

The median percent error is striking, and the mean percent error is fantastic as well. The mean

CPU time matches the consistently seen in previous runs of the algorithm. The question that leads

from this data is if this trend will hold up for the varying penalty case. A single run of that case

follows in Figure 4.26. A detailed view then follows in Figure 4.27.

43

Figure 4.26. Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Varying Penalties

Figure 4.27. Detailed View of Fitness vs. Iterations of β = 2 for a Single Run of CMA-ES using Varying Penalties

The fitness improves exponentially over just a few iterations of the algorithm. This is desirable

behavior because longer evaluation CPU times cost more computationally and, by extension,

financially. The performance metrics for this case are then tabulated and presented in Table 4.16.

44

Table 4.16. Performance Metrics of β = 2 for a Single Run of CMA-ES using Varying Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.593 0.284 0.283 0.42%

The CPU time seen in Table 4.16 is consistent with what had been seen before and remains

respectable. The percent error also compares well to runs of the other algorithms.

Figure 4.28. Fitness vs. Iterations of Various β for Single Runs of CMA-ES using Varying Penalties

Figure 4.29. Detailed View of Fitness vs. Iterations of
Various β for Single Runs of CMA-ES using Varying Penalties

45

The previous two figures represent 10 runs for various values of β. The exponential decay

continues to be seen, as are the fitness spikes. Interestingly, however, the spikes occur less

frequently for the varying penalty case than they do for the fixed penalty case. The spikes,

admittedly, are higher, though the algorithm seems to do a better job of realizing it has come

across a poor guess and it quickly moves away from it. The performance metrics are presented

below in Figure 4.17. The percent error for these 10 runs appears to be rather small for the most

part, though the percent error for the 𝛽 = 2 case doesn’t seem to follow the trend.

Table 4.17. Performance Metrics of Various β for a Single Run of CMA-ES with Varying Penalties

𝜷 CPU Time [secs] Theoretical
Total 𝚫𝒗 [TU/DU]

Calculated
Total 𝚫𝒗 [TU/DU] Percent Error

2 0.562 0.284 0.283 0.43%
3 0.608 0.394 0.394 0.08%
4 0.577 0.449 0.449 0.03%
5 0.577 0.480 0.480 0.01%
6 0.562 0.499 0.499 0.01%
7 0.562 0.512 0.512 0.00%
8 0.593 0.520 0.520 0.00%
9 0.593 0.526 0.526 0.00%
10 0.577 0.530 0.530 0.00%
11 0.562 0.532 0.532 0.00%

Figure 4.30. Box Plot of β = 2 for 1000 Runs of CMA-ES with Varying Penalties for Percent Error

46

The trend is then further explored for 1000 iterations. The box plot of percent error is presented in

Figure 4.30. The percent error for the 1000 runs is striking. It appears that the error strongly

centers on 0.425%, and exhibits behavior that appears to mimic a constant bias. The box plot of

the CPU times follows in Figure 4.31.

Figure 4.31. Box Plot of β = 2 for 1000 Runs of CMA-ES with Varying Penalties for Time Elapsed

The median appears to collapse onto the first quartile of data, with lower CPU times appearing to

be more likely as outliers than high CPU times. The detailed performance metrics are presented

below in Table 4.18.

Table 4.18. Performance Metrics of β = 2 for 1000 Runs of CMA-ES using Varying Penalties

𝜷

Mean
CPU
Time
[secs]

Theoretical
Total 𝚫𝒗
[TU/DU]

Mean
Calculated
Total 𝚫𝒗
[TU/DU]

Median
Calculated
Total 𝚫𝒗
[TU/DU]

Mean
Percent
Error

Median
Percent
Error

2 0.582 0.284 0.283 0.283 0.43% 0.43%

What is most striking about CMA-ES with the varying penalties is its consistency. In addition to

the CPU times being fairly uniform, the mean and median error are one and the same. This

47

suggests the complete absence of skewing, which is confirmed from the box plot of the percent

error.

4.2 Discussion

PSO and BFO are more alike to each other than either of them is similar to CMA-ES.

This is understandable since both are Evolutionary Algorithms designed beyond the traditional

genetic algorithm approach. PSO models swarming behavior; BFO models bacterial foraging.

CMA-ES is a somewhat more rigorous (while still heuristic) example of an Evolutionary

Strategy. The differences between Evolutionary Algorithms and Evolutionary Strategies are

largely historical in nature, the result of two varying viewpoints in how algorithms are designed

in the Evolutionary Computation community.

 In terms of CPU time, PSO performed strongly in this study due to its ease of

implementation and relatively low computational overhead. CMA-ES involved more

computations due to its matrix-based design, but performed faster in MATLAB than BFO did.

This revelation is not surprising since MATLAB is optimized for matrix operations and is

notoriously slow at handling loops and other control structures. BFO appears to lag behind the

other algorithms because of the necessary simulation of the swimming behavior of each

individual bacterium.

 Only CMA-ES required the restarts described in Section 3.3. For the fixed penalty case,

the single run performed required a restart. The 10 runs for the varying 𝛽 cases together needed

42 restarts. This trend continues with the 1000 runs as well for fixed penalties. It is obvious that

CMA-ES had trouble traversing the sudden penalties imposed by the constraint violation. For the

varying penalty case, no restarts were needed for the single run, and only 2 restarts were needed

to do the 10 runs for the varying 𝛽 cases. This problem of the Hohmann-like transfer was a good

48

test subject because the solution is well known, and can be proven analytically as was done in

Chapter 2. The question this poses, then, is how would a user know to restart CMA-ES if the

algorithm were to diverge? Despite the algorithm’s pseudo-rigorous nature, no one has to date

been able to demonstrate convergence or divergence criteria for the algorithm and the fact that the

algorithm is quasi-parameter free does not leave a lot of parameters to experiment with to try to

improve convergence.

 On the subject of parameters, BFO’s performance was likely influenced by the choice of

search parameters. The parameters for all of the algorithms were chosen experientially because

they appeared to give good results. The problem with BFO is that there are a larger number of

parameters that need to be set. This criticism is one often attached to genetic algorithms as well.

If one had the computational resources, one could use Evolutionary Computation to optimize the

algorithm to optimize this problem. This smacks very strongly of Zero’s dichotomy paradox in

that to the inexperienced user the task will then appear to be hopeless. This naturally greatly

increases the time and skill needed to achieve good results. Another approach that is meta-

heuristic could be to create an outer loop that adjusts the parameters and repeatedly solves the

problem until both the optimum parameters and the problem solution are found.

 A common criticism of Evolutionary Computation is that the algorithms are

computationally expensive. This is true. Evolutionary should not be applied to problems when it

is possible or feasible to calculate gradients. Gradient-based optimization is still generally

preferable. However, it is not always possible to calculate a gradient – the gradient may not exist,

or it may be difficult to find as is often the case in science and engineering problems. Based on

this, Evolutionary Computation has a niche in the world of optimization and Evolutionary

Computation will continue to be used to solve difficult problems.

49

Chapter 5

Conclusions and Future Work

As noted by many authors, Evolutionary Computation has exploded in popularity in the

applied science and engineering fields. Many Evolutionary Algorithms and Evolutionary

Strategies are tremendously easy to use and implement. Performance of these algorithms is often

a function of problem complexity and difficulty. The problem studied in this thesis has the

advantage of being well-known and it has a well-studied solution; due to this, it is a good choice

as a test problem.

5.1 Lessons Learned

There are many lessons that can be learned from this thesis. One of the most obvious

results is that algorithm superiority is generally a myth. It is impossible to demonstrate rigorously

the performance of an algorithm for all kinds of problems, though many authors have tried to

demonstrate it for a variety of individual cases. Some algorithms will perform better on some

problems and this will often vary as a function of problem difficulty and complexity.

Programming language choice also makes a difference. CMA-ES has a lot of overhead with

matrix operations, yet it performed faster in terms of CPU time than BFO because MATLAB, the

language of choice for this study, is optimized for matrix operation and is well known to lag for

control structures such as loops. This observed behavior is likely to vary as a function of problem

size. The role of constraints and penalties play a critical role in the implementation of these

algorithms, yet their role is often inconsistent and hard to pin down. Some algorithms like CMA-

50

ES don’t natively support constraints and so a work-around has to be developed to enforce that

the algorithm should not search outside of the constraints.

5.2 Future Work

Future work in Evolutionary Computation as applied to space trajectory optimization is

bright. This thesis focused mainly on the standard versions of PSO, BFO and CMA-ES. Many

variants exist in the literature that tackle some of the flaws that these algorithms inherently have.

Another problem of strong interest is the finite-thrust case (the so called “burn-coast-burn”

trajectory), which is more difficult to simulate because of the need for numeric integration.

Outside of single-objective optimization, many authors are working on multi-objective algorithms

that are able to optimize multiple variables simultaneously (e.g. cost and time). Regardless of

which approach will be tackled next, Evolutionary Computation truly remains a ripe area of

research in the field of astrodynamics.

51

References

[1] Bäck, T., Hammel, U. and Schwefel, H-P., “Evolutionary Computation: Comments on the

History and Current State,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1,

April 1997, pp. 3-17.

[2] Bremermann, H.J., “Optimization through evolution and recombination”, in Self-Organizing

Systems, edited by M. C. Yovits et al., Spartan, Washington, DC, 1962.

[3] Friedberg, R.M., “A Learning Machine: Part I,” IBM Journal, Vol. 2, No. 1, January 1958,

pp. 2-13.

[4] Friedberg, R.M., “A Learning Machine: Part II,” IBM Journal, Vol. 3, No. 7, July 1959, pp.

282-287.

[5] Box, G.E.P., “Evolutionary Operation: A Method for Increasing Industrial Productivity,”

Applied Statistics, Vol. VI, No. 2, 1957, pp. 81-101.

[6] Holland, J.H., “Outline for a Logical Theory of Adaptive Systems,” Journal of the

Association of Computer Machinery, Vol. 9, Issue 3, July 1962, pp. 297-314.

[7] Rechenberg, I., “Cybernetic Solution Path of an Experimental Problem,” Royal Aircraft

Establishment, Library Translation No. 1122, Farnborough, Hants., U.K., August 1965.

[8] Schwefel, H-P., “Experimentelle Optimierung einer Zweiphasendiise Teil I”, AEG

Research Institute Project MHD-Staustrahlrohr 11034/68 Technical Report 35.

[9] Fogel, L.J, “Autonomous Automata,” Industrial Research Magazine, Vol. 4, No. 2,

February 1962, pp. 14-19.

[10] Moore, G.E., “Cramming More Components Onto Integrated Circuits,” Electronics,

Volume 38, Number 8, April 1965, pp. 114-117.

52

[11] Kennedy, J., and Eberhart, R. “Particle Swarm Optimization,” Proceedings of IEEE

International Conference on Neural Networks, Vol. 4, Institute of Electrical and

Electronics Engineers, Western Australia, 1995, pp. 1942-1948.

[12] Poli, R. “Analysis of the Publications on the Applications of Particle Swarm Optimization,”

Journal of Artificial Evolution and Applications, Vol. 2008, Article ID 685175, 10 pages,

2008.

[13] Shi, Y. and R. C. Eberhart, “A Modified Particle Swarm Optimizer,” Proceedings of the

IEEE Congress on Evolutionary Computation (CEC ’99), Institute of Electrical and

Electronics Engineers, Piscataway, NY, 1999, pp. 69-73.

[14] Pontani, M. and Conway, B.A., “Particle Swarm Optimization Applied to Space

Trajectories,” Journal of Guidance, Control and Dynamics, Vol. 33, No. 5, 2010, pp. 1429-

1441.

[15] Passino, K.M., “Biomimicry of Bacterial Foraging for Distributed Optimization and

Control,” IEEE Control System Magazine, Vol. 22, Issue 3, pp. 52-66, June 2002.

[16] Bentley, R., and Meganathan, R., “Biosynthesis of Vitamin K (Menaquinone) in Bacteria,”

Microbiological Reviews, Vol. 46, No. 3, pp. 241-280, September 1982.

[17] “E. Coli (Escherichia coli),” Centers for Disease Control and Prevention.

[www.cdc.gov/ecoli/index.html. Accessed 7/1/13.]

[18] Melton, R.G., “Hybrid Methods for Determining Time-Optimal, Constrained Spacecraft

Reorientation Maneuvers,” Acta Astronautica, http://dx.doi.org/10.1016/

j.actaastro.2013.05.007, in press.

[19] Chen, H., Zhu, Y., and Hu., K., “Adaptive Bacterial Foraging Optimization,” Abstract and

Applied Analysis, Vol. 2011, 2011, 27 pages.

[20] Das, S., Biswas, A., Dasgupta, S. and Abraham, A., “Bacterial Foraging Optimizion

Algorithm: Theoretical Foundations, Analysis, and Applications,” Foundations of

http://www.cdc.gov/ecoli/index.html
http://dx.doi.org/10.1016/j.actaastro.2013.05.007
http://dx.doi.org/10.1016/j.actaastro.2013.05.007

53

Computational Intelligence, Vol. 3, Edited by Abraham, A., Hassanien, A-E., Siarry, P. and

Engelbrecht, A., Springer, 2009, pp. 23-55.

[21] Ulagammai, L., Vankatesh, P., Kannan, P.S., Padhy, N.P., “Application of Bacterial

Foraging Technique Trained and Artificial and Wavelet Neural Networks in Load

Forcasting,” Neurocomputing, Vol. 70, Issues 16-18, October 2007, pp. 2659-

2667, http://dx.doi.org/10.1016/j.neucom.2006.05.020.

[22] Dasgupta, S., Biswas, A., Das, S., and Abraham, A., “Automatic Circle Detection on

Images with an Adaptive Bacterial Foraging Algorithm,” 2008 Genetic and Evolutionary

Computation Conference (GECCO 2008), ACM Press, New York, 2008, pp. 1695-1696.

[23] Acharya, D.P., Panda, G., Mishra, S. and Lakhshmi, Y.V.S., “Bacteria Foraging Based

Independent Component Analysis,” International Conference on Computational

Intelligence and Multimedia Applications, IEEE Press, Los Alamitos, December 2007, pp.

527-531.

[24] Munoz, M.A., Lopez, J.A., Caicedo, E., “Bacterial Foraging Optimization for Dynamical

Resource Allocation in a Multizone Temperature Experimentation Platform,” Analysis and

Design of Intelligent Systems using Soft Computing Techniques, Vol. 41, Edited by Melin,

P., Castillo, O., Ramírez, E.G., Kacprzyk, J., and Pedryck, W., Springer, 2007, pp. 427-

435.

[25] Chatterjee, A. and Matsuno, F., “Bacertial Foraging Techniques for Solving EKF-Based

SLAM Problems, Proceedings of the International Control Conference (Control 2006),

Glasgow, U.K., August 30-September 01, 2006.

[26] Wu, C., Zhang, N., Jiang, J., Yang, J. and Liang, Y., “Improved Bacterial Foraging

Algorithms and Their Applications to Job Shop Scheduling Problems,” Adaptive and

Natural Computing Algorithms: 8th International Conference, ICANNGA 2007,

http://dx.doi.org/10.1016/j.neucom.2006.05.020

54

Proceedings, Part I, Edited by Beliczynski, B., Dzielinski, A., Iwanowski, M. and Ribeiro,

B., Warsaw, Poland, April 11-14, 2007, pp. 562-569.

[27] Mishra, S. and Bhende, C.N., “Bacterial Foraging Technique-Based Optimized Active

Power Filter for Load Compensation,” IEEE Transactions on Power Delivery, Vol. 22, No.

1, January 2007, pp. 457-465.

[28] Hansen, N.A., Ostermeier, A., “Adapting arbitrary normal mutation distributions in

evolution strategies: The covariance matrix adaptation,” Proceedings of the 1996 IEEE

International Conference on Evolutionary Computation, 1996, pp. 312-317.

[29] Hansen, N.A., Ostermeier, A., and Gawelczyk, A., “On the Adaptation of Arbitrary Normal

Mutation Distributions in Evolutionary Strategies: The Generating Set Adaptation,”

Proceedings of the Sixth International Conference on Genetic Algorithms, Edited by

Eshelman, Pittsburgh, PA, 1995, pp. 57-64.

[30] Hanson, N.A., personal website. [https://www.lri.fr/~hansen/. Accessed 7/1/2013.]

[31] Ibañez, O., Ballerini, L., Cordón, O., Damas, S., and Santamaría, “An Experimental Study

on the Applicability of Evolutionary Algorithms to Craniofacial Superimposition in

Forensic Identification,” Information Sciences, Vol. 179, 2009, pp. 3998-4029.

[32] Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P., and Kasagi, N., “Evolutionary

Optimization of an Anisotropic Compliant Surface for Turbulent Friction Drag Reduction,”

Journal of Turbulence, Vol. 9, No. 35, 2008, pp. 1-17.

[33] Hansen, N., Niederberger, A.S.P., Guzzella, L., and Koumoutsakos, P., “Evolutionary

Optimization of Feedback Controllers for Thermoacoustic Instability,” IUTAM Symposium

on Flow Control and MEMS, Proceedings held at the Royal Geographical Society, 19-22

September 2006, Edited by Morrison, J., Birch, D.M., and Lavoie, P., IUTAM Bookseries,

Vol. 7, Springer, 2008.

https://www.lri.fr/~hansen/

55

[34] Li, C., Heinemann, P., and Reed, P., “Evolutionary Strategy (ES) to Optimize Electronic

Nose Sensor Selection,” Computers in Agriculture and Natural Resources, 4th World

Conference, Proceedings, American Society of Agricultural and Biological Engineers,

2006.

[35] Igel, C., Erlhagen, W., and Jancke, D., “Optimization of Neural Field Models,”

Neurocomputing, Vol. 36, 2001, pp. 225-233.

[36] Büche, D., Guidati, G., and Stoll, P., “Automated Design Optimization of Compressor

Blades for Stationary, Large-Scale Turbomachinery,” Proceedings of the ASME/IGTI

Turbo Expo 2003, 2003.

[37] Nagata, Y., “The Lens Design Using the CMA-ES Algorithm,” Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO 2004), Edited by Deb, K., Springer,

2004.

[38] Villasana, M., and Ochoa, G., “Heuristic Design of Cancer Chemotherapies,” IEEE

Transactions on Evolutionary Computation, Vol. 8, Issue 6, 2004, pp. 513-521.

[39] Hohmann, W., Die Erreichbarkeit der Himmelsköper, Oldenbourg, Munich, 1925; also

available as NASA Technical Translation F-44, 1960.

[40] Vallado, D.V. with McClain, W.D., Fundamentals of Astrodynamics and Applications, 3rd

ed., Microcosm Press and Springer, Hawthorne, CA, 2007, pp. 330-332.

[41] Escobal, P.R., Methods of Astrodynamics, Reprint ed., Krieger Publishing, Malabar, FL, p.

66, 1979.

[42] Lawden, D.F., Optimal Trajectories for Space Navigation, Buttersworth, London, 1963,

Chapter 6.

[43] Barrar, R.B., “An Analytic Proof that the Hohmann-Type Transfer is the True Minimum

Two-Impulse Transfer,” Acta Astronautica, Vol. 9, No. 1, 1963, pp. 1-11.

56

[44] Hazelrigg, G.A., Jr., “The Use of Green’s Theorem to Find Globally Optimal Solutions to a

Class of Impulsive Transfers,” American Astronomical Society, AAS Paper 68-092, Sept.

1968.

[45] Marec, J.P., Optimal Space Trajectories, Elsevier, Amsterdam, 1979, Chapter 2, pp. 21-27.

[46] Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA

Education Series, AIAA, New York, 1987, pp. 529-530.

[47] Palmore, J.I., “An Elementary Proof of the Optimality of Hohmann Transfers,” Journal of

Guidance, Control and Dynamics, Vol. 7, No. 5, 1984, pp. 629-630.

[48] Prussing, J.E., “Simple Proof of the Global Optimality of the Hohmann Transfer,” Journal

of Guidance, Control and Dynamics, Vol. 15, No. 4, 1992, pp. 1037-1038.

	The Pennsylvania State University The Graduate School College of Engineering
	EVOLUTIONARY COMPUTATION FOR
	SPACECRAFT TRAJECTORY OPTIMIZATION
	A Thesis in Aerospace Engineering by Bradley Joseph Sottile
	Master of Science
	August 2013
	Chapter 1 Introduction
	1.1 Thesis Motivation
	1.2 A Brief Overview of Evolutionary Computation
	1.3 Thesis Overview and Organization

	Chapter 2 Evolutionary Computation and Algorithm Descriptions
	2.1 Particle Swarm Optimization (PSO)
	2.2 Bacterial Foraging Optimization (BFO)
	2.3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

	Chapter 3 Optimal Two-Impulse Transfers Between Circular Orbits
	3.1 Hohmann Transfer background
	3.2 Problem Statement
	3.3 Numerical Implementation

	Chapter 4 Results and Discussion
	4.1 Numerical Results
	4.2 Discussion

	Chapter 5 Conclusions and Future Work
	5.1 Lessons Learned
	5.2 Future Work

	References

