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Abstract

An alternative to the conventional method for determining impact probability by
an asteroid is presented that utilizes the positional uncertainty ellipsoid. This
method is used commonly for Earth-orbiting satellite collision probability. In the
scaling up process, the gravitational influence of one of the bodies in the collision is
taken into account, namely that of the Earth. The restricted three-body problem
is sufficient to provide a backdrop for the probability analysis, while making sure
to note that the results are only hypothetical given a simplified dynamic model.
Uncertainty is represented mathematically by the 3σ covariance matrix and is
propagated into the future by a linear transformation involving the State Transi-
tion Matrix (STM). Encounter regions are defined as regions along the nominal
trajectory of the asteroid where the propagated uncertainty encloses the Earth.
These regions are not known a priori. Probability is then calculated by a triple
integral of the probability density function (pdf) (a function of the covariance ma-
trix) over the volume swept out by the Earth through the encounter region. This
integral is achieved by, first, integrating the instantaneous pdf at each time step in
the encounter region, and then by integrating the resulting probability, as a func-
tion of time, over its domain. The process from propagating the uncertainty along
the nominal trajectory, finding the encounter regions and calculating probability
is repeated in a Monte Carlo simulation that varies the initial uncertainty. The
orientation of the initial uncertainty ellipsoid is held constant: aligned with the
velocity vector, while the lengths of the three principal axes (in-track, normal, and
out-of-plane) are varied in their respective relative ranges. The trend in probabil-
ity calculated vs. initial uncertainty is then investigated. It is found that higher
probabilities result from initial uncertainties that are tighter in all three directions.
That is, higher probabilities result when the position of the asteroid is known ini-
tially with more accuracy. This is an expected result because probability should
be a conservative estimate so that likely encounters are not overlooked. And with
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advances in observational and analytical techniques, the initial positions of aster-
oids will inevitably become more accurate so that more conservative probabilities
will be calculated in the future. However, it is also shown that this positive result
stems from the uncertainty being very large initially, so that as the uncertainty de-
creases substantially, the trend will tend to reverse. This fact is not demonstrated
because large uncertainties are required for this method to proceed. Suggestions
for future work are given to combat these limitations. With this alternative, and
the suggestions for improving it, probabilities of impact by an asteroid can be
calculated that are comparable to current automated methods.
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Chapter 1
Introduction

This thesis presents a method for calculating the probability of collision between

an asteroid and the Earth. The question of what this probability is for a given

asteroid can be answered in a variety of different ways. One of these methods is

being put to practical use in an automated system to search for possible impactors

and utilizes the Line of Variations (LOV) as its primary analytical tool. (The

method of Line of Variations is discussed in Section 1.2.1.) This thesis presents

a method for determining impact probability by using the positional uncertainty

ellipsoid as its primary analytical tool.

The method of impact probability determination that is presented here is best

understood as an analog to satellite collision determination in Earth orbit. The

method used to detect possible collisions between two satellites in Earth orbit im-

plements positional uncertainty ellipsoids that surround each satellite in question.

Here, the two objects in question are an asteroid and the Earth itself. The analogy

diverges, however, when we speak about the two objects influencing one another

gravitationally. In Earth orbit, the two satellites do not have a gravitational effect

on one another, whereas in the scaled up version, the Earth (one of the objects in

the collision) influences the asteroid gravitationally. This is realized in the choice

of dynamic model, namely the Restricted Problem of Three Bodies where the Sun

and the Earth influence each other and the asteroid, but the asteroid does not

reciprocate.

The dynamic model used in this study is relatively simple. Other, more sophis-

ticated models for propagating the orbits of asteroids are being put to practical
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use in systems such as the National Air and Space Administration’s (NASA’s)

Horizons1 software program. The specific model used for dynamic propagation is

not tied directly to the method to calculate the probability of collision. Advancing

dynamic modeling techniques of asteroids is not intended to be a contribution of

this thesis. One may substitute any dynamic model one chooses into the analysis

and still benefit from the work done here on the probability calculation.

The contributions of this thesis can be summarized in the following way. This

thesis develops an alternative approach to the calculation of collisional probabil-

ity of asteroids and the Earth. It bases its methods on those used to calculate

collisions between Earth orbiting satellites, which use positional uncertainty ellip-

soids surrounding each satellite. The development of these methods as applied

to asteroid/Earth cases—loosely based on real asteroids—is then followed by an

analysis of the effect of variable initial uncertainty on the probability calculated.

Understanding this relationship is the second main contribution of this thesis. It

is not a contribution of this thesis to develop new techniques of dynamic modeling,

or to present results of more accurate probabilities than those produced by current

automated systems.

Before these can be addressed, a few introductory points must be established.

These include the reason to study asteroid impacts and related work being done in

Earth orbiting satellite collision probability determination. The methods currently

in place today to calculate asteroid impact probability are also presented briefly.

This chapter concludes with a summary of the approach taken in the remaining

chapters.

1.1 Motivation

The motivation for such work is apparent. Asteroid impacts are the only natural

disaster that can, in theory, be prevented. The first step in preventing such an

event from occurring is predicting its occurrence. If a high probability event is

detected and confirmed, we can, with present or near-term technology, take steps

1a telnet and online software program by NASA’s Jet Propulsion Laboratory (JPL) that
produces the ephemerides of bodies in the solar system such as the planets and asteroids. The
output can be customized into several different reference frames and formats [1].
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to possibly deflect an object from a collision course. One of the only limitations

on our ability to prevent an impact is the amount of lead-time we are given to

the event. If a collision is not detected early enough, we may not be able to do

anything but wait. Developing techniques for determining the probability of an

event is then the second line of defense against a possible asteroid impact (the

first being observation of the asteroid). This defense is important because of the

consequences of such an event and the likelihood of it occurring at all. A brief look

at history sheds some light on these two factors.

1.1.1 Frequency and Consequences of Impact

With the advent of artificial satellites in the mid-twentieth century, we saw, for

the first time in human history, our home from outside the atmosphere. It was the

beginning of the Cold War and the use of these satellites for reconnaissance was

realized quickly. Systems like the Defense Support Program (DSP) were developed

to alert the US government of foreign aggressive missile launches. But the program

collected data on more than just its intended purpose. The DSP program observed

flashes of light in the upper atmosphere that required extensive examination to be

differentiated from military activity [2]. What they actually saw were small meteors

impacting the atmosphere that were visually undetectable on the ground. In fact,

the flashes of light in the upper atmosphere happen on a regular basis as a result

of the impact of small, extraterrestrial, non-man-made objects. The objects that

cause this type of phenomena are less than 5 m in diameter [3].

Objects about 10 m in diameter impact annually [4]. Depending on their size

and velocity, objects of this size can reach near to the surface before vaporizing

and cause significant damage to property and vegetation. Larger objects, 50 m

in diameter, impact the Earth on average every several hundred years [5]. These

cause substantial local destruction but pose no threat to the planet as a whole.

Generally speaking, the cut off diameter between a devastating but local event and

a global catastrophe is considered to be one kilometer [6] [7].

According to the NASA Ames Research Center [6], objects on the order of a few

kilometers in diameter impact on average every hundred thousand years and pose

a significant threat to society and possibly life itself. The mass of such an object
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is several tens of billions of tons. An impact by such an asteroid would result in

a ground burst explosion with energy on the order of a million megatons of TNT.

An impact by an asteroid a few kilometers wide would result in global tempera-

tures being depressed by the large amounts of dust thrust into the stratosphere [6].

Agriculture across the globe would be affected and the climate would change sig-

nificantly. Other effects include acid rain and firestorms from fragmented debris of

the asteroid raining down over a large area [5]. If the asteroid hit water, massive

tsunamis several kilometers high would reach significantly far inland, which may

cause more damage than a similar impact over land [4]. All of this would be a

substantial turning point in human history. The capacity of the world’s utility,

transportation, communication, food source and other infrastructures would be

significantly reduced. Life would be altered dramatically for any who survive the

initial impact of an asteroid at least a kilometer in diameter.

While these cause significant surface and climatic effects, impacts of this size

or larger would not have a significant effect on the celestial properties of the Earth

such as angle of tilt, mass, or orbit about the Sun (length of day or year). Only

an object of comparable mass to the Earth could cause such effects [8].

All of these are a consequence of ever diminishing probability of impact. Never-

theless, objects of smaller size cause enough damage to justify significant research

in the field of Asteroid Detection and Impact Monitoring.

1.1.2 Historical Impacts

A quick glance at the moon on a clear night should be all the evidence required to

convince someone that objects collide with the larger bodies of the solar system.

While Earth’s atmosphere protects it from most of the objects that come close and

erodes evidence of past impacts, the shear number of impact craters visible by the

naked eye on the Moon shows the frequency of such events.

The time between the 4 and 3.8 billion years ago is sometimes referred to as

the late heavy bombardment [9]. As the name suggests, during this time the Earth

was bombarded by debris from the early formation of the planets. Also during this

time, it was impossible for life to take hold because of the chaotic environment.

It is believed that one of the last impacts of this period brought to Earth the
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final ingredients for life. Fossil records date surprisingly close to the end of this

period [5]. No direct evidence remains of the impacts during this period for two

reasons: the individual impacts were clouded by one another and the overall violent

nature of the era and, also, Earth’s outer crust has been continually folded and

recycled by plate movement and volcanic activity over the past 3 billion years, not

to mention atmospheric weathering of any smaller craters [10].

The oldest known event to have taken place on Earth happened in Suavjarvi,

Russia approximately 2.4 billion years ago. It left a crater approximately 16 km in

diameter. A more recently discovered crater in South Africa is the remnant of an

impact about 2 billion years ago. This one, referred to as Vredefort, is the largest

confirmed impact event since the Hadean and was caused by an asteroid roughly

10 km in diameter [11].

The most well known impact event on Earth occurred near the Yucatan Penin-

sula 65 million years ago. It it theorized to have caused a mass extinction across

the globe, which included the dinosaurs. We humans may be able to thank this

event for our dominance of the food chain. The organisms that survived this event

were burrowing mammals, who flourished in the mostly predator free environment

following the event and from which we are evolved [12].

More recent impact events are not clearly asteroid impacts because no definitive

craters exist. In 1908, an explosion over Siberia was witnessed my local herdsmen

and destroyed a 50 km wide area of forest. Figure 1.1 shows the resulting destruc-

tion. It is suspected to be from an object burning up in the lower atmosphere and

referred to as the Tunguska Event. In 2002 an event occurred over the Mediter-

ranean, which was most likely an asteroid burning up in the low atmosphere, but

again, no crater exists. While the Mediterranean event caused no significant prop-

erty damage it posed an indirect threat that has already been mentioned unique

to the modern human: explosions in the atmosphere may be mistaken for artillery

or nuclear weapons being used, which could erupt into actual conflict [4].

In 2008, the first asteroid to be detected before impact was 2008 TC3. It was

spotted by astronomers at the University of Arizona and confirmed by others within

hours. Despite the early warning, the predictions for impact were very accurate

because astronomers were spread across the globe and could easily compare data.

2008 TC3 burned up in the atmosphere somewhere over the Sudan. Because of the
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Figure 1.1. The forest near Tunguska. This photo was taken in 1927 by an expedition
to the site. [13]

remote location, very few people witnessed the explosion. Only the crew and some

passengers of an airline flight saw a flash of light in the distance at approximately

the time predicted [14].

Impact events are not unique to the Earth and the Moon, of course. In 1994,

the Shoemaker-Levy 9 comet impacted Jupiter in a spectacular display. It had

been captured into an orbit around Jupiter and made a very close approach in

1992 [15]. Because of its mass, Jupiter is more likely to capture a large object than

is the Earth, but this event shows that objects of appreciable size do collide with

the planets [16].

Impact events large and small have occurred with frequency on the Earth since

its formation. Some have caused mass world extinctions and others most likely

deposited necessary life materials. The human species has in the past and may in

the future be influenced substantially by an impact event. Some believe based on

the rates at which objects have struck the Earth in the past, that we are due for

a large impact in the coming centuries.

1.2 Related Work

This section discusses work being done in asteroid impact detection and in satellite

collision detection. Both fields aim to calculate the probability of collision between

two objects.
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Automatic asteroid detection systems in use today use a method to calculate

probability called the Line of Variations to calculate impact probability. The

alternative discussed in this thesis is more closely related to the work being done

in satellite collision detection.

1.2.1 Asteroid Impact Detection and the Line of Variations

Asteroids, as a threat, have been studied with fervor for the past 15-20 years. Ever

since the comet Shoemaker-Levy 9 collided with Jupiter, interest in a possible

Earth impact has spiked [4].

Near Earth Objects (NEOs) are defined as objects with a perihelion distance

less than 1.3 Astronomical Units (1 AU is the distance between the Sun and the

Earth). They pose a higher threat of impact than objects with a higher perihelion

distance. These objects are actively searched for by automated systems.

The search for NEOs has had enormous success in the past 10 years. From 1990

to 2000, there was an increase in known NEOs by a few hundred. Between 2000

and 2010 there was an increase in the number of known NEOs by more than 6000.

According to NASA’s JPL Near Earth Object website [5], to date (September 9,

2010) there have been 7141 NEO discoveries. The figure was 6994 on January

1, 2010. The majority of objects in this list are between 300 to 1000 meters in

diameter.

There are many systems in place around the world that are tasked with tracking

these objects and running search algorithms on this catalogue to detect possible

impact events. Some of these are [5]:

• the Lincoln Near Earth Asteroid Research (LINEAR) program at the Mas-

sachusetts Institute of Technology (MIT)

• the Spacewatch program at the University of Arizona

• the Lowell Observatory Near Earth Object Search (LONEOS)

• the Sentry program at JPL

• the Catalina Sky Survey also at the University of Arizona

• the Japanese Spaceguard Association (JSGA)
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• the CLOMON2 program at the University of Pisa

• the Campo Imperator Astronomical Observatory in Italy and

• the Near Earth Asteroid Tracking (NEAT) program at JPL

NASA’s automated search algorithm called Sentry in collaboration with the

University of Pisa’s CLOMON2 system have paved the way in searching for po-

tential impactors among these catalogued entries. They are independent systems;

each uses a method for calculating the probability of impact called the Line of

Variations (LOV).

The LOV is the string of virtual asteroids (VAs) that are propagated from the

confidence region in the six-dimensional configuration space of orbital elements to

the target plane (the two-dimensional plane with the Earth cross section at the

origin). The question is how to sample the confidence region to obtain a meaningful

LOV. Random sampling is possible and makes up Monte Carlo methods. The

most efficient LOV sampling occurs when the VAs are uniformly spread along the

LOV [17]. Random sampling does not provide proper efficiency, so an analytical

definition of the LOV is required.

Several definitions for the LOV can be found in [17] [18] and [19]. Once the LOV

is found and propagated to the target plane, probability of impact is calculated by

counting the number of VAs that lie within the cross section of the Earth.

This work is ongoing and being pursued at NASA JPL and the University of

Pisa, Italy. This thesis is not concerned with this work other than acknowledging

that it exists. The field of Earth orbiting satellite to satellite collision detection

is a good place to look for an alternative to this approach. The methods used for

that purpose can be scaled up and applied to asteroid impact detection.

1.2.2 Satellite Collision Detection in Earth Orbit

With the number of objects in Earth orbit growing rapidly, efforts are made contin-

uously to detect conjunctions between those objects. Usually, one of the objects in

question is an active, controllable satellite, so that, in the case of a high probability

conjunction, it can be maneuvered to a safe position.
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Probabilities are calculated for possible collisions during launch and for high

value missions during operation. The method most commonly used for this purpose

takes advantage of the positional uncertainty ellipsoids of the active object and the

rogue debris (the primary and secondary objects, respectively). The uncertainties

of the two objects are combined into a total uncertainty. This total uncertainty

is then placed on the center of the primary. The combined radius is the sum of

the two effective radii of the objects and is then assigned to the nominal position

of the secondary. Probability is calculated by integrating the uncertainty over the

volume swept out by the secondary object.

Chan [20, pp. 77-97] makes a distinction as to whether the encounter can

be considered short-term or long-term with regards to the time that the objects

spend in the encounter region. As a general rule, objects in Low Earth Orbit can

be considered short-term, while objects in Geosynchronous Orbit can be consid-

ered long-term, but this is not always the case. For short-term encounters, Chan

then takes steps to reduce the three-dimensional integral by integrating over the

direction of relative velocity. Because the uncertainty is highest in this direction,

along with the linear approximation, it can be integrated from negative infinity to

positive infinity thus producing unity in this direction. The remaining integral is

then easier to handle computationally and subject to the assumption of linearity.

Chan goes on to caution that the two-dimensional integral cannot be obtained

by a transformation of the three-dimensional covariance matrix onto the target

plane [20, pp. 60], as proposed by Klinkrad in [21]. According to Chan, such a

transformation assumes out any possibility of conjunction before or after the target

plane, which is not the case for a three-dimensional uncertainty ellipsoid.

This thesis approaches the problem of asteroid impact probability in much the

same way as satellite conjunction probability. It presents a method for calculat-

ing the impact probability of an asteroid by utilizing the positional uncertainty

ellipsoid.

1.3 Approach

The main difference between the approach of this thesis and the method presented

in the last section is as follows. First, the primary object (the Earth) gravitationally
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influences the secondary (the asteroid). And second, the uncertainty of the primary

object is assumed zero: the ephemeris of the Earth is known orders of magnitude

more accurately than the asteroid.

The dynamic model employed here is the Restricted Problem of Three Bodies.

This takes into account the gravitational influence of the Earth on the asteroid

as well as that of the Sun. This problem has no analytical solution [22] so the

integration is performed numerically. The solution to the three-body problem is

denoted as the nominal solution. It does not represent the actual trajectory of the

asteroid. The actual trajectory of the asteroid is unknown.

What is known, however, is the three-dimensional Gaussian probability den-

sity function (pdf) surrounding the asteroid at the initial epoch. This pdf is the

uncertainty in position represented by an ellipsoid whose surface is 3σ, where σ is

one standard deviation. Mathematically, the ellipsoidal pdf is a 3×3 positional co-

variance matrix and can be propagated forward in time subject to the three-body

dynamics—as the asteroid is propagated along its orbit, so too does the uncertainty

deform.

The construction of the total probable asteroid solution then comes in two

parts. The first part is the nominal solution of the asteroid orbit (based on the

initial position and velocity). The second part is the rotation, expansion, and/or

compression of the uncertainty ellipsoid as a function of time. The two parts are

then connected in the following way: the uncertainty ellipsoid at each time step has

as its center the nominal solution at that time. Both the trajectory of the asteroid

and the behavior of the uncertainty are results of the three-body dynamics.

Like the nominal trajectory of the asteroid, the behavior of the uncertainty is

also subject to initial conditions. This initial uncertainty is one of the main fo-

cuses of this thesis. Recall that a relationship between variable initial uncertainty

and final probability is desired. This variability can be accomplished in several

ways. This thesis uses a Monte Carlo method to randomly select the initial uncer-

tainty from a sampling space. With the initial uncertainty, using the three-body

dynamics, the uncertainty at any future time can be determined.

Once the total solution is obtained from the dynamics, the asteroid and the

uncertainty ellipsoid are propagated to a region of encounter. This region can be

understood at this point simply as a region in space in which the probability of
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collision is desired. The probability is then calculated by integrating the three-

dimensional Gaussian pdf over the volume swept out by the Earth during the

encounter. This last statement is a simplification because the probability ellipsoid

is not held constant during the encounter.

This process—from development of the dynamic model to the Monte Carlo

simulation and probability calculation—is the focus of the remaining chapters.

1.4 Reader’s Guide

• Chapter 2: Dynamics discusses two dynamic models. It presents, first,

the three-body problem and then the more computationally complex multi-

body problem. It then evaluates the benefit of using the three-body problem

for this study instead of the multi-body problem, focusing on the trade off

between complexity and accuracy. Following this discussion, Chapter 2 in-

cludes a description of the numerical methods used to solve the equations of

motion.

• Chapter 3: Uncertainty and the Calculation of Probability describes

sources of uncertainty, how it is represented mathematically, and discusses

how the three-body dynamics are used to handled the uncertainty throughout

the solution. It then defines the encounter regions and the integrals used to

calculate the probability of collision.

• Chapter 4: Monte Carlo Simulation Results starts with a description

of the Monte Carlo simulation and then presents the results of the implemen-

tation of the methods discussed in Chapters 2 and 3 for three hypothetical

cases loosely based on the asteroids Apophis, 1999 RQ36, and 2010 RF12.

The trends in probability vs. initial uncertainty for each case are then ana-

lyzed. The probabilities calculated are not intended to be the latest estimates

of impact probability for these asteroids. They are only given as examples

of the implementation of the methods discussed.

• Chapter 5: Conclusions explains the trends seen in Chapter 4 and summa-

rizes the contributions and limitations of the methods described in Chapters
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2 and 3. In light of the limitations, this chapter suggests work in the future

that could increase the applicability of these methods to accurate asteroid

cases that produce actual probabilities of impact.



Chapter 2
Dynamics

The dynamic model is the foundation of the probability analysis. Without it, no

meaningful result can be practically achieved: the analysis would only be math-

ematical. With it, it can be better understood how the uncertainty affects the

probability of impact in a real sense, one that can be applied to real asteroids.

The dynamic model is the first step in calculating the probability of impact; it is

the roadwork upon which this analysis finds its destination.

The dynamic model is required to produce two results that are used in the

calculation. It should give the nominal trajectory of the asteroid and allow for

the propagation of the uncertainty ellipsoid. That is, the result of the dynamic

model should be the dynamic gravitational (numerical) solution and the state

transition matrix. Also, the model should be simple in extent and easy to employ,

without adding extraneous points of failure that only hinder the advancement of the

analysis overall by inducing unnecessary doubt in the result. This last requirement

is specific to this study and can be interpreted, modified or ignored depending on

the circumstances of the analysis.

The problem is as follows. An asteroid is free to move in three-dimensional

space subject to the gravitational influence of a set of massive bodies under mu-

tual gravitational influence. The nominal trajectory of the asteroid is the primary

concern. Two types of models are discussed in this chapter. The first is the Cir-

cular Restricted Three Body Problem (CR3BP) consisting of two massive bodies

(the Sun and the Earth) on circular orbits. The second is a multi-body problem

consisting of eight planets, Pluto, the Moon, and three massive asteroids on in-
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clined elliptical orbits. Each model is of a “restricted” nature, that is the mass

of the asteroid is assumed to be small enough that it does not contribute any

gravitational influence on the other massive bodies.

This chapter covers the process to find the dynamic model that best fits our

needs and solves the problem, as stated previously. Specific scripting techniques

are discussed for modeling the asteroid in orbit around the Sun subject to other

perturbing bodies, including the Earth.

Several models can be employed that provide these requirements. The sim-

plest case is the two-body problem of the asteroid and the Sun, which will not be

discussed here. Next in complexity, the Earth is included in the three-body prob-

lem. Lastly, the eight planets, Pluto, the three largest asteroids and the Moon are

included in what is called the multi-body problem. The equations of motion are

presented for these two models and numerical methods to solve them are discussed

in Section 2.3.

2.1 Three-body Dynamics

2.1.1 Preliminary Setup

CR3BP is usually formulated in a frame that rotates with the orbits of the pri-

maries, so that they are stationary in the frame. As seen in Figure 2.1, the x-axis

is defined as the line connecting the two primaries (the Sun is the primary and the

Earth is the secondary body) and points towards the primary. The z-axis is parallel

to the angular velocity of the system, and the y-axis completes the right-handed

system. The origin is at the center of mass of the system.

The mass unit is the total mass in the system (because the third body is of

negligible mass, the total mass is M1 + M2). The mass ratio of the system, µ, is

then the normalized mass of the less massive secondary body. This is an arbitrary

choice, m1 can be suitably chosen as well.

m1 =
M1

M1 +M2

= 1− µ m2 =
M2

M1 +M2

= µ (2.1)

Normalized masses are lowercase while actual masses are uppercase.
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Figure 2.1. Arrangement of the bodies in the rotating frame [22].

The length unit is chosen to be the distance between the primaries, r12. To

find the positions of the primaries with respect to the center of mass of the system,

multiply each of the masses by their respective distances from the origin and set the

sum to zero: m1x1 +m2x2 = 0. The distance between the primaries is normalized

to one, r12 = x1 − x2 = 1, which gives x1 = µ and x2 = µ− 1.

2.1.2 Equations of Motion

Because the frame of CR3BP is rotating with the primaries, the inertial acceler-

ation of this rotation must be taken into account. The equations of motion are

found by equating this inertial acceleration with the gravitational acceleration felt

by the third body.

The gravitational accelerations are developed from Newton’s inverse square law.

First, the radii from each of the primaries to the third body in the [x,y,z] space

are defined. The y component of these radii is just the distance from x-axis along

the ŷ direction. Because each body is on the x-axis, that component is simply y.

The same goes for the z component. It is simply z because the primaries are in

the x-y plane. The x component, however, must take into account the distance of

the two primaries from the origin. Subtracting x1 and x2 from x, for r1 and r2,
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respectively, accomplishes this. The distances to the third body from m1 and m2

are:

r1 =
[
(x− µ)2 + y2 + z2

] 1
2 (2.2)

r2 =
[
(x+ 1− µ)2 + y2 + z2

] 1
2 (2.3)

The gravitational acceleration in the inertial frame (superscript I) felt by the

third body as influenced by the two primaries is then,

I d2r

dt2
= −(1− µ)r1

r 3
1

− µr2
r 3
2

(2.4)

The inertial acceleration in the rotating frame (superscript R) is given by,

I d2r

dt2
=

R d2r

dt2
+ 2ωRI ×

R dr

dt
+ ωRI × (ωRI × r) (2.5)

where the position, velocity and acceleration of the third body in the rotating

frame and ωRI are:

r = xx̂+ yŷ + zẑ (2.6)

R dr

dt
= ẋx̂+ ẏŷ + żẑ (2.7)

R d2r

dt2
= ẍx̂+ ÿŷ + z̈ẑ (2.8)

ωRI = 1ẑ

The dots represent derivatives with respect to time and the hats represent unit

vectors in the three mutually perpendicular directions.

The term ωRI is the angular velocity of the rotating frame with respect to the

inertial frame. It is unity because of our choice of time unit. The time unit is

chosen such that the gravitational constant, G, is one. From Newton’s Third Law,

because r12, G, and (m1 + m2) are all unity, the period of the primaries is just

2π. It follows then that the angular velocity, which is one period per 2π radians,

is one.

Evaluating the cross products of equation (2.5) and grouping by component,

I d2r

dt2
= (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ (2.9)
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Now equating equations (2.4) and (2.9) and splitting into components the three

equations of motion for CR3BP are

ẍ = 2ẏ + x− (1− µ)(x− µ)

r 3
1

− µ(x+ 1− µ)

r 3
2

ÿ = −2ẋ+ y − (1− µ)y

r 3
1

− µy

r 3
2

(2.10)

z̈ = −(1− µ)z

r 3
1

− µz

r 3
2

These equations are highly non-linear. Many attempts were made in the 100

years following the formulation of the three-body problem to solve it analytically.

In 1899, Poincare proved that it was unsolvable in closed form [22].

The numerical solution to these equations is described in Section 2.3 and Ap-

pendix A.1.

2.2 The Multi-Body Problem

The multi-body problem1 is presented here in the inertial frame with the origin

at the barycenter of the system. The frame is Horizons’ ICRF/J2000 [1] defined

with the x-axis pointing out along “the ascending node of the Earth’s orbit and

the Earth’s mean equator [1]”, the z-axis perpendicular to the Ecliptic plane at the

reference epoch, and the y-axis completing the triad. The problem is essentially

an extension of the two-body problem, which is simply Newton’s Universal Law of

Gravitation in vector form. The equations of motion [23] are:

r̈ = −µr
r3

+
N∑
k=1

µk

[
rk − r
|rk − r|3

− rk
r 3
k

]
(2.11)

where r is the position vector, µ, in this section only, is the gravitational parameter,

the subscript k represents the perturbing body, and N is the number of perturbing

bodies. The solution of equations of motion like these is discussed in Appendix

A.1. The question that remains to be answered to solve equation (2.11) is how to

1The definitions of µ and the [x,y,z] frame are suspended for this section and are re-defined.
These re-definitions only hold for the multi-body problem. The definitions for these quantities
in all other cases can be found in Section 2.1
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obtain the positions of the perturbing bodies at each time step. Two methods to

find these positions are discussed.

First of all, ephemerides of the planets and the asteroids are available through

various sources [1] [24]. The process in that case is to convert the output of those

systems into a useable form so that the exercise is really about handling large

amounts of data. The ephemerides must be obtained and converted for the time

period desired.

2.2.1 Mean Anomaly

The first method to solve for the positions of the perturbing bodies, in this case

the planets, is to use two body dynamics about the barycenter of the solar system.

This assumes that the perturbing bodies are on inclined, eccentric orbits. The

initial conditions are in the form of the classical orbital elements.

The classical elements can be converted to a three-dimensional position vector.

This is done, first, by solving for the radius using the two-body equation of semi-

major axis, a, eccentricity, e, and true anomaly, θ:

r =
a(1− e2)
1 + e cos θ

(2.12)

then by rotating a vector of length r initially aligned with the inertial x-axis

through three rotations in right ascension of the ascending node, Ω, inclination, i,

and the sum of argument of perifocus and true anomaly, (ω + θ),

r =


cos Ω − sin Ω 0

sin Ω cos Ω 0

0 0 1




1 0 0

0 cos i − sin i

0 sin i cos i

 . . .


cos(ω + θ) − sin(ω + θ) 0

sin(ω + θ) cos(ω + θ) 0

0 0 1



r

0

0

 (2.13)

where the three 3×3 matrices are direction cosine matrices that make up a single

3-1-3 rotation.
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The next step is to advance the true anomaly forward through time. Since

true anomaly is not an explicit function of time, this requires several steps. First,

calculate mean anomaly, M , which is a function of time:

M =

√
µ

a3
t+M0 (2.14)

Then, solve for eccentric anomaly by:

g(E) = E − e sinE −M = 0 (2.15)

Since this equation is transcendental, it must be solved iteratively to convergence,

ġ(E) = 1− e cosE (2.16)

Ek+1 = Ek −
g(Ek)

ġ(Ek)
(2.17)

(A good first guess for Ek is M). Finally, convert eccentric anomaly to true

anomaly by:

tan

(
θ

2

)
=

√
1 + e

1− e
tan

(
E

2

)
(2.18)

With the new true anomaly, the radius vector is rotated into position at the

new time step. In this way, the perturbing bodies are advanced forward in their

orbits with the rest of the integration.

2.2.2 Propagation

The second way to obtain the positions of the perturbing bodies is to integrate

their equations of motion [25], which are:

r̈k =
∑
j 6=k

µj(rj − rk)
|rj − rk|3

(2.19)

where the subscript j refers to another perturbing body.
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These equations are evaluated simultaneously for each perturbing body, k, at

each time step in the integration of the equations of motion of the asteroid itself.

More details are found in Appendix A.2.

2.2.3 Accuracy

Following these methods through coding and simulation results in the position

of the asteroid at each time step. This is done for the asteroid 99942 Apophis

(previously known as 2004 MN4). The result of these methods is compared to

the ephemerides provided by Horizons, which are sufficient to be called the true

nominal trajectory.

The result is similar to the Horizons data in its gross characteristics. The

orbits of both methods fill a common physical space as seen in Figure 2.2, which

also compares the orbit of the Earth. At a glance, they seem comparable. Closer

inspection, however, reveals that the orbit paths are not coincident. Furthermore,

Apophis and the Earth are not in the same location on their orbits as in Horizons,

which is not conveyed in the figure. The error is mostly in-track and can be greater

than a full orbit over the 30-year time span. It seems as though the problem is very

sensitive to the magnitude of the initial velocity because the two models predict

different average speeds of the asteroids on their orbits, which is why the error is

in-track.

2.2.4 Summary

The procedure laid out in this section for obtaining the nominal solution of the

asteroid: integrating the positions of the perturbing bodies at each time step in the

integration of the equations of motion, is rather complex. Given that this method

does not produce the accuracy desired, it is clear that there are unknown variables

that state-of-the-art ephemerid programs, like Horizons, take into account. For

instance, the methods described here do not take general relativity into account,

which Horizons does. Accomplishing the task of replicating perfectly the work of

Horizons requires the Horizons team and resources and is outside the scope of this

study.
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Figure 2.2. Comparison of the methods described in the text for the multi-body prob-
lem (blue orbits) with Horizons (green orbit for Apophis and red orbit for the Earth)
over a 30-year integration. The reference frame is ICRF/J2000 and is described at the
beginning of Section 2.2.

The dynamics used from now on are for simplicity and do not claim to be

accurate. They are simply a stand in for a more sophisticated dynamic model that

can be done in the future.

For its simplicity and quick run time, the Circular Restricted Three-Body Prob-

lem works adequately to fulfill the needs of this thesis.

2.3 Numerical Methods

The backbone of any dynamic model is the equations of motion. They embody

the mechanics of the problem in a simple, efficient manner. In almost all cases

in orbital mechanics, the equations of motion cannot be solved analytically and

exactly. In recent decades this has not posed a significant problem with the use
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of computationally numeric methods. Today, the numerical integration of the

Newtonian equations of motion for orbital dynamic propagation is well understood.

More details are found in Appendix A.1.

The equations of motion for Newtonian gravitation are non-linear, second-

order, differential equations. The solvers can handle non-linearity with ease, but

the second-order equations require a reduction in order to be used. This is accom-

plished by defining a state vector of the three-dimensional position and velocity

(six equations in all). Defining the state vector as the position and its derivative

allows the second order equations to be hidden in a first-order vector differential

equation that can be handled by the solver. Now, the relation between position

and velocity is explicitly stated by writing the first three differential equations as:

the derivative of the first three states is the last three states.

X =



x

y

z

ẋ

ẏ

ż


=



x(1)

x(2)

x(3)

x(4)

x(5)

x(6)


(2.20)

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



x(4)

x(5)

x(6)

F4(X)

F5(X)

F6(X)


(2.21)

But it is already stated that the first three states are the position and the last

three states are the velocity. This seems trivial, but it is actually quite subtle.

The first order differential equation that is written in vector form is not inherently

required to reflect the physics. It could be defined arbitrarily. The solver is a

machine that calculates regardless of the physics. It is the programmer who applies

the principles of physics. He or she takes advantage of the relation between position

and velocity to create a loophole in the solvers functionality. The solver is only
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aware of the loop by the explicit definition of one state to the other, which is the

correct relation for position and velocity.

Notice, now, that the second order equations of motion are in F4,5,6. However,

as far as the computer is concerned it is solving a first order vector differential

equation. This is what is meant by reduction of order.

2.4 State Transition Matrix

Solving the three-body problem is only half the problem. It gives only the nominal

solution, it does not take into account the uncertainty. To do this, the State

Transition Matrix (STM) must be found. The STM is used to propagate the initial

uncertainty to any future time. The nominal solution gives the trajectory of the

center of the uncertainty ellipsoid, while the STM gives the change in orientation

and shape of the ellipsoid, based on the dynamics of the three-body problem.

The STM is developed from the linearization of the equations of motion. At each

time step in the integration, a 6×6 matrix of partials of the equations of motion

is calculated and is used as the proportionality constant relating the STM to its

derivative [26].
dΦ(t, t0)

dt
= A(t)Φ(t, t0) (2.22)

Φ(t0, t0) = I

The STM, Φ, is time dependent and n×n in size, where n is the number of states.

The initial STM is the identity matrix. The 6×6 matrix A is the linearization of

the equations of motion, F . That is, A is the matrix of partial derivatives of

Ẋ = F (X) with respect to each of the states; it is also called the Jacobian of F .

A(t) =
∂F

∂X
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

F4,x F4,y F4,z 0 2 0

F5,x F5,y F5,z −2 0 0

F6,x F6,y F6,z 0 0 0


(2.23)
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F4,x = 1 +
3(1− µ)(x− µ)2

r 5
1

− (1− µ)

r 3
1

+
3µ(x+ 1− µ)2

r 5
2

− µ

r 3
2

(2.24)

F4,y = F5,x =
3(1− µ)(x− µ)y

r 5
1

+
3µ(x+ 1− µ)y

r 5
2

(2.25)

F4,z = F6,x =
3(1− µ)(x− µ)z

r 5
1

+
3µ(x+ 1− µ)z

r 5
2

(2.26)

F5,y = 1 +
3(1− µ)y2

r 5
1

− (1− µ)

r 3
1

+
3µy2

r 5
2

− µ

r 3
2

(2.27)

F5,z = F6,y =
3(1− µ)yz

r 5
1

+
3µyz

r 5
2

(2.28)

F6,z =
3(1− µ)z2

r 5
1

− (1− µ)

r 3
1

+
3µz2

r 5
2

− µ

r 3
2

(2.29)

The six equations of the pure dynamics are appended by equation (2.22), el-

ement by element (36 in total). The resulting set of 42 equations is then solved

simultaneously. The solution is linearized at each time step along the solution of

the dynamics and the state transition matrix at that time is calculated. The time

history of the STM is then accumulated from these individual time steps. Now,

the size, shape and position of the uncertainty ellipsoid can be propagated forward

in time as dictated by the dynamics of the three-body problem.



Chapter 3
Uncertainty and the Calculation of

Probability

Uncertainty is the primary contributor to the “probability” of collision. It stems

from observational techniques and initial orbit determination and persists for the

reasons discussed in this chapter.

3.1 Uncertainty

Uncertainty in the position of the asteroid comes from two primary sources. The

first is that the observational techniques used (telescopes and radar) are limited in

their accuracy and subject to random noise. This uncertainty can be accounted for

by understanding the equipment being employed. The second source of uncertainty

is the limited number of observations possible to compute the orbit. Achievement

of an exact orbit requires observations (assuming perfect observational precision)

for all time in the life of the asteroid. Obviously, this is impossible in practice.

With only a finite number of observations available, multiple orbits can be fit.

These multiple solutions are a range of orbital elements and, therefore, a range of

possible positions of the asteroid. This is what is meant by uncertainty—a range

of possible positions.

In the absence of observational data or observing equipment, this study, instead,

looks at several different values for uncertainty to understand how its variation
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affects the final calculated probability. It does this by way of a Monte Carlo

simulation.

However the uncertainty is obtained, it must be handled, or propagated, over

the course of the solution so that it is available for the calculation of probability

when desired. It is necessary to propagate the uncertainty because it is not a

constant over the life of the asteroid. An initial uncertainty will change, specifi-

cally grow, in the future of any dynamic model for several reasons: first of all, the

methods to solve the equations of motion are numerical, so the solution is a math-

ematical approximation. Most importantly, even if the equations of motion could

be solved exactly, they are themselves only an approximation to reality. Addition-

ally, the numerical methods are prone to computational round-off and truncation

errors. Also, the orbit of the asteroid is subject to several perturbations not all of

which can possibly be taken into account. Even if they are all accounted for, they

are approximated by simplified models [27, pp. 1-3].

These unknown and non-exact contributors to the path of the asteroid, numer-

ical and observational uncertainties, are all included in the solution, instead, by

dynamic propagation of the uncertainty.

3.1.1 Covariance Matrix

In order to handle the positional uncertainty, it must be described mathematically.

This representation is the 3×3 positional covariance matrix. It can be defined

several different ways. In this thesis, it will be defined using eigenvalues and

eigenvectors.

The covariance matrix is built up from information about the uncertainty ellip-

soid, which encloses the physical space in which the asteroid can probabilistically

be found. To relate the covariance matrix to the uncertainty ellipsoid, start with

the lengths of the principal semi-major axes of the ellipsoid, which are three stan-

dard deviations, or 3σ. For simplicity, the 3σ principal axes will be referred to as

σi. The square of these lengths are defined as the eigenvalues of the covariance ma-

trix. Next, the orientation of the ellipsoid, or the directions of the principal axes,

are defined as the eigenvectors of the covariance matrix. By placing the eigenvalues

in a diagonal matrix E, and the eigenvectors as columns in the matrix V (making
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sure to keep the corresponding eigenvalues and eigenvectors in the same columns

of each), the 3σ covariance matrix, P , is then,

P = V EV −1 (3.1)

Because V is orthogonal, P is symmetric.

The diagonal terms of P are the variances in the x,y,and z directions multiplied

by 32. The off-diagonal terms are the covariances between x-y, x-z, and y-z, which

are the 3σ’s of each direction multiplied by a correlation coefficient (e.g. ρxy) which

indicates how dependent the uncertainties in the respective directions are. Decom-

posing the covariance matrix in this way does not directly indicate the orientation

of the uncertainty nor does it reveal direct information about the size of the uncer-

tainty ellipsoid (that is, the lengths of the principal axes), so this description will

not be used. The eigenvalues and eigenvectors, which describe the uncertainty in

the principal directions (orientation and size), is much more revealing.

The uncertainty propagation discussed above is carried out by using the State

Transition Matrix. The uncertainty is propagated to any future time by a lin-

ear transformation of the STM on the covariance matrix. Details are shown in

Appendix B.

Future times for which the uncertainty is desired are called encounters. Dur-

ing encounters, the probability of impact is appreciable and can be calculated.

A definition of the region of encounter is required before the calculation can be

performed.

3.2 Encounter Region

The probability of impact is not required at every location along the orbit of

the asteroid, it is negligible over the majority of it. A definition of a region of

conjunction is desired the requirements of which are fulfilled only a small finite

number of times. This region of conjunction is called the encounter region. There

is no unique way to define the encounter region, but, of course, some ways are

more suitable than others. The next two sections discuss one possibility. Section

3.2.3 discusses a better approach.
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3.2.1 Close Approach

The encounter region can be defined about a point of close approach. That is, if

the asteroid comes within a certain distance of the Earth, the probability of impact

can be calculated. This method is the most intuitive: the closer the asteroid is to

the Earth, the higher the chance that its impact probability is appreciable. (This

is incorrect, but this method is developed further before it is abandoned.)

It is not sufficient to calculate the probability only at the point of close ap-

proach. An extended region is required. Recall that the domain of integration

is the volume swept out by the Earth through the encounter region. The region

surrounding the point of close approach that can be approximated linearly is the

extent that is required of the encounter region.

3.2.2 Linear Approximation

The region of the orbit around a reference point that can be considered a straight

line is a function of the instantaneous radius of curvature at the point of reference.

From the mathematics of parameterized curves in three-dimensional space (which

the nominal solution of the asteroid is), the radius of curvature is the inverse of

the curvature, κ, given by:

κ =
|ṙ × r̈|
|ṙ|3

(3.2)

With the radius of curvature, R = 1
κ
, and the angle γ, the length of the tangent

is,

T = R tan γ (3.3)

as seen in Figure 3.1. The maximum γ for which the approximation of the arc,

C, by the tangent, T , is valid is 0.1 rad (5.8 deg) (see Appendix C). Doubling T

gives the region of linearity.

3.2.3 Ellipsoid

While this approach does give a definite region of conjunction, it does not highlight

the most probable impact scenarios. Proximity to the Earth with the possibility of

being outside the uncertainty ellipsoid does not mean a more probable collision. In
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Figure 3.1. The instantaneous circle tangent to the orbit of the asteroid. R is the
radius of curvature, the inverse of curvature. T is the linear approximation of the orbit
at the point of closest approach, A.

fact, the purpose of the uncertainty ellipsoid is precisely to give a probable location

for the asteroid, so it is a better place to look for the definition for the encounter

regions.

The encounter region is then defined by saying, if the Earth passes through

the uncertainty ellipsoid, then a probability of collision is calculated. By requiring

that the Earth be enclosed by the uncertainty ellipsoid, it is guaranteed that the

probability calculated is higher than in the first case. If the nominal solution is

closer to the Earth but outside the 3σ uncertainty then the probability calculated

is necessarily lower than if it were enclosed by the ellipsoid (even if it is radially

further away).

This method is non-trivial. The uncertainty along the orbit is not known a

priori and cannot be guessed, so that these regions are not regularly spaced along

the orbit. The encounter regions depend completely on the dynamics of the system.

It may be guessed that the largest semi-major axis of the uncertainty ellipsoid (or

the weak direction) is aligned with the velocity vector (that the most uncertainty

is in-track1), but this does not help to find the encounter regions for two reasons.

First, this is not certain. The orientation of the weak direction of the uncertainty

1A check is made at each time step whether the weak direction of the propagated uncertainty
ellipsoid is or is not aligned with the local velocity vector. This check only alerted for the first
few time steps, which is expected because the uncertainty is initially aligned with the velocity
vector.
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ellipsoid does not always align itself with the local velocity vector; there is nothing

in the dynamics that requires this. Second, the encounter regions do not occur at

locations along the orbit when the velocity vector is pointed towards the Earth.

The initial uncertainty ellipsoid used for Figure 3.2 is aligned with the initial

velocity vector, but the values do not correspond to real uncertainty, it is just

an example. It is clear from the figure that encounter regions do not retain any

pattern.

The method to find the encounter region by checking whether the Earth is inside

the ellipsoid (see Appendix D) is advantageous for another reason in addition to

Figure 3.2. This is an orbit based on Apophis in the rotating frame of CR3BP over 30
years (CR3BP is a simplified dynamic model and, therefore, this is not the true nominal
trajectory of Apophis). The frame of CR3BP is described in Section 2.1.1. The rotating
frame causes the orbit to be shaped as a series of loops that advance in a circle. The Sun
is near the origin and the Earth is near (-1,0). This figure also presents the encounter
regions (in blue). The uncertainty used for these encounters is arbitrary, the important
point is how the uncertainty is oriented and shaped by the dynamics. Note that the
encounter regions retain no pattern such as occurring whenever the local velocity vector
is pointed towards the Earth.
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the one stated above. In the first method for finding the encounter region, the

close approach must be checked first, then the region of linearity must be found.

The second method gives what is needed to perform a probability calculation in

one step.

3.3 Probability Calculation

To summarize what has been done so far: the nominal solution of the asteroid orbit

has been found according to the three-body problem; the state transition matrix

has been found, which allows for the calculation of the uncertainty ellipsoid at

future times; the encounter region has been defined, which is subject to both the

nominal solution and the orientation of the uncertainty ellipsoid, which are both

in turn subject to the three-body dynamics.

Recall that the uncertainty ellipsoid represents a three-dimensional probability

density function, pdf. More specifically, the pdf, f , is a function of the covariance

matrix, P ,

f(x, y, z) =

√
9

(2π)3|P |
exp

−9

2

[
x y z

]
P−1


x

y

z


 (3.4)

P−1 is the inverse of the 3σ covariance matrix, so it must be multiplied by 32 to

convert it to 1σ which is how the pdf is defined.

For the probability, this pdf is integrated [20, pp. 47].

∫∫∫
V

f(x, y, z) dx dy dz (3.5)
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The volume over which this integral is evaluated is the sphere of the Earth, or, for

ease of calculation, a cube of equal volume.2

Once the probabilities of impact at each time step are calculated according to

equation (3.5), they must be combined into a total probability for the encounter.

What is being considered are the probabilities of n events (the asteroid impacts

at time A or time B), where n is the number of time steps. “Or” is the operative

word here. The asteroid can only impact once while it is in the encounter region.

All impact events throughout the encounter are mutually exclusive.

According to probability theory, to find the probability of a number of events

that are mutually exclusive the probabilities of the events should be added. How-

ever, the total probability cannot depend on the number of time steps. If addition

is used, increasing the resolution of the dynamic model produces a vastly differing

total probability. Also, with enough time steps, it would be easy to see a situation

in which the total probability, as a result of simple addition, could be greater than

one.

What is needed is a method to accumulate and account for each probability in

a way that is independent of the number of time steps. An integration over time

accomplishes this. Trapezoidal integration is sufficient for the purposes here. All

that is necessary is an order of magnitude. To maintain the order of magnitude

of the instantaneous probabilities, the integral is divided by the time span of the

encounter.

With the method to calculate probability, it is now possible to examine specific

asteroid cases. These are based on real asteroids, but for several reasons that are

discussed in Chapter 4, they are not actual cases. It is made abundantly clear that

the probabilities calculated for each case are not intended to be taken as estimates

of the actual probability of impact. They are just examples. NASA’s Horizons

program provides the initial conditions of the nominal position and velocity for each

case, which are the only parts of the case that are true to reality. The uncertainty

data is varied according to a Monte Carlo method so that the relationship between

initial uncertainty and resulting impact probability can be examined.

2The difference in the integral over the two volumes, sphere and cube, is less than 1%, but
integrating over a cube is far less computationally intensive and more reliable. The probability
is anyway only an order of magnitude, so an error of 1% is acceptable.



Chapter 4
Monte Carlo Simulation Results

This chapter discusses the Monte Carlo method used to obtain the initial uncer-

tainty and presents the results of the simulations for several hypothetical asteroids.

The first case is a completely fictitious asteroid on a direct collision course with the

Earth. This case establishes the main features of each case based on real asteroids.

Finally, the results are summarized.

4.1 Method

Monte Carlo simulations refer to a number of different techniques to obtain a range

of data by making random samples. What is being sampled is the covariance

matrix, but it is not desired to completely rely on randomized values for each

element individually. This would not produce meaningful results because they

would not be comparable. The scope of the use of random values must be limited if

insightful results are to be obtained. In other words, some feature of the covariance

matrix and uncertainty ellipsoid must be held constant over all of the simulations.

It is desired to understand how the amount of uncertainty affects the total

probability. So the values for the size of the ellipsoid are randomized while the

values for the orientation are held constant.1

1If the orientation is turned to favor the normal direction rather than the in-track direction,
as discussed below, the overall trends discussed in this chapter are present, but the specific color
trend is different. Results of this type are not presented.
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A further limitation on the randomized nature of the simulations is the relative

magnitudes of the values being varied. The values that are sampled randomly are

the lengths of the principal semi-major axes, σi, of the initial uncertainty ellipsoid.

The relative magnitudes of these values are (in decreasing order): in-track standard

deviation, σ1, normal, σ2, and out-of-plane, σ3. This relationship is imposed in the

simulations by defining the range of possible values from which these quantities

are sampled.

For these three quantities, four values are required to define the non-overlapping

ranges of each. These values are ak. With a devisor, e, the four values are given

by the sequence:

ak+1 =
ak
e

k = 1, 2, 3 (4.1)

where the values a1 and e are referred to as range values. The ranges are then

a2 < σ1 < a1

a3 < σ2 < a2 (4.2)

a4 < σ3 < a3

A uniform random sample is then taken from the range for each value σ.

The procedure is repeated for three different asteroid cases, and 100 times for

each asteroid so that a trend in the relationship between initial uncertainty and

total probability can be revealed.

4.2 Asteroid Cases

Three asteroid cases are discussed in this chapter. They are based on the real

asteroids Apophis, 1999 RQ36, and 2010 RF12. However, the cases are not to

be taken as analysis of the real asteroids and their probability of impact with the

Earth. The dynamic model is simplified and does not produce an accurate nominal

solution. Also, the uncertainty used for each case is unrealistic. These cases

share one thing with their real counterparts: the nominal position and velocity at

the initial epoch. These were retrieved from NASA’s Horizons program [1]. The

cases are based on real asteroids for reliability of the cases’ long term orbit. It is
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possible to consider completely arbitrary cases, but the process of determining a

stable orbit over a long time period in CR3BP is a complex issue. By using real

initial conditions, the orbits are stable, albeit a deviation from the actual nominal

trajectory taken by the asteroid.

Each of the real asteroids is interesting for reasons that will be discussed. Two

are Potentially Hazardous Asteroids (PHAs), which are NEOs with a Minimum

Orbit Intersection Distance (MOID) of less than 0.05 AU and an Absolute Magni-

tude (H) of 22.0 or less. MOID is a measure of how close the orbit of the Earth and

the asteroid are to one another, a smaller MOID increases the chance that the two

will collide if they are in the same place at the same time. Absolute Magnitude

can be used to estimate the diameter of the asteroid, a smaller absolute magni-

tude translates to a larger asteroid. Asteroids that can come close to the Earth

and are sufficiently large are PHA’s. 2010 RF12 is not a PHA only because it is

not large enough. Asteroids that are considered to be of especially high risk are

studied individually with great effort by NASA and the University of Pisa, Italy

as described in Section 1.2.1.

This chapter presents the results of the algorithm described throughout this

thesis as applied to three cases, which are based on the three real asteroids. It

offers, for each case, the following:

• The orbit of the asteroid.

• An example of the encounter regions. The encounter regions are dependent

mostly on the dynamics and little on the specific values of initial uncertainty

(for a given order of magnitude).

• The total probability calculated for each encounter. Two plots will be used

to present the relative probabilities. The first plot shows all the encounters

over all the runs and uses color for three dimensions and is discussed below.

The encounters across each run of the simulation are taken equally. The

total probability is plotted against a date associated with each encounter

regardless of which of the 100 runs from which it originated. The second

plot is a two- or three-dimensional gray-scale plot for single encounters. The

second type of plot helps reveal the trend on an encounter-by-encounter basis.
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• A list of encounters and their frequency in the 100 runs of the Monte Carlo

simulation. This goes to show that the encounters are essentially independent

of the initial uncertainty.

For the first type of plot, each data point represents one probability in five-

dimensions: the time of the encounter, the value of the probability, and the lengths

of the three principal axes of the initial uncertainty ellipsoid. The color of the dot

for each probability is defined by a 1×3 vector of numbers between 0 and 1, where

each number corresponds to the color red, green, and blue; this scheme is called

RGB color. The RGB color space is seen in Figure 4.1. The three values that

specify the color are normalized from the lengths of the principal axes. Red, green,

blue corresponds to in-track, normal, and out-of-plane, respectively. A black dot

signifies that the three principal axes are at the lowest in their respective ranges,

and a gray dot signifies they are highest. The background color is outside the range

of the normalization so that all probabilities are visible (this is why the highest

are gray and not white).

Figure 4.1. The RGB color space is an opaque cube. The origin is seen through a hole
in the cube. This figure acts as a legend for the first type of plot which are full page
figures displaying total probabilities: Figures 4.3, 4.5, 4.9 and 4.14.
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For the second type of plot, the dots for the probabilities are plotted in a three-

dimensional space of in-track, normal, and out-of-plane, where the gray scale of

the dot represents the relative magnitude of the probability. Dark probabilities are

higher and light probabilities are lower.

Note that the convention is opposite for large/high and tight/low for the two

plots: larger uncertainties and lower probabilities are both gray dots, while tighter

uncertainties and higher probabilities are both black dots. This is done because a

darker dot more intuitively corresponds to higher probability (for the second type

of plot), but in the RGB color scheme [1 1 1] is very light (in the first type of plot).

It is also done to emphasize the different value being conveyed by the shade of the

dot in each type of plot.

4.3 Impact Example

Before the three cases are discussed, an example is given for a fictitious asteroid on

a direct collision course with the Earth. For this example of an impact scenario, the

fictitious asteroid is propagated for 2 days. The short time span is to ensure that

the nominal solution does pass through the Earth and also because a longer time

span would not be any more revealing. The range values for the initial uncertainty

are chosen to be a1 = 10−4 AU and e = 2. These values are significantly lower than

for the “real” asteroid cases that will follow. This is done because the nominal

solution passes so close to the Earth (actually through it) and the initial epoch is

so close to the encounter region.

Figure 4.2 depicts several things. First of all, it shows the nominal solution of

the fictitious asteroid: the thin red line. Second, it shows the principal axes of the

uncertainty (weak: blue, intermediate: green, and shortest: black) superimposed

onto several time steps surrounding the encounter (the wide red swath through

the Earth). This figure serves two purposes: it shows how high probabilities are

achieved by tight uncertainties (relative to the size of the Earth) in close proximity

to the Earth during the encounter; it also shows that the uncertainty, for the most

part, stays aligned with the local velocity vector but that the weak direction does

not. Near the initial condition, in the lower portion of the figure, the uncertainty

is coincident with the local velocity vector and stays aligned as such through the
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Figure 4.2. A fictitious asteroid on a collision course with Earth. This figure shows the
principal axes of the uncertainty at several time steps surrounding the encounter (wide
red swath) superimposed onto the nominal solution (thin red line). The weak direction
is blue, the intermediate length is green and the shortest is black (for the most part, the
black uncertainty is in the unseen out-of-plane direction). Early in time (lower portion),
the weak direction is aligned with the velocity vector. As it is propagated through the
encounter, the uncertainty remains aligned with the local velocity and does not begin to
deviate until after the nominal solution has passed through the Earth.

encounter. After the encounter, the uncertainty starts to deviate from the velocity

vector. In general, the uncertainty is aligned with the velocity vector at the start

and at a certain point begins to deviate. That point in this case comes after the

encounter.

The first type of plot presented for probability is Figure 4.3. The first thing

to notice is that the probabilities are not near 100%, even when the asteroid’s

nominal solution actually passes through the Earth. The reason it is that, first of

all, the Earth is finite in extent, so 100% is not possible. Also, the 3σ uncertainty

at the time of the encounter is much larger than the Earth. However, despite the

low absolute probability, these values are orders of magnitude larger than for the

following three asteroid cases, none of which passes through the Earth.
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Figure 4.4. The probabilities for the fictitious example trend along normal vs in-track
by decreasing in probability as the uncertainty gets closer to the maximums in each of
the respective directions.

There is a trend in probability for the first type of plot and it is not immediately

obvious how it is relevant. Looking at Figure 4.3, the trend seems to be in color

from yellow to blue. However, looking at Figure 4.4, there is a trend in the normal

uncertainty vs. the in-track uncertainty of the initial condition. In Figure 4.4,

higher probabilities occur when the in-track and normal are both low in their

respective ranges and visa versa. The trend is constant for all values of the out-

of-plane uncertainty, which is out of the page. This is why Figure 4.3 trends from

yellow to blue: the in-track and normal are both high when the probability is low,

so the color is yellow. Some of the low probabilities are gray which is when the

out-of-plane uncertainty is equally high. For the higher probabilities, when the

in-track and normal are both low but the out-of-plane happens to be high, the dot

is blue. Otherwise, if the out-of-plane is low as well, then the dot is black. Both

these dots colors are seen for the higher probabilities. The color, in this sense, is

a deterrent because it distracts the eye and doesn’t immediately reveal the trend.
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4.4 Case I

4.4.1 Background

Case I is based on 99942 Apophis (2004 MN4), or just Apophis, which is an

interesting case because it has a turbulent history of impact probabilities.

It was first discovered in June 2004, lost shortly thereafter, and re-discovered in

December 2004. The six month observation arc gave an impact probability of 0.4%,

which is already very high. Subsequent observations in December only increased

the likelihood of an impact on April 13, 2029. It reached an unprecedented impact

probability of 2.7% when observations up to December 27th were included. Then,

suddenly, with new pre-discovery observations from March 2004, the likelihood of

impact in 2029 was almost entirely ruled out. Needless to say, the high probability

of impact and the appreciable size of Apophis (∼270 m) caused a significant scare

in the asteroid tracking community and was reported to the public on NASA’s

Near Earth Object and the NEOdyS websites [28].

The story of Apophis exemplifies the uncertain nature of determining an aster-

oid’s orbit and how the predictability of an asteroid’s behavior is highly dependent

on the number of observations available.

Although it is rather certain that Apophis will not impact the Earth in 2029,

it will still make a very close approach, which will inevitably alter its current orbit

significantly. The question now for Apophis is whether this close approach will put

it into a newly perturbed orbit which has the possibility of impact in 2036. That

is, if Apophis will pass through a keyhole2 in 2029 which puts it into an impact

scenario for 2036. The likelihood of this happening is low, and Apophis is still

being studied with scrutiny.

4.4.2 Dynamics

Case I and Apophis share only their nominal position and velocity at epoch: July

23, 2010 00:00. This is the epoch for each the cases.

2A keyhole is the small region of space that encloses the initial conditions for a future impact
scenario. If the asteroid passes through it, an impact will occur with higher probability on a
future pass.
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The orbit of Case I and the encounter regions generated by the three-body

dynamics is shown in Figure 3.2. These encounter regions are representative of

initial uncertainty range values of a1 = 1 AU and e = 2. The value for a1 is quite

high. However, if a more realistic value were used in this simulation, on the order

10−6, there would be no regions of encounter and the probability calculation could

not proceed.

This point comes back to the dynamic model. Because the dynamic model is

not accurate, even though Apophis itself makes a close approach to the Earth in

2029 on the order of 10−4 AU, the dynamic model in this study for Case I makes

no such prediction, despite them sharing initial conditions. In fact, the solution

found here never gets closer to the Earth than 0.05 AU and the uncertainty doesn’t

grow to a size large enough to cause an encounter region. So, the uncertainty is

chosen to be large initially, to compensate for the deficient dynamic model.

4.4.3 Probability Results and Analysis

The total probabilities for Case I from the Monte Carlo simulation are presented in

Figure 4.5. The date is effectively meaningless in this context because the dynamic

model is not accurate. The date serves only to separate and identify the encounters

from one another.

Each run of the calculation from integration of the equations of motion through

Monte Carlo simulation to integration of the pdf (this process is referred to from

now on as “the simulation”) produces identically colored dots at different dates

and values of probability. There are, in principle3, dots of 100 different colors.

It is interesting to note that over all 100 runs of the simulation that produced

randomly different initial uncertainties, the encounters are essentially the same

across the board. Each run produced one data point in an encounter, but over all

the runs, there are distinct groups of data points. This is analogous to the electron

two-slit experiment in physics where separate runs of the experiment result in a

placement of the electron on seemingly unrelated places on the detector, but over

enough runs, a pattern emerges to which each particle adheres. After only one

3“in principle” for two reasons: in the practice of random numbers there can be repeats, and
in the RGB color, there are not enough distinct colors to uniquely value each initial ellipsoid,
but it is distinct enough to notice trends in the data.
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Monte Carlo run, the total probabilities are spread over the date vs. probability

space in a seemingly unrelated way, but after 100 runs, it is clear that probabilities

only appear in specific places: the distinct encounters.

The relationship between initial uncertainty and the encounter regions for Case

I is not continuous, so that little changes in uncertainty do not translate to large

changes in the encounter dates. Rather, the relationship is more discrete so that

each encounter corresponds to a range of uncertainties.4 Different encounters are

produced by different uncertainties, but the set of different possible encounters

from the range of uncertainties available is finite and small. This means that

the major contributor to the set of encounters is the dynamic model and initial

conditions, or rather, the asteroid case that is being studied.

There is no trend over all the encounters associated with which dimension of

the initial uncertainty ellipsoid is closer to the maximum value. That is, from top

to bottom of Figure 4.5 there is no trend in color. Along a horizontal line that cuts

across the encounters, several different colored dots appear. The trend in color is

seen on an individual encounter basis. Each encounter is a set of vertically aligned

dots. The encounters can be separated into two categories. The first category

consists of those encounters that follow the following trend in the size of the initial

uncertainty: higher probabilities are darker colored dots and lower probabilities

are lighter (in a given encounter), which translates to higher probabilities resulting

from smaller initial uncertainty and visa versa. The second category consists of

those encounters that do not follow this trend.

From Figure 4.5 is can be seen that the majority of the encounters are in the

first category. Further, those in this category have the same trend in color from

top to bottom of the vertical line of dots. The lowest probabilities are a light shade

of gray, which means that the initial uncertainty is close to the maximum in each

direction: in-track, normal, and out-of-plane. The next higher probabilities are a

light shade of red which means that while all the initial uncertainties are close to

their maximums, the the in-track is slightly closer. The highest probabilities are a

dark shade of green, which means that the uncertainty in the normal direction is

the largest, but still low in its range.

4A continuous relationship is also known as one-to-one.
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The encounters in the second category for Case I, for the most part, also have

a trend. The lowest probabilities are almost pure green, while the highest proba-

bilities are almost pure blue. This corresponds to the lowest probabilities having

the normal direction of the initial uncertainty that is close to its maximum while

the other two directions are close to their minimums, and the higher probabilities

having the out-of-plane uncertainty closer to its maximum while the other two

are lower. There are a few exceptions in this category, most notably the one on

11/1/2021 in which the trend in color is clearly from blue to red.

The trend of the first category is shown in the second type of plot in Figure

4.6. Here the trend is clearly visible: darker colored dots (higher probability) are

clustered near the origin. Looking at Figure 4.7 it is apparent that the second

category of encounters follows a trend similar to that in Section 4.3 where the

trend is hidden. That is, the trend is only in the normal vs. in track uncertainties.

Figure 4.6. The probabilities of Case I for the encounter on 10/20/2035 trend from
higher to lower as the uncertainty grows in all three directions. This falls into the first
category of encounters.
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Figure 4.7. The probabilities for Case I for the encounter on 12/9/2020 trend from
higher to lower in normal vs in-track. This falls into the second category of encounters.

To summarize Case I, the encounters are split between two categories with the

majority having the trend of higher probabilities having lower initial uncertainties

while the lower probabilities have higher initial uncertainties. The fraction of

encounters that fall into the first category is about 4 out of 5. The second category

is further spit into those that have a trend in color from green to blue and those

that do not. From Figure 4.7, the trend is actually similar to the first category of

encounters but only in normal vs in-track.

In one hundred runs of the simulation, each simulation having between 21 and

25 encounters, there are a total of 2274 data points. As seen in Table 4.1, these

points occur in 25 distinct encounters (distinct, meaning differing by at least fifteen

days). Twenty-one of these encounters occur in all 100 runs of the simulation. In

other words, twenty-one dates in Figure 4.5 have 100 data points. One of the

remaining four occurs in 90 runs, two occur between twenty and thirty times and

one occurs less than five times. For example, the encounter on 4/11/2017 occurs

in all 100 runs, while the next encounter on 7/12/2017 only occurs in 29 runs. The

purpose of Table 4.1 is to show that the data points group into a small number of

encounters despite the variety of differing initial conditions.

The dates in Table 4.1 are halfway points of the encounter, so that there is

equal time before and after the date that is still the same encounter. The table

does not include the length of the encounter, but the encounters range between 1
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and about 40 time steps, where a time step is about half a day.

Results are presented for two other asteroid cases.

Table 4.1. The encounters of Case I that are distinct by fifteen days and their fre-
quency. The full list of encounters is found in Appendix E.1. The date for the encounter
throughout this study is unique to the dynamic model used here; in this context is only
an identifier.

Encounters Frequency
Month Day Year

11 1 2010 25
9 6 2011 90
1 14 2012 100
4 15 2012 100
8 23 2012 100

12 18 2016 100
4 11 2017 100
7 12 2017 29

12 9 2020 100
6 9 2021 100

11 1 2021 100
9 30 2025 100
1 16 2026 100
4 25 2026 100
9 11 2026 100

12 30 2030 100
4 10 2031 100

11 16 2034 100
12 29 2034 100
6 2 2035 100

10 20 2035 100
8 28 2039 100

12 31 2039 100
2 21 2040 30
4 10 2040 100
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4.5 Case II

4.5.1 Background

Case II is based on 1999 RQ36, which was discovered in 1999 by the LINEAR

observatory. It has been observed throughout the last decade.

RQ36 is interesting because it has a fairly high rating on the Palermo Scale,

which assesses the over all risk posed by a given asteroid. The impact probability

is currently about 0.07% in the last half of the 22nd century, which is fairly high.

The asteroid RQ36 “has the lowest uncertainty, [at the epoch 8 June 2001],

in semi-major axis of any asteroid.” But, this minimum uncertainty ignores the

dynamics of the Yarkovsky effect, which is an outgassing from the asteroid due to

heat from the Sun. This effect can have a large influence on the future motion of

the asteroid and if not taken into account can cause as asteroid to be lost. The

problem is that the physical attributes of the asteroid that lead to the Yarkovsky

effect are, for the most part, unknown. Nevertheless, there are techniques available

for modeling this effect [29].

4.5.2 Dynamics

Figure 4.8 shows the orbit of Case II and a typical set of encounters. The range

values are also a1 = 1 AU and e = 2.

4.5.3 Results

The first type of plot of probabilities for Case II is Figure 4.9. Like Case I, there

is no absolute trend in probability: the trends are on an encounter basis. Also like

Case I, the encounters can be split into two categories. The fraction of encounters

that fall into the first category is again about 4 out of 5. The trend for the first

category is identical to that for Case I. The lowest probability in each encounter

is a shade of gray and the highest is a shade of green and the pattern of dots in

between is similar to that of Case I. However, the second category in Case II does

not have the same trend in color as in Case I.

Figure 4.10 shows the trend from lower uncertainty to higher uncertainty for

the first category of encounters. While the second category for Case II does not
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have the same color trend as for Case I, the trend in initial uncertainty is actually

quite similar to Case I. This is shown in the second type of plot for Case II in

Figure 4.11.

Each simulation in 100 runs has eleven encounters or, put another way, each

encounter occurs in all 100 runs. Table 4.2 shows the dates of the eleven encounters.

Figure 4.8. The orbit and typical encounters of Case II as predicted by CR3BP. The
Earth is near (-1,0).
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Figure 4.10. The probabilities of Case II for the encounter on 9/19/2030 trend from
higher to lower as the uncertainty grows in all three directions. This falls into the first
category of encounters.

Figure 4.11. The probabilities for Case II for the encounter on 3/4/2033 trend from
higher to lower in normal vs in-track. This falls into the second category of encounters.



52

Table 4.2. The encounters of Case II that are distinct by fifteen days and their fre-
quency. The full list of encounters can be found in Appendix E.2.

Encounters Frequency
Month Day Year

9 25 2013 100
9 27 2014 100
2 9 2015 100

11 27 2015 100
2 29 2016 100
9 19 2030 100
1 29 2031 100

10 12 2031 100
3 8 2032 100

12 11 2032 100
3 4 2033 100

4.6 Case III

4.6.1 Background

Case III is based on 2010 RF12, which made headlines in September 2010 when

it and other small asteroid 2010 RX30 made very close approaches within hours

of one another. The two objects were discovered only a few days prior, but with

collaboration around the globe, their orbits were determined and the prediction of

their close approaches was made. It was one of a handful of times that the orbits

of asteroids that have activity near the Earth were first observed and predicted

in only a few short days. RF12 is thought to be only several meters in diameter,

so a collision would not be disastrous, but by studying this case, the methods for

impact probability calculation can be further developed and tested, so that when

we encounter an asteroid that does pose a significant threat, the techniques are

properly refined.

4.6.2 Dynamics

The orbit and encounters of Case III as predicted by the CR3BP is seen in Figure

4.12. The range values that contributed to these encounters are a1 = 1 AU and
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Figure 4.12. The orbit over a 30 year integration and typical encounters of Case III as
predicted by CR3BP. The black dot representing the Earth near (-1,0) is not to scale.

e = 2. Case III, unlike Case II, has a long encounter for its close approach. This

is because this close approach happens near the initial epoch and the uncertainty

is still aligned with the velocity vector. Recall that the initial epoch is in July of

2010, so this is near to the path that RF12 took in September 2010.

The orbit of Case III is similar to that for Case I and Case II. The asteroid

makes loops that advance in a circle around the Sun. The difference is that the

outsides of the loops swing upwards in the z-direction for Case III whereas they

dip downwards for Case I and Case II. Figure 4.13 conveys this for each case. This

happens because of the characteristics of the orbit in the inertial frame. Each case

is based on a real asteroid and the real asteroids are on inclined (to the ecliptic),

Earth crossing orbits. For Apophis and RQ36, the apogee of the orbit is below

the ecliptic, while for RF12 it is above the ecliptic. Or also, the eccentricity vector

points above the ecliptic for RF12 and below for Apophis and RQ36. These are

reflected in the cases, respectively, so that when Case I is inside Earth’s orbit
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Figure 4.13. The orbits of the three cases projected on the x-z plane. The cone or bowl
shape of the orbit is representative of the inclination of the orbits in the inertial frame
and are correct for the corresponding real asteroids upon which the cases are based.

(closer to the origin), the orbit is higher, and visa versa. Also note that Case

II appears to be the most inclined of the three, which is true for RQ36. While

the dynamic model produces an inaccurate nominal solution, it is close enough to

reality to have these gross characteristics. This demonstrates the validity of the

three-body dynamics.

4.6.3 Results

The first type of plot for the probabilities for Case III is Figure 4.14. Again, the

runs organize by encounters and there is no absolute trend. The encounters can

be split into the two categories with encounters in the the first category occurring

2 out of 3 times. The first category in Case III follows the trend of Case I and

Case II that can be seen in the first type of plot, while the second category holds

no trend similar to either Case I or Case II nor does a majority of the encounters

in the second category for Case III have the same trend.

Figure 4.15 confirms the trend for the first category. Figure 4.16 shows the

second type of plot for the second category which has the same type of trend as

for Case I and Case II.
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Figure 4.15. The probabilities of Case III for the encounter on 2/24/2023 trend from
higher to lower as the uncertainty grows in all three directions. This falls into the first
category of encounters.

Figure 4.16. The probabilities for Case III for the encounter on 10/27/2034 trend from
higher to lower in normal vs in-track. This falls into the second category of encounters.
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This case has a total of 1808 data points in 21 encounters distinct by fifteen days

(Table 4.3). Sixteen occur all 100 times, one occurs 99 times, while the remaining

four happen less than 50 times.

Table 4.3. The encounters of Case III that are distinct by fifteen days and their fre-
quency. The full list of encounters can be found in Appendix E.3.

Encounters Frequency
Month Day Year

9 2 2010 100
12 2 2010 100
2 18 2021 100
4 14 2021 100
5 9 2021 17

11 13 2021 44
12 13 2021 38
5 1 2022 100
9 24 2022 100
2 24 2023 100
9 8 2023 100

12 2 2023 100
1 20 2034 100
4 14 2034 10
5 9 2034 99

10 27 2034 100
4 17 2035 100
9 11 2035 100
1 28 2036 100
9 13 2036 100

10 23 2036 100

4.7 Summary

4.7.1 Dynamics

Based on the real initial conditions of the asteroids position and velocity, the

three-body problem reproduced orbits that resemble the true orbit in its gross

characteristics. For example, Case III (based on RF12) is an Earth crossing aster-

oid, which means that its eccentricity vector points in the direction of the orbit



58

that is inside Earth’s orbit. It also has an eccentricity vector that points below

the ecliptic. This would mean that its orbit in the rotating frame, with the Earth

fixed, would resemble the top inside rim of a bowl, or that looking down the z-

axis, is concave. This is in fact what is produced by the implementation of the

three-body problem here. Conversely, Case II (based on RQ36) has its eccentricity

vector pointing above the ecliptic, which would mean that its orbit in the rotating

frame would be—looking down the z-axis—convex. This, also, is produced by the

dynamic model here.

The dynamic model for this study also predicts close approaches for each of

the cases. Where they deviate from the real asteroids they are based on are the

particular date of the close approach and the close approach distance. This is what

is meant in Chapter 2 by the inaccuracies of the model. The orbit is not exact,

but for the purposes here, is the proper backdrop for the probability analysis.

4.7.2 Probability

The Cases are called I, II, and III in order to separate them from the real asteroid

upon which they are based. The probabilities calculated here do no reflect actual

risk posed by the real asteroids. While the initial conditions are real, the dynamic

model is simplified and the initial uncertainty is unrealistic. So the encounters and

probability are essentially arbitrary. Nevertheless, the relative trend in probability

and initial uncertainty is still valid: it is exemplary of the method used to calculate

probability. This method can be applied to real asteroids if a true dynamic model

and initial uncertainty are employed.

The trend in probability for Cases I, II, and III can be summarized as follows.

The encounters in the first category trend the same by all three directions of the

initial uncertainty for all three cases. That is, lower initial uncertainties lead to

higher probabilities and visa versa. The second category according to the first type

of plot (the color plots) does not hold the same trend across cases. The trend is

in fact revealed to be the same across cases (and similar to the first category) by

the second type of plot, which takes the color out of the display. The first type of

plot is necessary to see how the different runs with differing initial uncertainties

produce the same small set of encounters.
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For all encounters over all three cases, the statement can be made that initial

uncertainties that are closer to the minimum in at least two principal directions

produce higher probabilities of impact.

For the fictitious case of the asteroid on a collision course, it is found that this

method of calculating probability properly predicts a significantly higher probabil-

ity of impact as expected. Also, the probabilities trend similarly to those for the

three cases.

In the next chapter, the results are explained by a simple example and the con-

tributions and limitations of this thesis are discussed. Also, suggestions are made

about the work that can follow from this study.



Chapter 5
Conclusions

This thesis has examined how the variability of initial uncertainty effects the total

probability calculated by a method that differs from standard practices of asteroid

impact probability calculation. This differing method was developed in Chapter

3 and applied to asteroid cases that utilized the dynamics developed in Chapter

2. In Chapter 4, the trend in the calculated probability vs. initial uncertainty was

revealed. This chapter describes the source of this trend and looks at the results

from a perspective that takes into account the realistic interpretation of the initial

uncertainties and the resulting probabilities of impact. Also, this chapter makes

recommendations for future work.

5.1 Summary of Contributions

A major contribution of this thesis is the development of an alternative method

for impact probability calculation using the positional uncertainty ellipsoid as the

central tool. As an application of this method, a Monte Carlo simulation was

run to find a relationship between initial uncertainty and total probability. The

trend found is another contribution. To show how this trend is achieved, two one-

dimensional probability density functions are examined in more detail and their

relationship is applied to the three-dimensional case of positional uncertainty.
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5.1.1 Explanation of the Trend

To see how the trend found is what is expected, the parameters of the problem

must be classified and the variables that contribute to the trend are highlighted.

The encounters are the same for each run of the simulation for a given aster-

oid. This means that the relative Earth vector is the same for each calculation of

probability at that encounter. The dynamics that produce the uncertainty during

the encounter are also the same. Further, the orientation of the initial uncer-

tainty is fixed so that the uncertainty throughout the encounter has a one to one

relationship with the initial conditions that produced them. Also, larger initial

conditions will produce a larger propagated uncertainty at a given future time.

The only variable in this problem is the size of the initial uncertainty. Because the

relationship between initial uncertainty and propagated uncertainty is one-to-one,

this can be translated to the only variable being the size of the uncertainty during

the encounter. Because the encounter is the same distance away from the Earth

for each run of the simulation, the only variable to affect probability is the size of

the uncertainty during the encounter.

Now, the probability calculated is an integration of the probability density

function, which is a represented by the size of the uncertainty. Figure 5.1 shows two

probability density functions with different standard deviations, σ. The vertical

Figure 5.1. Two pdfs with differing standard deviations.
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lines indicate 3σ. Near the mean, the pdf is greater when the standard deviation

is lower (blue is greater than red). Farther from the mean, the larger standard

deviation has a greater pdf (red is greater than blue). The distance below which

the blue pdf is greater than the red pdf is found by equating the two pdfs and

solving for the distance from the mean, s.

s = nσ

√
2 ln
√
n

n2 − 1
(5.1)

where nσ is the greater standard deviation. For the standard deviations in Figure

5.1, according to equation (5.1), s = 0.334. For the probabilities to be greater when

3σ is smaller, as is seen in the results, the Earth must be less than the distance s

from the center of the uncertainty ellipsoid at the time of the encounter. This is

in fact the case for the three asteroid cases in this study: the 3σ uncertainty can

grow to be more than 300 AU, n = e = 2, so from equation (5.1), s ≈ 48 AU while

the Earth is at most about 2 AU from the center of the ellipsoid. This is why the

probabilities are greater when the uncertainty is tighter: the tighter uncertainty

has a greater pdf at the position of the Earth.

This explanation is based on the one-dimensional case. The pdf that is uncer-

tainty is three-dimensional. It is one of the contributions of this thesis to show that

this trend is maintained for higher-dimensional pdfs in the scenario of asteroids in

orbit around the Sun. Also, it is shown in Section 4.3 that this method produces

the expected significantly higher probabilities for an asteroid on a direct collision

course with the Earth.

5.1.2 Results in Perspective

A higher probability is desired because the probability of impact should be a con-

servative estimate at best. It would not be beneficial to calculate true probabilities

that are deceptively low, giving us a false sense of security. With the advancement

of ever more accurate observational and theoretical techniques to determine orbits

of asteroids, the uncertainties will diminish (however, they will never vanish).

This leads to the optimistic conclusion that the probabilities calculated in the

future will always be greater than they are today. But, looking back at Figure 5.1,
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this relationship between standard deviation and probability only holds near the

mean. If the uncertainties shrink enough and the distance of the encounter stays

constant, there is a range for which a smaller uncertainty has a lower probability.

The trend in probability found in this study was a result of the vastly large

initial uncertainties, which led to the even larger propagated uncertainties. These

propagated uncertainties are so large that the Earth is well within the distance

s—the range for which the smaller uncertainty ellipsoid integrates to a higher

probability. In no real sense would the initial uncertainty be 1 AU. It may grow

to be that large after several decades of propagation, but an uncertainty of 1 AU

today would mean that the asteroid is lost.

The probabilities calculated are extremely small. Even for the impact example

in Section 4.3 the probabilities are not indicative of a very likely impact. The

probabilities for the three cases are at the edge of what is considered negligible.

The lowest probabilities calculated for PHAs by NASA’s NEO website [5] are

greater than the largest probabilities produced by the Monte Carlo simulations of

this study. This is an indication that work must continue on this method before

it can be applied to real asteroid cases.

So while the result is promising, it is given with the caveat that it was the

result of unnaturally large initial uncertainties.

These large initial uncertainties are required because without them, no encoun-

ters occur. This highlights a fundamental limitation of this method as applied to

real cases. The uncertainties in a real case would be orders of magnitude less than

an AU. With uncertainties this small used to run the simulation, no encounters

were detected and the probability calculation could not proceed.

5.2 Recommendations for Future Work

The recommendations given in this section are primarily concerned with refining

the methods presented here so that they can be applied to real asteroids and

produce actual probabilities. The first change to be made to do this is to use

realistic initial uncertainties. So far, this is impossible, but recommendations to

accommodate these impossibilities are given in Section 5.2.2.
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5.2.1 Dynamic Model

As has been stated many times in this thesis, the dynamic model is intentionally

left inaccurate for simplicity. In the future, it is formally recommended that the

dynamic model is replaced with a more sophisticated model that produces what

is considered the true trajectory of the asteroid. This will vastly increase the

accuracy of the encounter regions and probabilities calculated.

To create a more accurate dynamic model, additional factors must be taken

into account including perturbing bodies in the solar system, general relativity,

and the Yarkovsky effect, among others.

5.2.2 Probability Calculation

The uncertainty being so large initially is the greatest limitation of this study. As

was stated above, this is necessary to produce encounters over which a probability

calculation can be performed. If this method is to be applied to real cases more

realistic initial uncertainties are required.

More realistic initial uncertainty can be used if the propagation technique is

adjusted. Remember that the uncertainty is propagated by a linear transformation

of the state transition matrix. Over the time spans of the desired propagation (30

years or greater), the linear assumption may not always hold. It is recommended

that nonlinear propagation of uncertainty is investigated in order to open the

possibility of starting with lower initial uncertainties. Nonlinear propagation may

lead to faster growth of the uncertainty, which would lead to more regions of

encounter as defined here.

The goal of any future work is to achieve actual probabilities of impact of

asteroids with the Earth. By using realistic uncertainty, the probabilities calculated

will also be more realistic. Methods to nonlinearly propagate the uncertainty are

addressed by Chesley [30] and together with the methods discussed in the preceding

chapters could lead to more realistic probabilities of impact.



Appendix A
Scripting Techniques

A.1 Solving the EOMs

In MATLAB, two scripts are needed to integrate the equations of motion: a main

script and a function script. The main script contains the definitions of all constant

quantities including the initial conditions and time span of the calculation. The

main script also contains a statement that passes these quantities to the solver

itself. The function script contains the equations of motion the form of which

is altered to accommodate the solver (see Section 2.3). The function is an object

defined by this script that is then passed in the main script to the solver, ode45 [31],

a Runge-Kutta 4/5 variable step size integrator.

With a minimum of two scripts, the Newtonian equations of motion are solved

and the nominal solution of the asteroids trajectory is obtained.
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A.2 Propagating the Planets

An embedded function is needed to numerically solve for the positions of the per-

turbing bodies at each time step. The statement calling the embedded function

and solving for it using the standard solver is placed inside the first function (which

is solving the equations of motion of the asteroid itself) and before the lines defin-

ing equation (2.11) so that the positions of the perturbing bodies are available.

The embedded function is then equation (2.19) for each of the perturbing bodies,

k. The return of the embedded function is a 3×N matrix of all the positions of

the perturbing bodies at that time step.



Appendix B
Covariance Propagation

Linear propagation of the uncertainty is achieved by a transformation on the initial

covariance matrix [32].

P = Φ(t, t0)P0Φ
T (t, t0) (B.1)

This can be understood in the following way. The State Transition Matrix is

defined as:

Φ =
∂X

∂X0

(B.2)

where X is the state vector. The initial normal (or information) matrix, which is

the inverse of the covariance matrix, is defined as:

C0 =

(
∂ξ

∂X0

)T (
∂ξ

∂X0

)
(B.3)

and the corresponding normal matrix at any time t is:

C =

(
∂ξ

∂X

)T (
∂ξ

∂X

)
(B.4)

where ξ is the observational residual. Applying the chain-rule to these differentials

gives,

C =

(
∂ξ

∂X0

∂X0

∂X

)T (
∂ξ

∂X0

∂X0

∂X

)
(B.5)
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then by distributing the transpose,

C =

(
∂X0

∂X

)T
∂ξ

∂X0

T ∂ξ

∂X0

(
∂X0

∂X

)
(B.6)

the information matrix comes out of the middle two terms,

C =

(
∂X0

∂X

)T
C0

(
∂X0

∂X

)
(B.7)

The inverse of this equation then gives,

P = C−1 =

(
∂X

∂X0

)
P0

(
∂X

∂X0

)T
(B.8)

Here is it clear that equation (B.8) with (B.2) is identical to (B.1) [18].

It should be noted here that the linear assumption used here to propagate

the uncertainty can fail in certain cases. Examples include when the time span of

propagation is especially long or when the asteroid makes a close approach. In these

cases, nonlinear propagation is necessary, but can be increasingly computationally

taxing [30]. Methods involving nonlinear propagation are outside the scope of this

thesis and are discussed further in the section on future work.



Appendix C
Linear Approximation

This appendix is a summary of [33].
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Figure C.1. A circle with a secant and tangent.

The question is what maximum angular arc of a circle can be approximated

by a straight line. To answer this, two relative errors are examined: that of the

secant, S, associated with the arc, C, and the tangent, T , that is coincident with

the arc. See Figure C.1. These errors are denoted ε* and ε**, respectively.

If the radius of the circle is R, then the length of the arc is

C = Rγ (C.1)
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Also, the length of the secant is

S

2
= R sin

(γ
2

)
(C.2)

Then the relative error is,

ε* =
S − C
C

=
2

γ
sin
(γ

2

)
− 1 (C.3)

With an angle of 0.1 radians, the error is 0.04%. This is sufficiently smaller than

one.

The length of the tangent is

T = R tan γ (C.4)

So that its error is,

ε** =
T − C
C

=
1

γ
tan γ − 1 (C.5)

With an angle of 0.1 radians, the error is 0.3%. This is sufficiently smaller than

one as well.

So, with γ = 0.1 rad (5.8◦) there is close agreement between a straight line and

a circular arc.



Appendix D
Encounter Region Check

The check whether the Earth is inside the uncertainty ellipsoid is performed at

each time step along the orbit and can be done in several ways.

The encounter region is defined as the region along the orbit when the Earth

is inside the uncertainty ellipsoid. Of course, “the Earth” refers to the surface of

the Earth because that is where collisions occur. However, at the distance scale

of an asteroid in obit around the Sun, as in the three asteroid cases in Sections

4.4 - 4.6, it is usually sufficient to treat the Earth as a point located at its center.

Methods that do this are discussed in Appendix D.1. Only when doing analysis

very close to the Earth, when the size of the Earth is significant compared to the

length scale, as in Section 4.3, is it necessary to include the extent of the Earth

when determining the encounter regions. A check for close approaches will tell

whether it is necessary to include the size of the Earth even when dealing with

large distance scales. A technique to take into account the extent of the Earth is

addressed in Appendix D.2.
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D.1 Earth as a Point

D.1.1 Cartesian

The surface of the uncertainty ellipsoid in Cartesian coordinates is subject to the

following condition [
x′ y′ z′

]
P−1


x′

y′

z′

 = 1 (D.1)

where P is the 3×3 covariance matrix and [x′ y′ z′] are coordinates centered at the

ellipsoid. To determine whether a position is inside this ellipsoid, one takes the

inequality less than or equal to one.

D.1.2 Spherical

Alternatively, one can determine the spherical angles that the relative position

vector of the Earth with respect to the center of the ellipsoid makes with the

ellipsoid’s principal axes, [x′ y′ z′]. These angles are shown in Figure D.1. To

do this, first, take the dot product of the unit (x′,y′) components of the position

with the x′-axis and then take the inverse cosine (a check of quadrant is required).

This is the angle θ. Next, take the dot product of the (x′,y′,z′) components of the

position with the z′-axis and then take the inverse cosine (no quadrant check is

required). This is the angle φ. The distance, d, from the center of the ellipsoid to

its surface at the spherical location defined by these angles can then be calculated:

d =

√[
sin2 φ cos2 θ

λ1
+

sin2 φ sin2 θ

λ2
+

cos2 φ

λ3

]−1
(D.2)

where λi are the eigenvalues of the covariance matrix. Then one checks whether

the magnitude of the relative position of the Earth from the center of the ellipsoid

is less than or equal to d.

The cartesian and spherical checks, not surprisingly, produce identical encounter

regions.
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Figure D.1. The uncertainty ellipsoid in a frame aligned with its principal axes and
the spherical angles that the relative Earth vector (the vector from the center of the
uncertainty ellipsoid to the center of the Earth) makes with those axes. The thin black
line is the relative Earth vector, the thick black line is the part of that vector inside the
ellipsoid, and the blue line is the projection of the relative Earth vector onto the x′-y′

plane.

D.2 Earth with Extent

Taking into account the extent of the Earth is as easy as adding to the relative

Earth vector a vector from the center of the Earth to its surface and then using the

methods for determining whether a point is inside an ellipsoid. The difficulty is

that this process requires checking the whole range of additive vectors at each time

step and is very computationally intensive. A more efficient method is necessary.

The problem is determining when two ellipsoids intersect. The two ellipsoids

are the uncertainty ellipsoid and the Earth (the Earth is an ellipsoid with three

equal principal axes). Alfano [34] and Chan [35] develop the technique to do this.
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The surface of an ellipsoid can be described by:

XTST TXT = 0 (D.3)

where

X =
[
x y z 1

]
(D.4)

T =


1 0 0 0

0 1 0 0

0 0 1 0

−x0 −y0 −z0 1

 (D.5)

S =


C11 C12 C13 0

C21 C22 C23 0

C31 C32 C33 0

0 0 0 −1

 (D.6)

where [x0, y0, z0] is the center of the ellipsoid and Cij are the elements of inverse of

the characteristic matrix of the ellipsoid. In the case of the uncertainty ellipsoid,

this characteristic matrix is the covariance matrix, P . C is called the information

matrix:

C = P−1 (D.7)

The two ellipsoids are then

XAXT = 0 (D.8)

and

XBXT = 0 (D.9)

By subtracting equation (D.9) from a scaled (D.8): X(λA−B)XT = 0, the problem

becomes an eigenvalue problem. To get it in the recognizable form, left multiply

the inner matrix by AA−1.

XA(λI − A−1B)XT = 0 (D.10)

As explained by Alfano and Chan, the eigenvalues of A−1B are indicative of

the state of intersection of the two ellipsoids described by A and B. When two of
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the eigenvalues are negative and unequal, the ellipsoids are not intersecting. When

the two eigenvalues are negative and repeating, the two ellipsoids are just touching

(at a single point). When the two eigenvalues are complex conjugates, one end of

one ellipsoid is inside the other. When the two eigenvalues are positive, the two

ellipsoids are intersecting through one another.

Because there are four eigenvalues for this problem, Alfano refers to admissible

and inadmissible eigenvalues. One example of an inadmissible eigenvalue is one

with an eigenvector with a zero in the last component. This is inadmissible be-

cause “this formulation has been framed in a four-dimensional space with the last

dimension fixed [34]” as shown in equation (D.4). It is not clear whether this is

the only case of inadmissibility.

In any case, when applying this method to the problem here, it is found that the

eigenvectors do not behave as described by Alfano and the eigenvalues cannot be

distinguished between admissible and inadmissible. This is not actually a problem

because the classification of the eigenvalues can be applied even when all four are

taken equally.

When any of the four eigenvalues are complex conjugates, the ellipsoids are

overlapping, when all four are positive, they are overlapping, when any two are

negative and equal they are touching, when any two are negative and unequal,

they are separate.

With this check on the eigenvalues of A−1B, the regions along the orbit of the

asteroid when the instantaneous uncertainty ellipsoid and the sphere of the Earth

intersect can be determined. This works whether A or B is the Earth.



Appendix E
List of Encounters

The “distinct value” in Chapter 4 of 15 is chosen because the encounters of all three

cases are not perfectly discrete. The characteristic of being discrete or continuous

is a spectrum, so that some cases are more continuous than others.

Small changes in the initial uncertainty does produce small changes in the

mean date of an encounter. So over all the simulations in a case, there are several

encounters that appear only once or twice that are only a day or less different than

other encounters in other simulations.

This Appendix presents all the encounters of each case to the resolution of the

numerical results: half a day.
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E.1 Case I

There are 68 encounters that are distinct by half a day. The greater-than/less-than

split at 50 is 20/48. Six encounters appear only once.

While these encounters are more continuous, they are still grouped around a

specific date with gaps in time between them. The date around which each group

is centered is the date associated with the fifteen day encounters in Chapter 4.

Table E.1: The encounters of Case I that are distinct by

half a day and their frequency.

Encounters Frequency

Month Day Year

11 1.2 2010 12

11 1.8 2010 8

11 2.4 2010 4

11 3 2010 1

9 6.8 2011 1

9 7.4 2011 57

9 8 2011 31

9 8.6 2011 1

1 14.2 2012 3

1 14.8 2012 14

1 15.4 2012 14

1 16 2012 20

1 16.6 2012 23

1 17.2 2012 9

1 17.8 2012 11

1 18.4 2012 4

1 19 2012 2

4 16 2012 41

4 16.6 2012 59

8 24 2012 7

Continued on Next Page. . .
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Table E.1 – Continued

Month Day Year Frequency

8 24.6 2012 83

8 25.2 2012 10

12 18.2 2016 66

12 18.8 2016 34

4 11.5 2017 82

4 12.1 2017 18

7 12.6 2017 29

12 9.8 2020 25

12 10.4 2020 70

12 11 2020 5

6 9.7 2021 1

6 10.3 2021 63

6 10.9 2021 35

6 11.5 2021 1

11 1.5 2021 14

11 2.1 2021 86

9 30.2 2025 3

9 30.8 2025 97

1 16.3 2026 100

4 25.8 2026 88

4 26.3 2026 12

9 11.7 2026 2

9 12.3 2026 98

12 30.4 2030 36

12 31 2030 64

4 10 2031 50

4 10.6 2031 50

11 16.8 2034 22

11 17.4 2034 76

11 18 2034 2

Continued on Next Page. . .
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Table E.1 – Continued

Month Day Year Frequency

12 29.6 2034 23

12 30.2 2034 55

12 30.8 2034 22

6 2.3 2035 12

6 2.9 2035 88

10 20.4 2035 100

8 29 2039 100

12 31.1 2039 16

12 31.7 2039 63

1 1.3 2040 21

2 21.2 2040 3

2 21.8 2040 7

2 22.4 2040 8

2 22.9 2040 8

2 23.5 2040 3

2 24.1 2040 1

4 10.7 2040 25

4 11.3 2040 75

E.2 Case II

There are 44 encounters distinct by half a day. About half of these occur more

than once but less than twenty times.

Case II is slightly more continuous than Case I because the ratio of encounters

distinct by half a day to those distinct by fifteen days is greater for Case II.
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Table E.2: The encounters of Case II that are distinct by

half a day and their frequency.

Encounters Frequency

Month Day Year

9 26 2013 25

9 26.6 2013 29

9 27.1 2013 32

9 27.7 2013 13

9 28.3 2013 1

9 27.5 2014 27

9 28.1 2014 70

9 28.7 2014 3

2 9.9 2015 4

2 10.5 2015 9

2 11.1 2015 6

2 11.7 2015 8

2 12.3 2015 7

2 12.9 2015 5

2 13.5 2015 11

2 14 2015 5

2 14.6 2015 10

2 15.2 2015 5

2 15.8 2015 13

2 16.4 2015 11

2 17 2015 5

2 17.6 2015 1

11 27.5 2015 2

11 28.1 2015 24

11 28.7 2015 28

11 29.3 2015 28

11 29.9 2015 17

Continued on Next Page. . .
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Table E.2 – Continued

Month Day Year Frequency

11 30.5 2015 1

2 29.3 2016 33

2 29.8 2016 67

9 19.2 2030 49

9 19.8 2030 49

9 20.4 2030 2

1 29 2031 8

1 29.6 2031 64

1 30.2 2031 28

10 12.3 2031 16

10 12.9 2031 72

10 13.5 2031 12

3 8.9 2032 100

12 11.1 2032 47

12 11.7 2032 53

3 4.5 2033 41

3 5.1 2033 59
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E.3 Case III

There are 172 encounters that are distinct by half a day. The majority occur more

than once but less than twenty times in the 100 runs. Case III is by far the most

continuous case.

Table E.3: The encounters of Case III that are distinct

by half a day and their frequency.

Encounters Frequency Encounters Frequency

Month Day Year Month Day Year

9 2.2 2010 5 12 12.9 2010 3

9 2.8 2010 15 12 13.5 2010 7

9 3.4 2010 26 12 14 2010 2

9 4 2010 24 12 14.6 2010 3

9 4.6 2010 30 12 15.2 2010 2

12 2.8 2010 1 2 18.2 2021 34

12 3.4 2010 6 2 18.8 2021 43

12 4 2010 2 2 19.4 2021 23

12 4.6 2010 5 4 14.3 2021 4

12 5.2 2010 5 4 14.9 2021 4

12 5.8 2010 7 4 15.4 2021 5

12 6.3 2010 6 4 16 2021 7

12 6.9 2010 9 4 16.6 2021 9

12 7.5 2010 8 4 17.2 2021 7

12 8.1 2010 8 4 17.8 2021 11

12 8.7 2010 4 4 18.4 2021 8

12 9.3 2010 6 4 19 2021 7

12 9.9 2010 2 4 19.6 2021 10

12 10.5 2010 4 4 20.2 2021 12

12 11.1 2010 6 4 20.8 2021 8

12 11.7 2010 2 4 21.4 2021 2

12 12.3 2010 2 4 22 2021 1

Continued on Next Column. . . Continued on Next Page. . .
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Table E.3 – Continued

Month Day Year Frequency Month Day Year Frequency

4 22.6 2021 4 5 7.4 2022 3

4 23.1 2021 1 9 24.3 2022 6

5 9.9 2021 6 9 24.9 2022 24

5 10.5 2021 11 9 25.4 2022 23

11 14 2021 2 9 26 2022 22

11 14.6 2021 2 9 26.6 2022 19

11 15.1 2021 2 9 27.2 2022 3

11 15.7 2021 4 9 27.8 2022 3

11 16.3 2021 4 2 25 2023 7

11 16.9 2021 3 2 25.6 2023 28

11 17.5 2021 4 2 26.2 2023 31

11 18.1 2021 5 2 26.7 2023 22

11 18.7 2021 3 2 27.3 2023 12

11 19.3 2021 6 9 8.7 2023 4

11 19.9 2021 6 9 9.3 2023 7

11 20.5 2021 2 9 9.9 2023 18

11 21.1 2021 1 9 10.5 2023 14

12 13.2 2021 2 9 11 2023 11

12 13.7 2021 33 9 11.6 2023 14

12 14.3 2021 3 9 12.2 2023 7

5 1.4 2022 2 9 12.8 2023 6

5 2 2022 5 9 13.4 2023 3

5 2.6 2022 16 9 14 2023 4

5 3.2 2022 17 9 14.6 2023 5

5 3.8 2022 20 9 15.2 2023 4

5 4.4 2022 16 9 15.8 2023 2

5 5 2022 10 9 16.4 2023 1

5 5.6 2022 6 12 2.7 2023 5

5 6.2 2022 4 12 3.3 2023 14

5 6.8 2022 1 12 3.9 2023 24

Continued on Next Column. . . Continued on Next Page. . .
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Table E.3 – Continued

Month Day Year Frequency Month Day Year Frequency

12 4.5 2023 29 11 1.4 2034 12

12 5.1 2023 23 11 2 2034 13

12 5.7 2023 5 11 2.6 2034 10

1 20.7 2034 17 11 3.2 2034 6

1 21.3 2034 21 4 17.5 2035 5

1 21.9 2034 38 4 18.1 2035 14

1 22.5 2034 23 4 18.7 2035 20

1 23.1 2034 1 4 19.3 2035 13

4 14.2 2034 2 4 19.9 2035 13

4 14.8 2034 2 4 20.5 2035 13

4 15.4 2034 2 4 21.1 2035 11

4 16 2034 1 4 21.7 2035 5

4 16.6 2034 2 4 22.3 2035 2

4 17.1 2034 1 4 22.9 2035 2

5 9.8 2034 1 4 23.5 2035 2

5 10.4 2034 13 9 11.7 2035 3

5 11 2034 29 9 12.3 2035 9

5 11.6 2034 21 9 12.9 2035 30

5 12.2 2034 21 9 13.5 2035 25

5 12.8 2034 9 9 14.1 2035 19

5 13.4 2034 4 9 14.7 2035 8

5 14 2034 1 9 15.3 2035 2

10 27.7 2034 3 9 15.9 2035 4

10 28.3 2034 3 1 28.7 2036 53

10 28.9 2034 3 1 29.2 2036 46

10 29.5 2034 8 1 29.8 2036 1

10 30.1 2034 13 9 13.9 2036 8

10 30.7 2034 5 9 14.5 2036 24

10 31.3 2034 15 9 15.1 2036 33

10 31.8 2034 9 9 15.7 2036 29

Continued on Next Column. . . Continued on Next Page. . .
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Table E.3 – Continued

Month Day Year Frequency Month Day Year Frequency

9 16.3 2036 6

10 23.2 2036 1

10 23.8 2036 11

10 24.4 2036 17

10 25 2036 20

10 25.6 2036 17

10 26.1 2036 32

10 26.7 2036 2
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