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Abstract

An alternative to the conventional method for determining impact probability by
an asteroid is presented that utilizes the positional uncertainty ellipsoid. This
method is used commonly for Earth-orbiting satellite collision probability. In the
scaling up process, the gravitational influence of one of the bodies in the collision is
taken into account, namely that of the Earth. The restricted three-body problem
is sufficient to provide a backdrop for the probability analysis, while making sure
to note that the results are only hypothetical given a simplified dynamic model.
Uncertainty is represented mathematically by the 30 covariance matrix and is
propagated into the future by a linear transformation involving the State Transi-
tion Matrix (STM). Encounter regions are defined as regions along the nominal
trajectory of the asteroid where the propagated uncertainty encloses the Earth.
These regions are not known a priori. Probability is then calculated by a triple
integral of the probability density function (pdf) (a function of the covariance ma-
trix) over the volume swept out by the Earth through the encounter region. This
integral is achieved by, first, integrating the instantaneous pdf at each time step in
the encounter region, and then by integrating the resulting probability, as a func-
tion of time, over its domain. The process from propagating the uncertainty along
the nominal trajectory, finding the encounter regions and calculating probability
is repeated in a Monte Carlo simulation that varies the initial uncertainty. The
orientation of the initial uncertainty ellipsoid is held constant: aligned with the
velocity vector, while the lengths of the three principal axes (in-track, normal, and
out-of-plane) are varied in their respective relative ranges. The trend in probabil-
ity calculated vs. initial uncertainty is then investigated. It is found that higher
probabilities result from initial uncertainties that are tighter in all three directions.
That is, higher probabilities result when the position of the asteroid is known ini-
tially with more accuracy. This is an expected result because probability should
be a conservative estimate so that likely encounters are not overlooked. And with
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advances in observational and analytical techniques, the initial positions of aster-
oids will inevitably become more accurate so that more conservative probabilities
will be calculated in the future. However, it is also shown that this positive result
stems from the uncertainty being very large initially, so that as the uncertainty de-
creases substantially, the trend will tend to reverse. This fact is not demonstrated
because large uncertainties are required for this method to proceed. Suggestions
for future work are given to combat these limitations. With this alternative, and
the suggestions for improving it, probabilities of impact by an asteroid can be
calculated that are comparable to current automated methods.
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Chapter

Introduction

This thesis presents a method for calculating the probability of collision between
an asteroid and the Earth. The question of what this probability is for a given
asteroid can be answered in a variety of different ways. One of these methods is
being put to practical use in an automated system to search for possible impactors
and utilizes the Line of Variations (LOV) as its primary analytical tool. (The
method of Line of Variations is discussed in Section 1.2.1.) This thesis presents
a method for determining impact probability by using the positional uncertainty
ellipsoid as its primary analytical tool.

The method of impact probability determination that is presented here is best
understood as an analog to satellite collision determination in Earth orbit. The
method used to detect possible collisions between two satellites in Earth orbit im-
plements positional uncertainty ellipsoids that surround each satellite in question.
Here, the two objects in question are an asteroid and the Earth itself. The analogy
diverges, however, when we speak about the two objects influencing one another
gravitationally. In Earth orbit, the two satellites do not have a gravitational effect
on one another, whereas in the scaled up version, the Earth (one of the objects in
the collision) influences the asteroid gravitationally. This is realized in the choice
of dynamic model, namely the Restricted Problem of Three Bodies where the Sun
and the Earth influence each other and the asteroid, but the asteroid does not
reciprocate.

The dynamic model used in this study is relatively simple. Other, more sophis-

ticated models for propagating the orbits of asteroids are being put to practical



use in systems such as the National Air and Space Administration’s (NASA’s)
Horizons' software program. The specific model used for dynamic propagation is
not tied directly to the method to calculate the probability of collision. Advancing
dynamic modeling techniques of asteroids is not intended to be a contribution of
this thesis. One may substitute any dynamic model one chooses into the analysis
and still benefit from the work done here on the probability calculation.

The contributions of this thesis can be summarized in the following way. This
thesis develops an alternative approach to the calculation of collisional probabil-
ity of asteroids and the Earth. It bases its methods on those used to calculate
collisions between Earth orbiting satellites, which use positional uncertainty ellip-
soids surrounding each satellite. The development of these methods as applied
to asteroid/Earth cases—loosely based on real asteroids—is then followed by an
analysis of the effect of variable initial uncertainty on the probability calculated.
Understanding this relationship is the second main contribution of this thesis. It
is not a contribution of this thesis to develop new techniques of dynamic modeling,
or to present results of more accurate probabilities than those produced by current
automated systems.

Before these can be addressed, a few introductory points must be established.
These include the reason to study asteroid impacts and related work being done in
Earth orbiting satellite collision probability determination. The methods currently
in place today to calculate asteroid impact probability are also presented briefly.
This chapter concludes with a summary of the approach taken in the remaining

chapters.

1.1 Motivation

The motivation for such work is apparent. Asteroid impacts are the only natural
disaster that can, in theory, be prevented. The first step in preventing such an
event from occurring is predicting its occurrence. If a high probability event is

detected and confirmed, we can, with present or near-term technology, take steps

la telnet and online software program by NASA’s Jet Propulsion Laboratory (JPL) that
produces the ephemerides of bodies in the solar system such as the planets and asteroids. The
output can be customized into several different reference frames and formats [1].



to possibly deflect an object from a collision course. One of the only limitations
on our ability to prevent an impact is the amount of lead-time we are given to
the event. If a collision is not detected early enough, we may not be able to do
anything but wait. Developing techniques for determining the probability of an
event is then the second line of defense against a possible asteroid impact (the
first being observation of the asteroid). This defense is important because of the
consequences of such an event and the likelihood of it occurring at all. A brief look

at history sheds some light on these two factors.

1.1.1 Frequency and Consequences of Impact

With the advent of artificial satellites in the mid-twentieth century, we saw, for
the first time in human history, our home from outside the atmosphere. It was the
beginning of the Cold War and the use of these satellites for reconnaissance was
realized quickly. Systems like the Defense Support Program (DSP) were developed
to alert the US government of foreign aggressive missile launches. But the program
collected data on more than just its intended purpose. The DSP program observed
flashes of light in the upper atmosphere that required extensive examination to be
differentiated from military activity [2]. What they actually saw were small meteors
impacting the atmosphere that were visually undetectable on the ground. In fact,
the flashes of light in the upper atmosphere happen on a regular basis as a result
of the impact of small, extraterrestrial, non-man-made objects. The objects that
cause this type of phenomena are less than 5 m in diameter [3].

Objects about 10 m in diameter impact annually [4]. Depending on their size
and velocity, objects of this size can reach near to the surface before vaporizing
and cause significant damage to property and vegetation. Larger objects, 50 m
in diameter, impact the Earth on average every several hundred years [5]. These
cause substantial local destruction but pose no threat to the planet as a whole.
Generally speaking, the cut off diameter between a devastating but local event and
a global catastrophe is considered to be one kilometer [6] [7].

According to the NASA Ames Research Center [6], objects on the order of a few
kilometers in diameter impact on average every hundred thousand years and pose

a significant threat to society and possibly life itself. The mass of such an object



is several tens of billions of tons. An impact by such an asteroid would result in
a ground burst explosion with energy on the order of a million megatons of TNT.
An impact by an asteroid a few kilometers wide would result in global tempera-
tures being depressed by the large amounts of dust thrust into the stratosphere [6].
Agriculture across the globe would be affected and the climate would change sig-
nificantly. Other effects include acid rain and firestorms from fragmented debris of
the asteroid raining down over a large area [5]. If the asteroid hit water, massive
tsunamis several kilometers high would reach significantly far inland, which may
cause more damage than a similar impact over land [4]. All of this would be a
substantial turning point in human history. The capacity of the world’s utility,
transportation, communication, food source and other infrastructures would be
significantly reduced. Life would be altered dramatically for any who survive the
initial impact of an asteroid at least a kilometer in diameter.

While these cause significant surface and climatic effects, impacts of this size
or larger would not have a significant effect on the celestial properties of the Earth
such as angle of tilt, mass, or orbit about the Sun (length of day or year). Only
an object of comparable mass to the Earth could cause such effects [8].

All of these are a consequence of ever diminishing probability of impact. Never-
theless, objects of smaller size cause enough damage to justify significant research

in the field of Asteroid Detection and Impact Monitoring.

1.1.2 Historical Impacts

A quick glance at the moon on a clear night should be all the evidence required to
convince someone that objects collide with the larger bodies of the solar system.
While Earth’s atmosphere protects it from most of the objects that come close and
erodes evidence of past impacts, the shear number of impact craters visible by the
naked eye on the Moon shows the frequency of such events.

The time between the 4 and 3.8 billion years ago is sometimes referred to as
the late heavy bombardment [9]. As the name suggests, during this time the Earth
was bombarded by debris from the early formation of the planets. Also during this
time, it was impossible for life to take hold because of the chaotic environment.
It is believed that one of the last impacts of this period brought to Earth the



final ingredients for life. Fossil records date surprisingly close to the end of this
period [5]. No direct evidence remains of the impacts during this period for two
reasons: the individual impacts were clouded by one another and the overall violent
nature of the era and, also, Earth’s outer crust has been continually folded and
recycled by plate movement and volcanic activity over the past 3 billion years, not
to mention atmospheric weathering of any smaller craters [10].

The oldest known event to have taken place on Earth happened in Suavjarvi,
Russia approximately 2.4 billion years ago. It left a crater approximately 16 km in
diameter. A more recently discovered crater in South Africa is the remnant of an
impact about 2 billion years ago. This one, referred to as Vredefort, is the largest
confirmed impact event since the Hadean and was caused by an asteroid roughly
10 km in diameter [11].

The most well known impact event on Earth occurred near the Yucatan Penin-
sula 65 million years ago. It it theorized to have caused a mass extinction across
the globe, which included the dinosaurs. We humans may be able to thank this
event for our dominance of the food chain. The organisms that survived this event
were burrowing mammals, who flourished in the mostly predator free environment
following the event and from which we are evolved [12].

More recent impact events are not clearly asteroid impacts because no definitive
craters exist. In 1908, an explosion over Siberia was witnessed my local herdsmen
and destroyed a 50 km wide area of forest. Figure 1.1 shows the resulting destruc-
tion. It is suspected to be from an object burning up in the lower atmosphere and
referred to as the Tunguska Event. In 2002 an event occurred over the Mediter-
ranean, which was most likely an asteroid burning up in the low atmosphere, but
again, no crater exists. While the Mediterranean event caused no significant prop-
erty damage it posed an indirect threat that has already been mentioned unique
to the modern human: explosions in the atmosphere may be mistaken for artillery
or nuclear weapons being used, which could erupt into actual conflict [4].

In 2008, the first asteroid to be detected before impact was 2008 TC3. It was
spotted by astronomers at the University of Arizona and confirmed by others within
hours. Despite the early warning, the predictions for impact were very accurate
because astronomers were spread across the globe and could easily compare data.

2008 TC3 burned up in the atmosphere somewhere over the Sudan. Because of the



Figure 1.1. The forest near Tunguska. This photo was taken in 1927 by an expedition
to the site. [13]

remote location, very few people witnessed the explosion. Only the crew and some
passengers of an airline flight saw a flash of light in the distance at approximately
the time predicted [14].

Impact events are not unique to the Earth and the Moon, of course. In 1994,
the Shoemaker-Levy 9 comet impacted Jupiter in a spectacular display. It had
been captured into an orbit around Jupiter and made a very close approach in
1992 [15]. Because of its mass, Jupiter is more likely to capture a large object than
is the Earth, but this event shows that objects of appreciable size do collide with
the planets [16].

Impact events large and small have occurred with frequency on the Earth since
its formation. Some have caused mass world extinctions and others most likely
deposited necessary life materials. The human species has in the past and may in
the future be influenced substantially by an impact event. Some believe based on
the rates at which objects have struck the Earth in the past, that we are due for

a large impact in the coming centuries.

1.2 Related Work

This section discusses work being done in asteroid impact detection and in satellite
collision detection. Both fields aim to calculate the probability of collision between

two objects.



Automatic asteroid detection systems in use today use a method to calculate
probability called the Line of Variations to calculate impact probability. The
alternative discussed in this thesis is more closely related to the work being done

in satellite collision detection.

1.2.1 Asteroid Impact Detection and the Line of Variations

Asteroids, as a threat, have been studied with fervor for the past 15-20 years. Ever
since the comet Shoemaker-Levy 9 collided with Jupiter, interest in a possible
Earth impact has spiked [4].

Near Earth Objects (NEOs) are defined as objects with a perihelion distance
less than 1.3 Astronomical Units (1 AU is the distance between the Sun and the
Earth). They pose a higher threat of impact than objects with a higher perihelion
distance. These objects are actively searched for by automated systems.

The search for NEOs has had enormous success in the past 10 years. From 1990
to 2000, there was an increase in known NEOs by a few hundred. Between 2000
and 2010 there was an increase in the number of known NEOs by more than 6000.
According to NASA’s JPL Near Earth Object website [5], to date (September 9,
2010) there have been 7141 NEO discoveries. The figure was 6994 on January
1, 2010. The majority of objects in this list are between 300 to 1000 meters in
diameter.

There are many systems in place around the world that are tasked with tracking
these objects and running search algorithms on this catalogue to detect possible

impact events. Some of these are [5]:

e the Lincoln Near Earth Asteroid Research (LINEAR) program at the Mas-
sachusetts Institute of Technology (MIT)

e the Spacewatch program at the University of Arizona

e the Lowell Observatory Near Earth Object Search (LONEOS)
e the Sentry program at JPL

e the Catalina Sky Survey also at the University of Arizona

e the Japanese Spaceguard Association (JSGA)



e the CLOMON2 program at the University of Pisa
e the Campo Imperator Astronomical Observatory in Italy and

e the Near Earth Asteroid Tracking (NEAT) program at JPL

NASA’s automated search algorithm called Sentry in collaboration with the
University of Pisa’s CLOMON2 system have paved the way in searching for po-
tential impactors among these catalogued entries. They are independent systems;
each uses a method for calculating the probability of impact called the Line of
Variations (LOV).

The LOV is the string of virtual asteroids (VAs) that are propagated from the
confidence region in the six-dimensional configuration space of orbital elements to
the target plane (the two-dimensional plane with the Earth cross section at the
origin). The question is how to sample the confidence region to obtain a meaningful
LOV. Random sampling is possible and makes up Monte Carlo methods. The
most efficient LOV sampling occurs when the VAs are uniformly spread along the
LOV [17]. Random sampling does not provide proper efficiency, so an analytical
definition of the LOV is required.

Several definitions for the LOV can be found in [17] [18] and [19]. Once the LOV
is found and propagated to the target plane, probability of impact is calculated by
counting the number of VAs that lie within the cross section of the Earth.

This work is ongoing and being pursued at NASA JPL and the University of
Pisa, Italy. This thesis is not concerned with this work other than acknowledging
that it exists. The field of Earth orbiting satellite to satellite collision detection
is a good place to look for an alternative to this approach. The methods used for

that purpose can be scaled up and applied to asteroid impact detection.

1.2.2 Satellite Collision Detection in Earth Orbit

With the number of objects in Earth orbit growing rapidly, efforts are made contin-
uously to detect conjunctions between those objects. Usually, one of the objects in
question is an active, controllable satellite, so that, in the case of a high probability

conjunction, it can be maneuvered to a safe position.



Probabilities are calculated for possible collisions during launch and for high
value missions during operation. The method most commonly used for this purpose
takes advantage of the positional uncertainty ellipsoids of the active object and the
rogue debris (the primary and secondary objects, respectively). The uncertainties
of the two objects are combined into a total uncertainty. This total uncertainty
is then placed on the center of the primary. The combined radius is the sum of
the two effective radii of the objects and is then assigned to the nominal position
of the secondary. Probability is calculated by integrating the uncertainty over the
volume swept out by the secondary object.

Chan [20, pp. 77-97] makes a distinction as to whether the encounter can
be considered short-term or long-term with regards to the time that the objects
spend in the encounter region. As a general rule, objects in Low Earth Orbit can
be considered short-term, while objects in Geosynchronous Orbit can be consid-
ered long-term, but this is not always the case. For short-term encounters, Chan
then takes steps to reduce the three-dimensional integral by integrating over the
direction of relative velocity. Because the uncertainty is highest in this direction,
along with the linear approximation, it can be integrated from negative infinity to
positive infinity thus producing unity in this direction. The remaining integral is
then easier to handle computationally and subject to the assumption of linearity.

Chan goes on to caution that the two-dimensional integral cannot be obtained
by a transformation of the three-dimensional covariance matrix onto the target
plane [20, pp. 60], as proposed by Klinkrad in [21]. According to Chan, such a
transformation assumes out any possibility of conjunction before or after the target
plane, which is not the case for a three-dimensional uncertainty ellipsoid.

This thesis approaches the problem of asteroid impact probability in much the
same way as satellite conjunction probability. It presents a method for calculat-
ing the impact probability of an asteroid by utilizing the positional uncertainty

ellipsoid.

1.3 Approach

The main difference between the approach of this thesis and the method presented

in the last section is as follows. First, the primary object (the Earth) gravitationally
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influences the secondary (the asteroid). And second, the uncertainty of the primary
object is assumed zero: the ephemeris of the Earth is known orders of magnitude
more accurately than the asteroid.

The dynamic model employed here is the Restricted Problem of Three Bodies.
This takes into account the gravitational influence of the Earth on the asteroid
as well as that of the Sun. This problem has no analytical solution [22] so the
integration is performed numerically. The solution to the three-body problem is
denoted as the nominal solution. It does not represent the actual trajectory of the
asteroid. The actual trajectory of the asteroid is unknown.

What is known, however, is the three-dimensional Gaussian probability den-
sity function (pdf) surrounding the asteroid at the initial epoch. This pdf is the
uncertainty in position represented by an ellipsoid whose surface is 30, where o is
one standard deviation. Mathematically, the ellipsoidal pdf is a 3x 3 positional co-
variance matrix and can be propagated forward in time subject to the three-body
dynamics—as the asteroid is propagated along its orbit, so too does the uncertainty
deform.

The construction of the total probable asteroid solution then comes in two
parts. The first part is the nominal solution of the asteroid orbit (based on the
initial position and velocity). The second part is the rotation, expansion, and/or
compression of the uncertainty ellipsoid as a function of time. The two parts are
then connected in the following way: the uncertainty ellipsoid at each time step has
as its center the nominal solution at that time. Both the trajectory of the asteroid
and the behavior of the uncertainty are results of the three-body dynamics.

Like the nominal trajectory of the asteroid, the behavior of the uncertainty is
also subject to initial conditions. This initial uncertainty is one of the main fo-
cuses of this thesis. Recall that a relationship between variable initial uncertainty
and final probability is desired. This variability can be accomplished in several
ways. This thesis uses a Monte Carlo method to randomly select the initial uncer-
tainty from a sampling space. With the initial uncertainty, using the three-body
dynamics, the uncertainty at any future time can be determined.

Once the total solution is obtained from the dynamics, the asteroid and the
uncertainty ellipsoid are propagated to a region of encounter. This region can be

understood at this point simply as a region in space in which the probability of
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collision is desired. The probability is then calculated by integrating the three-
dimensional Gaussian pdf over the volume swept out by the Earth during the
encounter. This last statement is a simplification because the probability ellipsoid
is not held constant during the encounter.

This process—from development of the dynamic model to the Monte Carlo

simulation and probability calculation—is the focus of the remaining chapters.

1.4 Reader’s Guide

e Chapter 2: Dynamics discusses two dynamic models. It presents, first,
the three-body problem and then the more computationally complex multi-
body problem. It then evaluates the benefit of using the three-body problem
for this study instead of the multi-body problem, focusing on the trade off
between complexity and accuracy. Following this discussion, Chapter 2 in-
cludes a description of the numerical methods used to solve the equations of

motion.

e Chapter 3: Uncertainty and the Calculation of Probability describes
sources of uncertainty, how it is represented mathematically, and discusses
how the three-body dynamics are used to handled the uncertainty throughout
the solution. It then defines the encounter regions and the integrals used to

calculate the probability of collision.

e Chapter 4: Monte Carlo Simulation Results starts with a description
of the Monte Carlo simulation and then presents the results of the implemen-
tation of the methods discussed in Chapters 2 and 3 for three hypothetical
cases loosely based on the asteroids Apophis, 1999 RQ36, and 2010 RF12.
The trends in probability vs. initial uncertainty for each case are then ana-
lyzed. The probabilities calculated are not intended to be the latest estimates
of impact probability for these asteroids. They are only given as examples

of the implementation of the methods discussed.

e Chapter 5: Conclusions explains the trends seen in Chapter 4 and summa-

rizes the contributions and limitations of the methods described in Chapters
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2 and 3. In light of the limitations, this chapter suggests work in the future
that could increase the applicability of these methods to accurate asteroid

cases that produce actual probabilities of impact.



Chapter
Dynamics

The dynamic model is the foundation of the probability analysis. Without it, no
meaningful result can be practically achieved: the analysis would only be math-
ematical. With it, it can be better understood how the uncertainty affects the
probability of impact in a real sense, one that can be applied to real asteroids.
The dynamic model is the first step in calculating the probability of impact; it is
the roadwork upon which this analysis finds its destination.

The dynamic model is required to produce two results that are used in the
calculation. It should give the nominal trajectory of the asteroid and allow for
the propagation of the uncertainty ellipsoid. That is, the result of the dynamic
model should be the dynamic gravitational (numerical) solution and the state
transition matrix. Also, the model should be simple in extent and easy to employ,
without adding extraneous points of failure that only hinder the advancement of the
analysis overall by inducing unnecessary doubt in the result. This last requirement
is specific to this study and can be interpreted, modified or ignored depending on
the circumstances of the analysis.

The problem is as follows. An asteroid is free to move in three-dimensional
space subject to the gravitational influence of a set of massive bodies under mu-
tual gravitational influence. The nominal trajectory of the asteroid is the primary
concern. Two types of models are discussed in this chapter. The first is the Cir-
cular Restricted Three Body Problem (CR3BP) consisting of two massive bodies
(the Sun and the Earth) on circular orbits. The second is a multi-body problem

consisting of eight planets, Pluto, the Moon, and three massive asteroids on in-



14

clined elliptical orbits. Each model is of a “restricted” nature, that is the mass
of the asteroid is assumed to be small enough that it does not contribute any
gravitational influence on the other massive bodies.

This chapter covers the process to find the dynamic model that best fits our
needs and solves the problem, as stated previously. Specific scripting techniques
are discussed for modeling the asteroid in orbit around the Sun subject to other
perturbing bodies, including the Earth.

Several models can be employed that provide these requirements. The sim-
plest case is the two-body problem of the asteroid and the Sun, which will not be
discussed here. Next in complexity, the Earth is included in the three-body prob-
lem. Lastly, the eight planets, Pluto, the three largest asteroids and the Moon are
included in what is called the multi-body problem. The equations of motion are
presented for these two models and numerical methods to solve them are discussed

in Section 2.3.

2.1 Three-body Dynamics

2.1.1 Preliminary Setup

CR3BP is usually formulated in a frame that rotates with the orbits of the pri-
maries, so that they are stationary in the frame. As seen in Figure 2.1, the x-axis
is defined as the line connecting the two primaries (the Sun is the primary and the
Earth is the secondary body) and points towards the primary. The z-axis is parallel
to the angular velocity of the system, and the y-axis completes the right-handed
system. The origin is at the center of mass of the system.

The mass unit is the total mass in the system (because the third body is of
negligible mass, the total mass is M; + Ms). The mass ratio of the system, p, is
then the normalized mass of the less massive secondary body. This is an arbitrary

choice, my can be suitably chosen as well.

M, My

My + M, a 2T M+, M (2.1)

my

Normalized masses are lowercase while actual masses are uppercase.
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Figure 2.1. Arrangement of the bodies in the rotating frame [22].

The length unit is chosen to be the distance between the primaries, r15. To
find the positions of the primaries with respect to the center of mass of the system,
multiply each of the masses by their respective distances from the origin and set the
sum to zero: myx; + mexe = 0. The distance between the primaries is normalized

to one, r19 = 1 — x9 = 1, which gives 1 = p and o = pu — 1.

2.1.2 Equations of Motion

Because the frame of CR3BP is rotating with the primaries, the inertial acceler-
ation of this rotation must be taken into account. The equations of motion are
found by equating this inertial acceleration with the gravitational acceleration felt
by the third body.

The gravitational accelerations are developed from Newton’s inverse square law.
First, the radii from each of the primaries to the third body in the [x,y,z] space
are defined. The y component of these radii is just the distance from x-axis along
the y direction. Because each body is on the x-axis, that component is simply y.
The same goes for the z component. It is simply z because the primaries are in
the x-y plane. The x component, however, must take into account the distance of

the two primaries from the origin. Subtracting x; and zo from z, for r; and ro,
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respectively, accomplishes this. The distances to the third body from m; and ms
are:
1
no= [ —p? g+ (2:2)

ro=[(x+1—p)’+y*+ 22}% (2.3)

The gravitational acceleration in the inertial frame (superscript I) felt by the

third body as influenced by the two primaries is then,

T (1—pr  pr

i S 2.4
dt? 3 7y’ (2:4)

The inertial acceleration in the rotating frame (superscript R) is given by,

Td*r *d’r g dT —RI ., (—RI , —
ﬁ = ﬁ —+ 200 X % —+ w X (w X 7") (25)
where the position, velocity and acceleration of the third body in the rotating

frame and @’ are:

T=2T+yy+ 22 (2.6)
Rd—
d—;" — QT+ A2 (2.7)
Rd2—
= 8+ i+ 52 (2.8)
ot =1z

The dots represent derivatives with respect to time and the hats represent unit
vectors in the three mutually perpendicular directions.

The term W™ is the angular velocity of the rotating frame with respect to the
inertial frame. It is unity because of our choice of time unit. The time unit is
chosen such that the gravitational constant, G, is one. From Newton’s Third Law,
because 1, G, and (m; + my) are all unity, the period of the primaries is just
2m. It follows then that the angular velocity, which is one period per 27 radians,
is one.

Evaluating the cross products of equation (2.5) and grouping by component,

I 27

w:(i‘—2y—x)§5+(ij+2i:—y)§+23 (2.9)
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Now equating equations (2.4) and (2.9) and splitting into components the three

equations of motion for CR3BP are

i o= ogpa- UTME—p petl-op

r T3
. . 1-—
j = _2x+y_%_“_z (2.10)
1 Ty
. (I=pz  pz
s e
1 Ty

These equations are highly non-linear. Many attempts were made in the 100
years following the formulation of the three-body problem to solve it analytically.
In 1899, Poincare proved that it was unsolvable in closed form [22].

The numerical solution to these equations is described in Section 2.3 and Ap-
pendix A.1.

2.2 The Multi-Body Problem

1'is presented here in the inertial frame with the origin

The multi-body problem
at the barycenter of the system. The frame is Horizons’ ICRF/J2000 [1] defined
with the x-axis pointing out along “the ascending node of the Earth’s orbit and
the Earth’s mean equator [1]”, the z-axis perpendicular to the Ecliptic plane at the
reference epoch, and the y-axis completing the triad. The problem is essentially
an extension of the two-body problem, which is simply Newton’s Universal Law of

Gravitation in vector form. The equations of motion [23] are:

_ N _ _

e Hur Ty —T Tk
_ TR Tk 2.11
r 73 +Z“k [m: — 73 rk?’} ( )

where 7 is the position vector, p, in this section only, is the gravitational parameter,
the subscript k£ represents the perturbing body, and /N is the number of perturbing
bodies. The solution of equations of motion like these is discussed in Appendix

A.1. The question that remains to be answered to solve equation (2.11) is how to

!The definitions of y and the [x,y,z] frame are suspended for this section and are re-defined.
These re-definitions only hold for the multi-body problem. The definitions for these quantities
in all other cases can be found in Section 2.1
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obtain the positions of the perturbing bodies at each time step. Two methods to
find these positions are discussed.

First of all, ephemerides of the planets and the asteroids are available through
various sources [1] [24]. The process in that case is to convert the output of those
systems into a useable form so that the exercise is really about handling large
amounts of data. The ephemerides must be obtained and converted for the time

period desired.

2.2.1 Mean Anomaly

The first method to solve for the positions of the perturbing bodies, in this case
the planets, is to use two body dynamics about the barycenter of the solar system.
This assumes that the perturbing bodies are on inclined, eccentric orbits. The
initial conditions are in the form of the classical orbital elements.

The classical elements can be converted to a three-dimensional position vector.
This is done, first, by solving for the radius using the two-body equation of semi-

major axis, a, eccentricity, e, and true anomaly, 6:

a(l —e?)

= 2.12
" 1+ ecosé ( )

then by rotating a vector of length r initially aligned with the inertial x-axis
through three rotations in right ascension of the ascending node, €2, inclination, 7,

and the sum of argument of perifocus and true anomaly, (w + 6),

cos{l —sinQ) 0 10 0
= sinQ) cos) 0 0 cost —sing
0 0 1 0 sing cos 1
cos(w+0) —sin(w+0) 0 r
sin(w+6)  cos(w+6) 0 0 (2.13)
0 0 1 0

where the three 3x3 matrices are direction cosine matrices that make up a single
3-1-3 rotation.
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The next step is to advance the true anomaly forward through time. Since
true anomaly is not an explicit function of time, this requires several steps. First,

calculate mean anomaly, M, which is a function of time:

1
M= \[ 55t + My (2.14)

Then, solve for eccentric anomaly by:
g(E)=E—esinE—M=0 (2.15)

Since this equation is transcendental, it must be solved iteratively to convergence,

g(E)=1—ecosE (2.16)
By = Eg — gggg (2.17)

(A good first guess for Ej is M). Finally, convert eccentric anomaly to true

wn (2) - (£) s

With the new true anomaly, the radius vector is rotated into position at the

anomaly by:

new time step. In this way, the perturbing bodies are advanced forward in their

orbits with the rest of the integration.

2.2.2 Propagation

The second way to obtain the positions of the perturbing bodies is to integrate

their equations of motion [25], which are:

=Y HilTy ) (2.19)

= =T

where the subscript j refers to another perturbing body.
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These equations are evaluated simultaneously for each perturbing body, k, at
each time step in the integration of the equations of motion of the asteroid itself.

More details are found in Appendix A.2.

2.2.3 Accuracy

Following these methods through coding and simulation results in the position
of the asteroid at each time step. This is done for the asteroid 99942 Apophis
(previously known as 2004 MN4). The result of these methods is compared to
the ephemerides provided by Horizons, which are sufficient to be called the true
nominal trajectory.

The result is similar to the Horizons data in its gross characteristics. The
orbits of both methods fill a common physical space as seen in Figure 2.2, which
also compares the orbit of the Earth. At a glance, they seem comparable. Closer
inspection, however, reveals that the orbit paths are not coincident. Furthermore,
Apophis and the Earth are not in the same location on their orbits as in Horizons,
which is not conveyed in the figure. The error is mostly in-track and can be greater
than a full orbit over the 30-year time span. It seems as though the problem is very
sensitive to the magnitude of the initial velocity because the two models predict
different average speeds of the asteroids on their orbits, which is why the error is

in-track.

2.2.4 Summary

The procedure laid out in this section for obtaining the nominal solution of the
asteroid: integrating the positions of the perturbing bodies at each time step in the
integration of the equations of motion, is rather complex. Given that this method
does not produce the accuracy desired, it is clear that there are unknown variables
that state-of-the-art ephemerid programs, like Horizons, take into account. For
instance, the methods described here do not take general relativity into account,
which Horizons does. Accomplishing the task of replicating perfectly the work of
Horizons requires the Horizons team and resources and is outside the scope of this

study.



21

0.8

0.6

D2ff

Y (AU)

04

Figure 2.2. Comparison of the methods described in the text for the multi-body prob-
lem (blue orbits) with Horizons (green orbit for Apophis and red orbit for the Earth)
over a 30-year integration. The reference frame is ICRF/J2000 and is described at the
beginning of Section 2.2.

The dynamics used from now on are for simplicity and do not claim to be
accurate. They are simply a stand in for a more sophisticated dynamic model that
can be done in the future.

For its simplicity and quick run time, the Circular Restricted Three-Body Prob-
lem works adequately to fulfill the needs of this thesis.

2.3 Numerical Methods

The backbone of any dynamic model is the equations of motion. They embody
the mechanics of the problem in a simple, efficient manner. In almost all cases
in orbital mechanics, the equations of motion cannot be solved analytically and

exactly. In recent decades this has not posed a significant problem with the use
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of computationally numeric methods. Today, the numerical integration of the
Newtonian equations of motion for orbital dynamic propagation is well understood.
More details are found in Appendix A.1.

The equations of motion for Newtonian gravitation are non-linear, second-
order, differential equations. The solvers can handle non-linearity with ease, but
the second-order equations require a reduction in order to be used. This is accom-
plished by defining a state vector of the three-dimensional position and velocity
(six equations in all). Defining the state vector as the position and its derivative
allows the second order equations to be hidden in a first-order vector differential
equation that can be handled by the solver. Now, the relation between position
and velocity is explicitly stated by writing the first three differential equations as:

the derivative of the first three states is the last three states.

x z(1)
y z(2)
2 z(3)
X = = 2.20
] z(5)
| 2] L =(6) |
[ i ] i x(4) ]
y (5)
et I I ) (2.21)
Yy F5(X)
L z i | F@(X) i

But it is already stated that the first three states are the position and the last
three states are the velocity. This seems trivial, but it is actually quite subtle.
The first order differential equation that is written in vector form is not inherently
required to reflect the physics. It could be defined arbitrarily. The solver is a
machine that calculates regardless of the physics. It is the programmer who applies
the principles of physics. He or she takes advantage of the relation between position

and velocity to create a loophole in the solvers functionality. The solver is only
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aware of the loop by the explicit definition of one state to the other, which is the
correct relation for position and velocity.

Notice, now, that the second order equations of motion are in Fy5¢. However,
as far as the computer is concerned it is solving a first order vector differential

equation. This is what is meant by reduction of order.

2.4 State Transition Matrix

Solving the three-body problem is only half the problem. It gives only the nominal
solution, it does not take into account the uncertainty. To do this, the State
Transition Matrix (STM) must be found. The STM is used to propagate the initial
uncertainty to any future time. The nominal solution gives the trajectory of the
center of the uncertainty ellipsoid, while the STM gives the change in orientation
and shape of the ellipsoid, based on the dynamics of the three-body problem.
The STM is developed from the linearization of the equations of motion. At each
time step in the integration, a 6x6 matrix of partials of the equations of motion
is calculated and is used as the proportionality constant relating the STM to its

derivative [26].
% — AND( 1) (2.22)
Blto to) = I

The STM, ®, is time dependent and nxn in size, where n is the number of states.
The initial STM is the identity matrix. The 6x6 matrix A is the linearization of
the equations of motion, F'. That is, A is the matrix of partial derivatives of

X = F(X) with respect to each of the states; it is also called the Jacobian of F.

0 0 10
0 0 010
OF 0O 0 0 001
Alt) = o= = (2.23)
X Fio Fiy Fro 020
Fow Fsy Foro 0 0 0
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The six equations of the pure dynamics are appended by equation (2.22), el-
ement by element (36 in total). The resulting set of 42 equations is then solved
simultaneously. The solution is linearized at each time step along the solution of
the dynamics and the state transition matrix at that time is calculated. The time
history of the STM is then accumulated from these individual time steps. Now,
the size, shape and position of the uncertainty ellipsoid can be propagated forward

in time as dictated by the dynamics of the three-body problem.
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Uncertainty and the Calculation of
Probability

Uncertainty is the primary contributor to the “probability” of collision. It stems
from observational techniques and initial orbit determination and persists for the

reasons discussed in this chapter.

3.1 Uncertainty

Uncertainty in the position of the asteroid comes from two primary sources. The
first is that the observational techniques used (telescopes and radar) are limited in
their accuracy and subject to random noise. This uncertainty can be accounted for
by understanding the equipment being employed. The second source of uncertainty
is the limited number of observations possible to compute the orbit. Achievement
of an exact orbit requires observations (assuming perfect observational precision)
for all time in the life of the asteroid. Obviously, this is impossible in practice.
With only a finite number of observations available, multiple orbits can be fit.
These multiple solutions are a range of orbital elements and, therefore, a range of
possible positions of the asteroid. This is what is meant by uncertainty—a range
of possible positions.

In the absence of observational data or observing equipment, this study, instead,

looks at several different values for uncertainty to understand how its variation
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affects the final calculated probability. It does this by way of a Monte Carlo
simulation.

However the uncertainty is obtained, it must be handled, or propagated, over
the course of the solution so that it is available for the calculation of probability
when desired. It is necessary to propagate the uncertainty because it is not a
constant over the life of the asteroid. An initial uncertainty will change, specifi-
cally grow, in the future of any dynamic model for several reasons: first of all, the
methods to solve the equations of motion are numerical, so the solution is a math-
ematical approximation. Most importantly, even if the equations of motion could
be solved exactly, they are themselves only an approximation to reality. Addition-
ally, the numerical methods are prone to computational round-off and truncation
errors. Also, the orbit of the asteroid is subject to several perturbations not all of
which can possibly be taken into account. Even if they are all accounted for, they
are approximated by simplified models [27, pp. 1-3].

These unknown and non-exact contributors to the path of the asteroid, numer-
ical and observational uncertainties, are all included in the solution, instead, by

dynamic propagation of the uncertainty.

3.1.1 Covariance Matrix

In order to handle the positional uncertainty, it must be described mathematically.
This representation is the 3x3 positional covariance matrix. It can be defined
several different ways. In this thesis, it will be defined using eigenvalues and
eigenvectors.

The covariance matrix is built up from information about the uncertainty ellip-
soid, which encloses the physical space in which the asteroid can probabilistically
be found. To relate the covariance matrix to the uncertainty ellipsoid, start with
the lengths of the principal semi-major axes of the ellipsoid, which are three stan-
dard deviations, or 3o. For simplicity, the 3o principal axes will be referred to as
0;. The square of these lengths are defined as the eigenvalues of the covariance ma-
trix. Next, the orientation of the ellipsoid, or the directions of the principal axes,
are defined as the eigenvectors of the covariance matrix. By placing the eigenvalues

in a diagonal matrix E, and the eigenvectors as columns in the matrix V' (making
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sure to keep the corresponding eigenvalues and eigenvectors in the same columns

of each), the 30 covariance matrix, P, is then,
P=VEV™ (3.1)

Because V' is orthogonal, P is symmetric.

The diagonal terms of P are the variances in the x,y,and z directions multiplied
by 32. The off-diagonal terms are the covariances between x-y, x-z, and y-z, which
are the 30’s of each direction multiplied by a correlation coefficient (e.g. p,,) which
indicates how dependent the uncertainties in the respective directions are. Decom-
posing the covariance matrix in this way does not directly indicate the orientation
of the uncertainty nor does it reveal direct information about the size of the uncer-
tainty ellipsoid (that is, the lengths of the principal axes), so this description will
not be used. The eigenvalues and eigenvectors, which describe the uncertainty in
the principal directions (orientation and size), is much more revealing.

The uncertainty propagation discussed above is carried out by using the State
Transition Matrix. The uncertainty is propagated to any future time by a lin-
ear transformation of the STM on the covariance matrix. Details are shown in
Appendix B.

Future times for which the uncertainty is desired are called encounters. Dur-
ing encounters, the probability of impact is appreciable and can be calculated.
A definition of the region of encounter is required before the calculation can be

performed.

3.2 Encounter Region

The probability of impact is not required at every location along the orbit of
the asteroid, it is negligible over the majority of it. A definition of a region of
conjunction is desired the requirements of which are fulfilled only a small finite
number of times. This region of conjunction is called the encounter region. There
is no unique way to define the encounter region, but, of course, some ways are
more suitable than others. The next two sections discuss one possibility. Section

3.2.3 discusses a better approach.
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3.2.1 Close Approach

The encounter region can be defined about a point of close approach. That is, if
the asteroid comes within a certain distance of the Earth, the probability of impact
can be calculated. This method is the most intuitive: the closer the asteroid is to
the Earth, the higher the chance that its impact probability is appreciable. (This
is incorrect, but this method is developed further before it is abandoned.)

It is not sufficient to calculate the probability only at the point of close ap-
proach. An extended region is required. Recall that the domain of integration
is the volume swept out by the Earth through the encounter region. The region
surrounding the point of close approach that can be approximated linearly is the

extent that is required of the encounter region.

3.2.2 Linear Approximation

The region of the orbit around a reference point that can be considered a straight
line is a function of the instantaneous radius of curvature at the point of reference.
From the mathematics of parameterized curves in three-dimensional space (which
the nominal solution of the asteroid is), the radius of curvature is the inverse of

the curvature, x, given by:
_lixi
GE

(3.2)

With the radius of curvature, R = %, and the angle v, the length of the tangent

is,
T = Rtanvy (3.3)
as seen in Figure 3.1. The maximum v for which the approximation of the arc,

C, by the tangent, T', is valid is 0.1 rad (5.8 deg) (see Appendix C). Doubling 7'

gives the region of linearity.

3.2.3 Ellipsoid

While this approach does give a definite region of conjunction, it does not highlight
the most probable impact scenarios. Proximity to the Earth with the possibility of

being outside the uncertainty ellipsoid does not mean a more probable collision. In
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Figure 3.1. The instantaneous circle tangent to the orbit of the asteroid. R is the
radius of curvature, the inverse of curvature. T is the linear approximation of the orbit
at the point of closest approach, A.

fact, the purpose of the uncertainty ellipsoid is precisely to give a probable location
for the asteroid, so it is a better place to look for the definition for the encounter
regions.

The encounter region is then defined by saying, if the Earth passes through
the uncertainty ellipsoid, then a probability of collision is calculated. By requiring
that the Earth be enclosed by the uncertainty ellipsoid, it is guaranteed that the
probability calculated is higher than in the first case. If the nominal solution is
closer to the Earth but outside the 30 uncertainty then the probability calculated
is necessarily lower than if it were enclosed by the ellipsoid (even if it is radially
further away).

This method is non-trivial. The uncertainty along the orbit is not known a
priori and cannot be guessed, so that these regions are not regularly spaced along
the orbit. The encounter regions depend completely on the dynamics of the system.
It may be guessed that the largest semi-major axis of the uncertainty ellipsoid (or
the weak direction) is aligned with the velocity vector (that the most uncertainty
is in-track!), but this does not help to find the encounter regions for two reasons.

First, this is not certain. The orientation of the weak direction of the uncertainty

LA check is made at each time step whether the weak direction of the propagated uncertainty
ellipsoid is or is not aligned with the local velocity vector. This check only alerted for the first
few time steps, which is expected because the uncertainty is initially aligned with the velocity
vector.
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ellipsoid does not always align itself with the local velocity vector; there is nothing
in the dynamics that requires this. Second, the encounter regions do not occur at
locations along the orbit when the velocity vector is pointed towards the Earth.

The initial uncertainty ellipsoid used for Figure 3.2 is aligned with the initial
velocity vector, but the values do not correspond to real uncertainty, it is just
an example. It is clear from the figure that encounter regions do not retain any
pattern.

The method to find the encounter region by checking whether the Earth is inside

the ellipsoid (see Appendix D) is advantageous for another reason in addition to
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Figure 3.2. This is an orbit based on Apophis in the rotating frame of CR3BP over 30
years (CR3BP is a simplified dynamic model and, therefore, this is not the true nominal
trajectory of Apophis). The frame of CR3BP is described in Section 2.1.1. The rotating
frame causes the orbit to be shaped as a series of loops that advance in a circle. The Sun
is near the origin and the Earth is near (-1,0). This figure also presents the encounter
regions (in blue). The uncertainty used for these encounters is arbitrary, the important
point is how the uncertainty is oriented and shaped by the dynamics. Note that the
encounter regions retain no pattern such as occurring whenever the local velocity vector
is pointed towards the Earth.



31

the one stated above. In the first method for finding the encounter region, the
close approach must be checked first, then the region of linearity must be found.
The second method gives what is needed to perform a probability calculation in

one step.

3.3 Probability Calculation

To summarize what has been done so far: the nominal solution of the asteroid orbit
has been found according to the three-body problem; the state transition matrix
has been found, which allows for the calculation of the uncertainty ellipsoid at
future times; the encounter region has been defined, which is subject to both the
nominal solution and the orientation of the uncertainty ellipsoid, which are both
in turn subject to the three-body dynamics.

Recall that the uncertainty ellipsoid represents a three-dimensional probability

density function, pdf. More specifically, the pdf, f, is a function of the covariance

matrix, P,
x
9 9 »
flx,y,2) = WeXp —3 [SE Yy Z] P Yy (3.4)
z

P~1 is the inverse of the 30 covariance matrix, so it must be multiplied by 32 to
convert it to 1o which is how the pdf is defined.
For the probability, this pdf is integrated [20, pp. 47].

///V flz,y,2)dedydz (3.5)
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The volume over which this integral is evaluated is the sphere of the Earth, or, for
ease of calculation, a cube of equal volume.?

Once the probabilities of impact at each time step are calculated according to
equation (3.5), they must be combined into a total probability for the encounter.
What is being considered are the probabilities of n events (the asteroid impacts
at time A or time B), where n is the number of time steps. “Or” is the operative
word here. The asteroid can only impact once while it is in the encounter region.
All impact events throughout the encounter are mutually exclusive.

According to probability theory, to find the probability of a number of events
that are mutually exclusive the probabilities of the events should be added. How-
ever, the total probability cannot depend on the number of time steps. If addition
is used, increasing the resolution of the dynamic model produces a vastly differing
total probability. Also, with enough time steps, it would be easy to see a situation
in which the total probability, as a result of simple addition, could be greater than
one.

What is needed is a method to accumulate and account for each probability in
a way that is independent of the number of time steps. An integration over time
accomplishes this. Trapezoidal integration is sufficient for the purposes here. All
that is necessary is an order of magnitude. To maintain the order of magnitude
of the instantaneous probabilities, the integral is divided by the time span of the
encounter.

With the method to calculate probability, it is now possible to examine specific
asteroid cases. These are based on real asteroids, but for several reasons that are
discussed in Chapter 4, they are not actual cases. It is made abundantly clear that
the probabilities calculated for each case are not intended to be taken as estimates
of the actual probability of impact. They are just examples. NASA’s Horizons
program provides the initial conditions of the nominal position and velocity for each
case, which are the only parts of the case that are true to reality. The uncertainty
data is varied according to a Monte Carlo method so that the relationship between

initial uncertainty and resulting impact probability can be examined.

2The difference in the integral over the two volumes, sphere and cube, is less than 1%, but
integrating over a cube is far less computationally intensive and more reliable. The probability
is anyway only an order of magnitude, so an error of 1% is acceptable.



Chapter

Monte Carlo Simulation Results

This chapter discusses the Monte Carlo method used to obtain the initial uncer-
tainty and presents the results of the simulations for several hypothetical asteroids.
The first case is a completely fictitious asteroid on a direct collision course with the
Earth. This case establishes the main features of each case based on real asteroids.

Finally, the results are summarized.

4.1 Method

Monte Carlo simulations refer to a number of different techniques to obtain a range
of data by making random samples. What is being sampled is the covariance
matrix, but it is not desired to completely rely on randomized values for each
element individually. This would not produce meaningful results because they
would not be comparable. The scope of the use of random values must be limited if
insightful results are to be obtained. In other words, some feature of the covariance
matrix and uncertainty ellipsoid must be held constant over all of the simulations.

It is desired to understand how the amount of uncertainty affects the total
probability. So the values for the size of the ellipsoid are randomized while the

values for the orientation are held constant.!

LTf the orientation is turned to favor the normal direction rather than the in-track direction,
as discussed below, the overall trends discussed in this chapter are present, but the specific color
trend is different. Results of this type are not presented.
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A further limitation on the randomized nature of the simulations is the relative
magnitudes of the values being varied. The values that are sampled randomly are
the lengths of the principal semi-major axes, o;, of the initial uncertainty ellipsoid.
The relative magnitudes of these values are (in decreasing order): in-track standard
deviation, o1, normal, o9, and out-of-plane, o3. This relationship is imposed in the
simulations by defining the range of possible values from which these quantities
are sampled.

For these three quantities, four values are required to define the non-overlapping
ranges of each. These values are a;. With a devisor, e, the four values are given
by the sequence:

Gpps = % k=123 (4.1)

where the values a; and e are referred to as range values. The ranges are then

as < 01 < ap
as < 09 < Qo (42)

ay < 03 <as

A uniform random sample is then taken from the range for each value o.
The procedure is repeated for three different asteroid cases, and 100 times for
each asteroid so that a trend in the relationship between initial uncertainty and

total probability can be revealed.

4.2 Asteroid Cases

Three asteroid cases are discussed in this chapter. They are based on the real
asteroids Apophis, 1999 RQ36, and 2010 RF12. However, the cases are not to
be taken as analysis of the real asteroids and their probability of impact with the
Earth. The dynamic model is simplified and does not produce an accurate nominal
solution. Also, the uncertainty used for each case is unrealistic. These cases
share one thing with their real counterparts: the nominal position and velocity at
the initial epoch. These were retrieved from NASA’s Horizons program [1]. The

cases are based on real asteroids for reliability of the cases’ long term orbit. It is
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possible to consider completely arbitrary cases, but the process of determining a
stable orbit over a long time period in CR3BP is a complex issue. By using real
initial conditions, the orbits are stable, albeit a deviation from the actual nominal
trajectory taken by the asteroid.

Each of the real asteroids is interesting for reasons that will be discussed. T'wo
are Potentially Hazardous Asteroids (PHAs), which are NEOs with a Minimum
Orbit Intersection Distance (MOID) of less than 0.05 AU and an Absolute Magni-
tude (H) of 22.0 or less. MOID is a measure of how close the orbit of the Earth and
the asteroid are to one another, a smaller MOID increases the chance that the two
will collide if they are in the same place at the same time. Absolute Magnitude
can be used to estimate the diameter of the asteroid, a smaller absolute magni-
tude translates to a larger asteroid. Asteroids that can come close to the Earth
and are sufficiently large are PHA’s. 2010 RF12 is not a PHA only because it is
not large enough. Asteroids that are considered to be of especially high risk are
studied individually with great effort by NASA and the University of Pisa, Italy
as described in Section 1.2.1.

This chapter presents the results of the algorithm described throughout this
thesis as applied to three cases, which are based on the three real asteroids. It

offers, for each case, the following:

e The orbit of the asteroid.

e An example of the encounter regions. The encounter regions are dependent
mostly on the dynamics and little on the specific values of initial uncertainty

(for a given order of magnitude).

e The total probability calculated for each encounter. Two plots will be used
to present the relative probabilities. The first plot shows all the encounters
over all the runs and uses color for three dimensions and is discussed below.
The encounters across each run of the simulation are taken equally. The
total probability is plotted against a date associated with each encounter
regardless of which of the 100 runs from which it originated. The second
plot is a two- or three-dimensional gray-scale plot for single encounters. The

second type of plot helps reveal the trend on an encounter-by-encounter basis.
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e A list of encounters and their frequency in the 100 runs of the Monte Carlo
simulation. This goes to show that the encounters are essentially independent

of the initial uncertainty.

For the first type of plot, each data point represents one probability in five-
dimensions: the time of the encounter, the value of the probability, and the lengths
of the three principal axes of the initial uncertainty ellipsoid. The color of the dot
for each probability is defined by a 1x3 vector of numbers between 0 and 1, where
each number corresponds to the color red, green, and blue; this scheme is called
RGB color. The RGB color space is seen in Figure 4.1. The three values that
specify the color are normalized from the lengths of the principal axes. Red, green,
blue corresponds to in-track, normal, and out-of-plane, respectively. A black dot
signifies that the three principal axes are at the lowest in their respective ranges,
and a gray dot signifies they are highest. The background color is outside the range
of the normalization so that all probabilities are visible (this is why the highest

are gray and not white).

out-of-plane

~(01)

(1,0,1)

] g (0,1,0)

normal

/ too) (1,1.0)

In-track

Figure 4.1. The RGB color space is an opaque cube. The origin is seen through a hole
in the cube. This figure acts as a legend for the first type of plot which are full page
figures displaying total probabilities: Figures 4.3, 4.5, 4.9 and 4.14.
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For the second type of plot, the dots for the probabilities are plotted in a three-
dimensional space of in-track, normal, and out-of-plane, where the gray scale of
the dot represents the relative magnitude of the probability. Dark probabilities are
higher and light probabilities are lower.

Note that the convention is opposite for large/high and tight/low for the two
plots: larger uncertainties and lower probabilities are both gray dots, while tighter
uncertainties and higher probabilities are both black dots. This is done because a
darker dot more intuitively corresponds to higher probability (for the second type
of plot), but in the RGB color scheme [1 1 1] is very light (in the first type of plot).
It is also done to emphasize the different value being conveyed by the shade of the

dot in each type of plot.

4.3 Impact Example

Before the three cases are discussed, an example is given for a fictitious asteroid on
a direct collision course with the Earth. For this example of an impact scenario, the
fictitious asteroid is propagated for 2 days. The short time span is to ensure that
the nominal solution does pass through the Earth and also because a longer time
span would not be any more revealing. The range values for the initial uncertainty
are chosen to be a; = 107* AU and e = 2. These values are significantly lower than
for the “real” asteroid cases that will follow. This is done because the nominal
solution passes so close to the Earth (actually through it) and the initial epoch is
so close to the encounter region.

Figure 4.2 depicts several things. First of all, it shows the nominal solution of
the fictitious asteroid: the thin red line. Second, it shows the principal axes of the
uncertainty (weak: blue, intermediate: green, and shortest: black) superimposed
onto several time steps surrounding the encounter (the wide red swath through
the Earth). This figure serves two purposes: it shows how high probabilities are
achieved by tight uncertainties (relative to the size of the Earth) in close proximity
to the Earth during the encounter; it also shows that the uncertainty, for the most
part, stays aligned with the local velocity vector but that the weak direction does
not. Near the initial condition, in the lower portion of the figure, the uncertainty

is coincident with the local velocity vector and stays aligned as such through the
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x10

Y(AU)

-1.0006 -1.0004 -1.0002 -1 -0.9998 -0.9996
X(AU)

Figure 4.2. A fictitious asteroid on a collision course with Earth. This figure shows the
principal axes of the uncertainty at several time steps surrounding the encounter (wide
red swath) superimposed onto the nominal solution (thin red line). The weak direction
is blue, the intermediate length is green and the shortest is black (for the most part, the
black uncertainty is in the unseen out-of-plane direction). Early in time (lower portion),
the weak direction is aligned with the velocity vector. As it is propagated through the
encounter, the uncertainty remains aligned with the local velocity and does not begin to
deviate until after the nominal solution has passed through the Earth.

encounter. After the encounter, the uncertainty starts to deviate from the velocity
vector. In general, the uncertainty is aligned with the velocity vector at the start
and at a certain point begins to deviate. That point in this case comes after the
encounter.

The first type of plot presented for probability is Figure 4.3. The first thing
to notice is that the probabilities are not near 100%, even when the asteroid’s
nominal solution actually passes through the Earth. The reason it is that, first of
all, the Earth is finite in extent, so 100% is not possible. Also, the 30 uncertainty
at the time of the encounter is much larger than the Earth. However, despite the
low absolute probability, these values are orders of magnitude larger than for the

following three asteroid cases, none of which passes through the Earth.
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Figure 4.4. The probabilities for the fictitious example trend along normal vs in-track
by decreasing in probability as the uncertainty gets closer to the maximums in each of
the respective directions.

There is a trend in probability for the first type of plot and it is not immediately
obvious how it is relevant. Looking at Figure 4.3, the trend seems to be in color
from yellow to blue. However, looking at Figure 4.4, there is a trend in the normal
uncertainty vs. the in-track uncertainty of the initial condition. In Figure 4.4,
higher probabilities occur when the in-track and normal are both low in their
respective ranges and visa versa. The trend is constant for all values of the out-
of-plane uncertainty, which is out of the page. This is why Figure 4.3 trends from
yellow to blue: the in-track and normal are both high when the probability is low,
so the color is yellow. Some of the low probabilities are gray which is when the
out-of-plane uncertainty is equally high. For the higher probabilities, when the
in-track and normal are both low but the out-of-plane happens to be high, the dot
is blue. Otherwise, if the out-of-plane is low as well, then the dot is black. Both
these dots colors are seen for the higher probabilities. The color, in this sense, is

a deterrent because it distracts the eye and doesn’t immediately reveal the trend.
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4.4 Casel

4.4.1 Background

Case I is based on 99942 Apophis (2004 MN4), or just Apophis, which is an
interesting case because it has a turbulent history of impact probabilities.

It was first discovered in June 2004, lost shortly thereafter, and re-discovered in
December 2004. The six month observation arc gave an impact probability of 0.4%,
which is already very high. Subsequent observations in December only increased
the likelihood of an impact on April 13, 2029. It reached an unprecedented impact
probability of 2.7% when observations up to December 27th were included. Then,
suddenly, with new pre-discovery observations from March 2004, the likelihood of
impact in 2029 was almost entirely ruled out. Needless to say, the high probability
of impact and the appreciable size of Apophis (~270 m) caused a significant scare
in the asteroid tracking community and was reported to the public on NASA’s
Near Earth Object and the NEOdyS websites [28].

The story of Apophis exemplifies the uncertain nature of determining an aster-
oid’s orbit and how the predictability of an asteroid’s behavior is highly dependent
on the number of observations available.

Although it is rather certain that Apophis will not impact the Earth in 2029,
it will still make a very close approach, which will inevitably alter its current orbit
significantly. The question now for Apophis is whether this close approach will put
it into a newly perturbed orbit which has the possibility of impact in 2036. That
is, if Apophis will pass through a keyhole? in 2029 which puts it into an impact
scenario for 2036. The likelihood of this happening is low, and Apophis is still

being studied with scrutiny.

4.4.2 Dynamics

Case I and Apophis share only their nominal position and velocity at epoch: July
23, 2010 00:00. This is the epoch for each the cases.

2A keyhole is the small region of space that encloses the initial conditions for a future impact
scenario. If the asteroid passes through it, an impact will occur with higher probability on a
future pass.
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The orbit of Case I and the encounter regions generated by the three-body
dynamics is shown in Figure 3.2. These encounter regions are representative of
initial uncertainty range values of a; = 1 AU and e = 2. The value for a; is quite
high. However, if a more realistic value were used in this simulation, on the order
107, there would be no regions of encounter and the probability calculation could
not proceed.

This point comes back to the dynamic model. Because the dynamic model is
not accurate, even though Apophis itself makes a close approach to the Earth in
2029 on the order of 10~* AU, the dynamic model in this study for Case I makes
no such prediction, despite them sharing initial conditions. In fact, the solution
found here never gets closer to the Earth than 0.05 AU and the uncertainty doesn’t
grow to a size large enough to cause an encounter region. So, the uncertainty is

chosen to be large initially, to compensate for the deficient dynamic model.

4.4.3 Probability Results and Analysis

The total probabilities for Case I from the Monte Carlo simulation are presented in
Figure 4.5. The date is effectively meaningless in this context because the dynamic
model is not accurate. The date serves only to separate and identify the encounters
from one another.

Each run of the calculation from integration of the equations of motion through
Monte Carlo simulation to integration of the pdf (this process is referred to from
now on as “the simulation”) produces identically colored dots at different dates
and values of probability. There are, in principle®, dots of 100 different colors.

It is interesting to note that over all 100 runs of the simulation that produced
randomly different initial uncertainties, the encounters are essentially the same
across the board. Each run produced one data point in an encounter, but over all
the runs, there are distinct groups of data points. This is analogous to the electron
two-slit experiment in physics where separate runs of the experiment result in a
placement of the electron on seemingly unrelated places on the detector, but over

enough runs, a pattern emerges to which each particle adheres. After only one

34in principle” for two reasons: in the practice of random numbers there can be repeats, and

in the RGB color, there are not enough distinct colors to uniquely value each initial ellipsoid,
but it is distinct enough to notice trends in the data.
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Monte Carlo run, the total probabilities are spread over the date vs. probability
space in a seemingly unrelated way, but after 100 runs, it is clear that probabilities
only appear in specific places: the distinct encounters.

The relationship between initial uncertainty and the encounter regions for Case
I is not continuous, so that little changes in uncertainty do not translate to large
changes in the encounter dates. Rather, the relationship is more discrete so that
each encounter corresponds to a range of uncertainties.* Different encounters are
produced by different uncertainties, but the set of different possible encounters
from the range of uncertainties available is finite and small. This means that
the major contributor to the set of encounters is the dynamic model and initial
conditions, or rather, the asteroid case that is being studied.

There is no trend over all the encounters associated with which dimension of
the initial uncertainty ellipsoid is closer to the maximum value. That is, from top
to bottom of Figure 4.5 there is no trend in color. Along a horizontal line that cuts
across the encounters, several different colored dots appear. The trend in color is
seen on an individual encounter basis. Each encounter is a set of vertically aligned
dots. The encounters can be separated into two categories. The first category
consists of those encounters that follow the following trend in the size of the initial
uncertainty: higher probabilities are darker colored dots and lower probabilities
are lighter (in a given encounter), which translates to higher probabilities resulting
from smaller initial uncertainty and visa versa. The second category consists of
those encounters that do not follow this trend.

From Figure 4.5 is can be seen that the majority of the encounters are in the
first category. Further, those in this category have the same trend in color from
top to bottom of the vertical line of dots. The lowest probabilities are a light shade
of gray, which means that the initial uncertainty is close to the maximum in each
direction: in-track, normal, and out-of-plane. The next higher probabilities are a
light shade of red which means that while all the initial uncertainties are close to
their maximums, the the in-track is slightly closer. The highest probabilities are a
dark shade of green, which means that the uncertainty in the normal direction is

the largest, but still low in its range.

4A continuous relationship is also known as one-to-one.
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The encounters in the second category for Case I, for the most part, also have
a trend. The lowest probabilities are almost pure green, while the highest proba-
bilities are almost pure blue. This corresponds to the lowest probabilities having
the normal direction of the initial uncertainty that is close to its maximum while
the other two directions are close to their minimums, and the higher probabilities
having the out-of-plane uncertainty closer to its maximum while the other two
are lower. There are a few exceptions in this category, most notably the one on
11/1/2021 in which the trend in color is clearly from blue to red.

The trend of the first category is shown in the second type of plot in Figure
4.6. Here the trend is clearly visible: darker colored dots (higher probability) are
clustered near the origin. Looking at Figure 4.7 it is apparent that the second
category of encounters follows a trend similar to that in Section 4.3 where the

trend is hidden. That is, the trend is only in the normal vs. in track uncertainties.

10 20 2035

out-of-plane

0.2 0.2
hormal 0 0 in-track

Figure 4.6. The probabilities of Case I for the encounter on 10/20/2035 trend from
higher to lower as the uncertainty grows in all three directions. This falls into the first
category of encounters.
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Figure 4.7. The probabilities for Case I for the encounter on 12/9/2020 trend from
higher to lower in normal vs in-track. This falls into the second category of encounters.

To summarize Case I, the encounters are split between two categories with the
majority having the trend of higher probabilities having lower initial uncertainties
while the lower probabilities have higher initial uncertainties. The fraction of
encounters that fall into the first category is about 4 out of 5. The second category
is further spit into those that have a trend in color from green to blue and those
that do not. From Figure 4.7, the trend is actually similar to the first category of
encounters but only in normal vs in-track.

In one hundred runs of the simulation, each simulation having between 21 and
25 encounters, there are a total of 2274 data points. As seen in Table 4.1, these
points occur in 25 distinct encounters (distinct, meaning differing by at least fifteen
days). Twenty-one of these encounters occur in all 100 runs of the simulation. In
other words, twenty-one dates in Figure 4.5 have 100 data points. One of the
remaining four occurs in 90 runs, two occur between twenty and thirty times and
one occurs less than five times. For example, the encounter on 4/11/2017 occurs
in all 100 runs, while the next encounter on 7/12/2017 only occurs in 29 runs. The
purpose of Table 4.1 is to show that the data points group into a small number of
encounters despite the variety of differing initial conditions.

The dates in Table 4.1 are halfway points of the encounter, so that there is
equal time before and after the date that is still the same encounter. The table

does not include the length of the encounter, but the encounters range between 1
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and about 40 time steps, where a time step is about half a day.

Results are presented for two other asteroid cases.

Table 4.1. The encounters of Case I that are distinct by fifteen days and their fre-
quency. The full list of encounters is found in Appendix E.1. The date for the encounter
throughout this study is unique to the dynamic model used here; in this context is only
an identifier.

Encounters Frequency
Month Day Year
11 1 2010 25
9 6 2011 90
1 14 2012 100
4 15 2012 100
8 23 2012 100
12 18 2016 100
4 11 2017 100
7 12 2017 29
12 9 2020 100
6 9 2021 100
11 1 2021 100
9 30 2025 100
1 16 2026 100
4 25 2026 100
9 11 2026 100
12 30 2030 100
4 10 2031 100
11 16 2034 100
12 29 2034 100
6 2 2035 100
10 20 2035 100
8 28 2039 100
12 31 2039 100
2 21 2040 30
4 10 2040 100
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4.5 Case 11

4.5.1 Background

Case II is based on 1999 RQ36, which was discovered in 1999 by the LINEAR
observatory. It has been observed throughout the last decade.

RQ36 is interesting because it has a fairly high rating on the Palermo Scale,
which assesses the over all risk posed by a given asteroid. The impact probability
is currently about 0.07% in the last half of the 22" century, which is fairly high.

The asteroid RQ36 “has the lowest uncertainty, [at the epoch 8 June 2001],
in semi-major axis of any asteroid.” But, this minimum uncertainty ignores the
dynamics of the Yarkovsky effect, which is an outgassing from the asteroid due to
heat from the Sun. This effect can have a large influence on the future motion of
the asteroid and if not taken into account can cause as asteroid to be lost. The
problem is that the physical attributes of the asteroid that lead to the Yarkovsky
effect are, for the most part, unknown. Nevertheless, there are techniques available
for modeling this effect [29].

4.5.2 Dynamics

Figure 4.8 shows the orbit of Case II and a typical set of encounters. The range

values are also a; = 1 AU and e = 2.

4.5.3 Results

The first type of plot of probabilities for Case II is Figure 4.9. Like Case I, there
is no absolute trend in probability: the trends are on an encounter basis. Also like
Case I, the encounters can be split into two categories. The fraction of encounters
that fall into the first category is again about 4 out of 5. The trend for the first
category is identical to that for Case I. The lowest probability in each encounter
is a shade of gray and the highest is a shade of green and the pattern of dots in
between is similar to that of Case I. However, the second category in Case II does
not have the same trend in color as in Case I.

Figure 4.10 shows the trend from lower uncertainty to higher uncertainty for

the first category of encounters. While the second category for Case II does not
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have the same color trend as for Case [, the trend in initial uncertainty is actually
quite similar to Case I. This is shown in the second type of plot for Case II in
Figure 4.11.

Each simulation in 100 runs has eleven encounters or, put another way, each

encounter occurs in all 100 runs. Table 4.2 shows the dates of the eleven encounters.

0.5

Y(AU)

05

Figure 4.8. The orbit and typical encounters of Case II as predicted by CR3BP. The
Earth is near (-1,0).
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Figure 4.10. The probabilities of Case II for the encounter on 9/19/2030 trend from
higher to lower as the uncertainty grows in all three directions. This falls into the first
category of encounters.
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Figure 4.11. The probabilities for Case II for the encounter on 3/4/2033 trend from
higher to lower in normal vs in-track. This falls into the second category of encounters.
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Table 4.2. The encounters of Case II that are distinct by fifteen days and their fre-
quency. The full list of encounters can be found in Appendix E.2.

Encounters Frequency
Month Day Year
9 25 2013 100
9 27 2014 100
2 9 2015 100
11 27 2015 100
2 29 2016 100
9 19 2030 100
1 29 2031 100
10 12 2031 100
3 8 2032 100
12 11 2032 100
3 4 2033 100

4.6 Case III

4.6.1 Background

Case III is based on 2010 RF12, which made headlines in September 2010 when
it and other small asteroid 2010 RX30 made very close approaches within hours
of one another. The two objects were discovered only a few days prior, but with
collaboration around the globe, their orbits were determined and the prediction of
their close approaches was made. It was one of a handful of times that the orbits
of asteroids that have activity near the Earth were first observed and predicted
in only a few short days. RF12 is thought to be only several meters in diameter,
so a collision would not be disastrous, but by studying this case, the methods for
impact probability calculation can be further developed and tested, so that when
we encounter an asteroid that does pose a significant threat, the techniques are

properly refined.

4.6.2 Dynamics

The orbit and encounters of Case III as predicted by the CR3BP is seen in Figure

4.12. The range values that contributed to these encounters are a; = 1 AU and
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Figure 4.12. The orbit over a 30 year integration and typical encounters of Case III as
predicted by CR3BP. The black dot representing the Earth near (-1,0) is not to scale.

e = 2. Case III, unlike Case II, has a long encounter for its close approach. This
is because this close approach happens near the initial epoch and the uncertainty
is still aligned with the velocity vector. Recall that the initial epoch is in July of
2010, so this is near to the path that RF12 took in September 2010.

The orbit of Case III is similar to that for Case I and Case II. The asteroid
makes loops that advance in a circle around the Sun. The difference is that the
outsides of the loops swing upwards in the z-direction for Case III whereas they
dip downwards for Case I and Case II. Figure 4.13 conveys this for each case. This
happens because of the characteristics of the orbit in the inertial frame. Each case
is based on a real asteroid and the real asteroids are on inclined (to the ecliptic),
Earth crossing orbits. For Apophis and RQ36, the apogee of the orbit is below
the ecliptic, while for RF12 it is above the ecliptic. Or also, the eccentricity vector
points above the ecliptic for RF12 and below for Apophis and RQ36. These are

reflected in the cases, respectively, so that when Case I is inside Earth’s orbit
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Case | (Apophis)

Z(AU)

Z(AU)

Z(AU)

Figure 4.13. The orbits of the three cases projected on the x-z plane. The cone or bowl
shape of the orbit is representative of the inclination of the orbits in the inertial frame
and are correct for the corresponding real asteroids upon which the cases are based.

(closer to the origin), the orbit is higher, and visa versa. Also note that Case
IT appears to be the most inclined of the three, which is true for RQ36. While
the dynamic model produces an inaccurate nominal solution, it is close enough to
reality to have these gross characteristics. This demonstrates the validity of the

three-body dynamics.

4.6.3 Results

The first type of plot for the probabilities for Case III is Figure 4.14. Again, the
runs organize by encounters and there is no absolute trend. The encounters can
be split into the two categories with encounters in the the first category occurring
2 out of 3 times. The first category in Case III follows the trend of Case I and
Case II that can be seen in the first type of plot, while the second category holds
no trend similar to either Case I or Case II nor does a majority of the encounters
in the second category for Case III have the same trend.

Figure 4.15 confirms the trend for the first category. Figure 4.16 shows the
second type of plot for the second category which has the same type of trend as
for Case I and Case II.
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Figure 4.15. The probabilities of Case III for the encounter on 2/24/2023 trend from
higher to lower as the uncertainty grows in all three directions. This falls into the first
category of encounters.
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Figure 4.16. The probabilities for Case III for the encounter on 10/27/2034 trend from
higher to lower in normal vs in-track. This falls into the second category of encounters.
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This case has a total of 1808 data points in 21 encounters distinct by fifteen days
(Table 4.3). Sixteen occur all 100 times, one occurs 99 times, while the remaining

four happen less than 50 times.

Table 4.3. The encounters of Case III that are distinct by fifteen days and their fre-
quency. The full list of encounters can be found in Appendix E.3.

Encounters Frequency
Month Day Year
9 2 2010 100
12 2 2010 100
2 18 2021 100
4 14 2021 100
) 9 2021 17
11 13 2021 44
12 13 2021 38
5 1 2022 100
9 24 2022 100
2 24 2023 100
9 8 2023 100
12 2 2023 100
1 20 2034 100
4 14 2034 10
) 9 2034 99
10 27 2034 100
4 17 2035 100
9 11 2035 100
1 28 2036 100
9 13 2036 100
10 23 2036 100

4.7 Summary

4.7.1 Dynamics

Based on the real initial conditions of the asteroids position and velocity, the
three-body problem reproduced orbits that resemble the true orbit in its gross
characteristics. For example, Case III (based on RF12) is an Earth crossing aster-

oid, which means that its eccentricity vector points in the direction of the orbit
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that is inside Earth’s orbit. It also has an eccentricity vector that points below
the ecliptic. This would mean that its orbit in the rotating frame, with the Earth
fixed, would resemble the top inside rim of a bowl, or that looking down the z-
axis, is concave. This is in fact what is produced by the implementation of the
three-body problem here. Conversely, Case II (based on RQ36) has its eccentricity
vector pointing above the ecliptic, which would mean that its orbit in the rotating
frame would be—looking down the z-axis—convex. This, also, is produced by the
dynamic model here.

The dynamic model for this study also predicts close approaches for each of
the cases. Where they deviate from the real asteroids they are based on are the
particular date of the close approach and the close approach distance. This is what
is meant in Chapter 2 by the inaccuracies of the model. The orbit is not exact,

but for the purposes here, is the proper backdrop for the probability analysis.

4.7.2 Probability

The Cases are called I, II, and III in order to separate them from the real asteroid
upon which they are based. The probabilities calculated here do no reflect actual
risk posed by the real asteroids. While the initial conditions are real, the dynamic
model is simplified and the initial uncertainty is unrealistic. So the encounters and
probability are essentially arbitrary. Nevertheless, the relative trend in probability
and initial uncertainty is still valid: it is exemplary of the method used to calculate
probability. This method can be applied to real asteroids if a true dynamic model
and initial uncertainty are employed.

The trend in probability for Cases I, II, and III can be summarized as follows.
The encounters in the first category trend the same by all three directions of the
initial uncertainty for all three cases. That is, lower initial uncertainties lead to
higher probabilities and visa versa. The second category according to the first type
of plot (the color plots) does not hold the same trend across cases. The trend is
in fact revealed to be the same across cases (and similar to the first category) by
the second type of plot, which takes the color out of the display. The first type of
plot is necessary to see how the different runs with differing initial uncertainties

produce the same small set of encounters.
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For all encounters over all three cases, the statement can be made that initial
uncertainties that are closer to the minimum in at least two principal directions
produce higher probabilities of impact.

For the fictitious case of the asteroid on a collision course, it is found that this
method of calculating probability properly predicts a significantly higher probabil-
ity of impact as expected. Also, the probabilities trend similarly to those for the

three cases.

In the next chapter, the results are explained by a simple example and the con-
tributions and limitations of this thesis are discussed. Also, suggestions are made

about the work that can follow from this study.



Chapter

Conclusions

This thesis has examined how the variability of initial uncertainty effects the total
probability calculated by a method that differs from standard practices of asteroid
impact probability calculation. This differing method was developed in Chapter
3 and applied to asteroid cases that utilized the dynamics developed in Chapter
2. In Chapter 4, the trend in the calculated probability vs. initial uncertainty was
revealed. This chapter describes the source of this trend and looks at the results
from a perspective that takes into account the realistic interpretation of the initial
uncertainties and the resulting probabilities of impact. Also, this chapter makes

recommendations for future work.

5.1 Summary of Contributions

A major contribution of this thesis is the development of an alternative method
for impact probability calculation using the positional uncertainty ellipsoid as the
central tool. As an application of this method, a Monte Carlo simulation was
run to find a relationship between initial uncertainty and total probability. The
trend found is another contribution. To show how this trend is achieved, two one-
dimensional probability density functions are examined in more detail and their

relationship is applied to the three-dimensional case of positional uncertainty.
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5.1.1 Explanation of the Trend

To see how the trend found is what is expected, the parameters of the problem
must be classified and the variables that contribute to the trend are highlighted.

The encounters are the same for each run of the simulation for a given aster-
oid. This means that the relative Earth vector is the same for each calculation of
probability at that encounter. The dynamics that produce the uncertainty during
the encounter are also the same. Further, the orientation of the initial uncer-
tainty is fixed so that the uncertainty throughout the encounter has a one to one
relationship with the initial conditions that produced them. Also, larger initial
conditions will produce a larger propagated uncertainty at a given future time.
The only variable in this problem is the size of the initial uncertainty. Because the
relationship between initial uncertainty and propagated uncertainty is one-to-one,
this can be translated to the only variable being the size of the uncertainty during
the encounter. Because the encounter is the same distance away from the Earth
for each run of the simulation, the only variable to affect probability is the size of
the uncertainty during the encounter.

Now, the probability calculated is an integration of the probability density
function, which is a represented by the size of the uncertainty. Figure 5.1 shows two

probability density functions with different standard deviations, . The vertical
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Figure 5.1. Two pdfs with differing standard deviations.
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lines indicate 30. Near the mean, the pdf is greater when the standard deviation
is lower (blue is greater than red). Farther from the mean, the larger standard
deviation has a greater pdf (red is greater than blue). The distance below which
the blue pdf is greater than the red pdf is found by equating the two pdfs and

solving for the distance from the mean, s.

2In/n

n?—1

s =no (5.1)
where no is the greater standard deviation. For the standard deviations in Figure
5.1, according to equation (5.1), s = 0.334. For the probabilities to be greater when
30 is smaller, as is seen in the results, the Earth must be less than the distance s
from the center of the uncertainty ellipsoid at the time of the encounter. This is
in fact the case for the three asteroid cases in this study: the 30 uncertainty can
grow to be more than 300 AU, n = e = 2, so from equation (5.1), s &~ 48 AU while
the Earth is at most about 2 AU from the center of the ellipsoid. This is why the
probabilities are greater when the uncertainty is tighter: the tighter uncertainty
has a greater pdf at the position of the Earth.

This explanation is based on the one-dimensional case. The pdf that is uncer-
tainty is three-dimensional. It is one of the contributions of this thesis to show that
this trend is maintained for higher-dimensional pdfs in the scenario of asteroids in
orbit around the Sun. Also, it is shown in Section 4.3 that this method produces
the expected significantly higher probabilities for an asteroid on a direct collision

course with the Earth.

5.1.2 Results in Perspective

A higher probability is desired because the probability of impact should be a con-
servative estimate at best. It would not be beneficial to calculate true probabilities
that are deceptively low, giving us a false sense of security. With the advancement
of ever more accurate observational and theoretical techniques to determine orbits
of asteroids, the uncertainties will diminish (however, they will never vanish).
This leads to the optimistic conclusion that the probabilities calculated in the

future will always be greater than they are today. But, looking back at Figure 5.1,
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this relationship between standard deviation and probability only holds near the
mean. If the uncertainties shrink enough and the distance of the encounter stays
constant, there is a range for which a smaller uncertainty has a lower probability.

The trend in probability found in this study was a result of the vastly large
initial uncertainties, which led to the even larger propagated uncertainties. These
propagated uncertainties are so large that the Earth is well within the distance
s—the range for which the smaller uncertainty ellipsoid integrates to a higher
probability. In no real sense would the initial uncertainty be 1 AU. It may grow
to be that large after several decades of propagation, but an uncertainty of 1 AU
today would mean that the asteroid is lost.

The probabilities calculated are extremely small. Even for the impact example
in Section 4.3 the probabilities are not indicative of a very likely impact. The
probabilities for the three cases are at the edge of what is considered negligible.
The lowest probabilities calculated for PHAs by NASA’s NEO website [5] are
greater than the largest probabilities produced by the Monte Carlo simulations of
this study. This is an indication that work must continue on this method before
it can be applied to real asteroid cases.

So while the result is promising, it is given with the caveat that it was the
result of unnaturally large initial uncertainties.

These large initial uncertainties are required because without them, no encoun-
ters occur. This highlights a fundamental limitation of this method as applied to
real cases. The uncertainties in a real case would be orders of magnitude less than
an AU. With uncertainties this small used to run the simulation, no encounters

were detected and the probability calculation could not proceed.

5.2 Recommendations for Future Work

The recommendations given in this section are primarily concerned with refining
the methods presented here so that they can be applied to real asteroids and
produce actual probabilities. The first change to be made to do this is to use
realistic initial uncertainties. So far, this is impossible, but recommendations to

accommodate these impossibilities are given in Section 5.2.2.
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5.2.1 Dynamic Model

As has been stated many times in this thesis, the dynamic model is intentionally
left inaccurate for simplicity. In the future, it is formally recommended that the
dynamic model is replaced with a more sophisticated model that produces what
is considered the true trajectory of the asteroid. This will vastly increase the
accuracy of the encounter regions and probabilities calculated.

To create a more accurate dynamic model, additional factors must be taken
into account including perturbing bodies in the solar system, general relativity,

and the Yarkovsky effect, among others.

5.2.2 Probability Calculation

The uncertainty being so large initially is the greatest limitation of this study. As
was stated above, this is necessary to produce encounters over which a probability
calculation can be performed. If this method is to be applied to real cases more
realistic initial uncertainties are required.

More realistic initial uncertainty can be used if the propagation technique is
adjusted. Remember that the uncertainty is propagated by a linear transformation
of the state transition matrix. Over the time spans of the desired propagation (30
years or greater), the linear assumption may not always hold. It is recommended
that nonlinear propagation of uncertainty is investigated in order to open the
possibility of starting with lower initial uncertainties. Nonlinear propagation may
lead to faster growth of the uncertainty, which would lead to more regions of
encounter as defined here.

The goal of any future work is to achieve actual probabilities of impact of
asteroids with the Earth. By using realistic uncertainty, the probabilities calculated
will also be more realistic. Methods to nonlinearly propagate the uncertainty are
addressed by Chesley [30] and together with the methods discussed in the preceding

chapters could lead to more realistic probabilities of impact.
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Scripting Techniques

A.1 Solving the EOMs

In MATLAB, two scripts are needed to integrate the equations of motion: a main
script and a function script. The main script contains the definitions of all constant
quantities including the initial conditions and time span of the calculation. The
main script also contains a statement that passes these quantities to the solver
itself. The function script contains the equations of motion the form of which
is altered to accommodate the solver (see Section 2.3). The function is an object
defined by this script that is then passed in the main script to the solver, ode45 [31],
a Runge-Kutta 4/5 variable step size integrator.

With a minimum of two scripts, the Newtonian equations of motion are solved

and the nominal solution of the asteroids trajectory is obtained.
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A.2 Propagating the Planets

An embedded function is needed to numerically solve for the positions of the per-
turbing bodies at each time step. The statement calling the embedded function
and solving for it using the standard solver is placed inside the first function (which
is solving the equations of motion of the asteroid itself) and before the lines defin-
ing equation (2.11) so that the positions of the perturbing bodies are available.
The embedded function is then equation (2.19) for each of the perturbing bodies,
k. The return of the embedded function is a 3xN matrix of all the positions of

the perturbing bodies at that time step.
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Covariance Propagation

Linear propagation of the uncertainty is achieved by a transformation on the initial

covariance matrix [32].
P = ®(t, o) Py® (t, o) (B.1)

This can be understood in the following way. The State Transition Matrix is

defined as:
_0X

~ X,

where X is the state vector. The initial normal (or information) matrix, which is

b (B.2)

the inverse of the covariance matrix, is defined as:
o6 \" (0%
Co=| == — B.3
’ (8X0> (axo (B:3)
and the corresponding normal matrix at any time t is:
06 \" (0%
C=|== — B4
(ox) (o 1)
where £ is the observational residual. Applying the chain-rule to these differentials

[ 9¢ 90X\ [ 0¢ X,
¢= (8)(0 ax) (aXO 8X) (B-5)

gives,
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then by distributing the transpose,

T T
o= 0Xo o0&+ 0 [0Xy (B.6)
0X 00Xy 0Xp \ 0X
the information matrix comes out of the middle two terms,
o= (250 ¢, (2% (B.7)
~\ax ) °\ax ‘
The inverse of this equation then gives,
poct o (9X) p (90X (B.8)
T \aX, ) "\ ax, '

Here is it clear that equation (B.8) with (B.2) is identical to (B.1) [18].

It should be noted here that the linear assumption used here to propagate
the uncertainty can fail in certain cases. Examples include when the time span of
propagation is especially long or when the asteroid makes a close approach. In these
cases, nonlinear propagation is necessary, but can be increasingly computationally
taxing [30]. Methods involving nonlinear propagation are outside the scope of this

thesis and are discussed further in the section on future work.
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Linear Approximation

This appendix is a summary of [33].

Figure C.1. A circle with a secant and tangent.

The question is what maximum angular arc of a circle can be approximated
by a straight line. To answer this, two relative errors are examined: that of the
secant, S, associated with the arc, C', and the tangent, T', that is coincident with
the arc. See Figure C.1. These errors are denoted €* and ¢**, respectively.

If the radius of the circle is R, then the length of the arc is

C = Ry (C.1)
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Also, the length of the secant is

S (7
5= Rsin <§> (C.2)
Then the relative error is,
S—-C 2 . /v
* _z 1Y
¢ =—7 78111(2> 1 (C.3)

With an angle of 0.1 radians, the error is 0.04%. This is sufficiently smaller than
one.

The length of the tangent is

T = Rtanvy (C4)
So that its error is,
T-C 1
e** = & = ;tanv -1 (C.5)

With an angle of 0.1 radians, the error is 0.3%. This is sufficiently smaller than
one as well.
So, with v = 0.1 rad (5.8°) there is close agreement between a straight line and

a circular arc.
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Encounter Region Check

The check whether the Earth is inside the uncertainty ellipsoid is performed at
each time step along the orbit and can be done in several ways.

The encounter region is defined as the region along the orbit when the Earth
is inside the uncertainty ellipsoid. Of course, “the Earth” refers to the surface of
the Earth because that is where collisions occur. However, at the distance scale
of an asteroid in obit around the Sun, as in the three asteroid cases in Sections
4.4 - 4.6, it is usually sufficient to treat the Earth as a point located at its center.
Methods that do this are discussed in Appendix D.1. Only when doing analysis
very close to the Earth, when the size of the Earth is significant compared to the
length scale, as in Section 4.3, is it necessary to include the extent of the Earth
when determining the encounter regions. A check for close approaches will tell
whether it is necessary to include the size of the Earth even when dealing with
large distance scales. A technique to take into account the extent of the Earth is

addressed in Appendix D.2.



72

D.1 Earth as a Point

D.1.1 Cartesian

The surface of the uncertainty ellipsoid in Cartesian coordinates is subject to the

following condition

[z’ Yy’ z’} Py | =1 (D.1)

where P is the 3x3 covariance matrix and [x" y’ 7] are coordinates centered at the
ellipsoid. To determine whether a position is inside this ellipsoid, one takes the

inequality less than or equal to one.

D.1.2 Spherical

Alternatively, one can determine the spherical angles that the relative position
vector of the Earth with respect to the center of the ellipsoid makes with the
ellipsoid’s principal axes, [x vy’ z']. These angles are shown in Figure D.1. To
do this, first, take the dot product of the unit (x',y') components of the position
with the x’-axis and then take the inverse cosine (a check of quadrant is required).
This is the angle 6. Next, take the dot product of the (x',y’,z") components of the
position with the z'-axis and then take the inverse cosine (no quadrant check is
required). This is the angle ¢. The distance, d, from the center of the ellipsoid to

its surface at the spherical location defined by these angles can then be calculated:

J— \/{sinQ ¢ cos? 0 N sin? ¢ sin? 0 N coszp] ™" (D.2)

A A2 As

where \; are the eigenvalues of the covariance matrix. Then one checks whether
the magnitude of the relative position of the Earth from the center of the ellipsoid

is less than or equal to d.

The cartesian and spherical checks, not surprisingly, produce identical encounter

regions.
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Figure D.1. The uncertainty ellipsoid in a frame aligned with its principal axes and
the spherical angles that the relative Earth vector (the vector from the center of the
uncertainty ellipsoid to the center of the Earth) makes with those axes. The thin black
line is the relative Earth vector, the thick black line is the part of that vector inside the
ellipsoid, and the blue line is the projection of the relative Earth vector onto the x/-y’
plane.

D.2 Earth with Extent

Taking into account the extent of the Earth is as easy as adding to the relative
Earth vector a vector from the center of the Earth to its surface and then using the
methods for determining whether a point is inside an ellipsoid. The difficulty is
that this process requires checking the whole range of additive vectors at each time
step and is very computationally intensive. A more efficient method is necessary.

The problem is determining when two ellipsoids intersect. The two ellipsoids
are the uncertainty ellipsoid and the Earth (the Earth is an ellipsoid with three
equal principal axes). Alfano [34] and Chan [35] develop the technique to do this.
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The surface of an ellipsoid can be described by:

XTSTTXT =0 (D.3)
where

X = [ x y z 1 ] (D.4)

1 0 0 0

0 1 0 0
T = (D.5)

0 0 1 0

—20 —y0 —20 1

U1 Cs C33 0
0 0 0 -1

where [20, y0, z0] is the center of the ellipsoid and C;; are the elements of inverse of
the characteristic matrix of the ellipsoid. In the case of the uncertainty ellipsoid,

this characteristic matrix is the covariance matrix, P. C'is called the information

matrix:
C=p! (D.7)
The two ellipsoids are then
XAXT =0 (D.8)
and
XBXT =0 (D.9)

By subtracting equation (D.9) from a scaled (D.8): X (AA—B)XT = 0, the problem
becomes an eigenvalue problem. To get it in the recognizable form, left multiply

the inner matrix by AA~!.
XAWMN - A'B)XT =0 (D.10)

As explained by Alfano and Chan, the eigenvalues of A~!B are indicative of
the state of intersection of the two ellipsoids described by A and B. When two of
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the eigenvalues are negative and unequal, the ellipsoids are not intersecting. When
the two eigenvalues are negative and repeating, the two ellipsoids are just touching
(at a single point). When the two eigenvalues are complex conjugates, one end of
one ellipsoid is inside the other. When the two eigenvalues are positive, the two
ellipsoids are intersecting through one another.

Because there are four eigenvalues for this problem, Alfano refers to admissible
and inadmissible eigenvalues. One example of an inadmissible eigenvalue is one
with an eigenvector with a zero in the last component. This is inadmissible be-
cause “this formulation has been framed in a four-dimensional space with the last
dimension fixed [34]” as shown in equation (D.4). It is not clear whether this is
the only case of inadmissibility.

In any case, when applying this method to the problem here, it is found that the
eigenvectors do not behave as described by Alfano and the eigenvalues cannot be
distinguished between admissible and inadmissible. This is not actually a problem
because the classification of the eigenvalues can be applied even when all four are
taken equally.

When any of the four eigenvalues are complex conjugates, the ellipsoids are
overlapping, when all four are positive, they are overlapping, when any two are
negative and equal they are touching, when any two are negative and unequal,
they are separate.

With this check on the eigenvalues of A~!B, the regions along the orbit of the
asteroid when the instantaneous uncertainty ellipsoid and the sphere of the Earth

intersect can be determined. This works whether A or B is the Earth.
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List of Encounters

The “distinct value” in Chapter 4 of 15 is chosen because the encounters of all three
cases are not perfectly discrete. The characteristic of being discrete or continuous
is a spectrum, so that some cases are more continuous than others.

Small changes in the initial uncertainty does produce small changes in the
mean date of an encounter. So over all the simulations in a case, there are several
encounters that appear only once or twice that are only a day or less different than
other encounters in other simulations.

This Appendix presents all the encounters of each case to the resolution of the

numerical results: half a day.
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E.1 Casel

There are 68 encounters that are distinct by half a day. The greater-than/less-than
split at 50 is 20/48. Six encounters appear only once.

While these encounters are more continuous, they are still grouped around a
specific date with gaps in time between them. The date around which each group

is centered is the date associated with the fifteen day encounters in Chapter 4.

Table E.1: The encounters of Case I that are distinct by
half a day and their frequency.

Encounters Frequency
Month Day Year
11 1.2 2010 12
11 1.8 2010 8
11 2.4 2010 4
11 3 2010
9 6.8 2011 1
9 74 2011 57
9 8 2011 31
9 86 2011 1
1 142 2012 3
1 14.8 2012 14
1 154 2012 14
1 16 2012 20
1 16.6 2012 23
1 172 2012 9
1 17.8 2012 11
1 184 2012 4
1 19 2012
4 16 2012 41
4 16.6 2012 59
8 24 2012 7

Continued on Next Page. ..



Table E.1 — Continued

Month Day Year Frequency
8§ 24.6 2012 83
8 25.2 2012 10

12 18.2 2016 66
12 18.8 2016 34
4 11.5 2017 82
12.1 2017 18
12.6 2017 29
12 9.8 2020 25
12104 2020 70
12 11 2020 )
9.7 2021
10.3 2021 63
10.9 2021 35
11.5 2021 1
11 1.5 2021 14
11 2.1 2021 86
9 30.2 2025 3
9 30.8 2025 97
1 16.3 2026 100
4 25.8 2026 88
4 26.3 2026 12
9 11.7 2026 2
9 12.3 2026 98
12 30.4 2030 36
12 31 2030 64
10 2031 50
4 10.6 2031 50
11 16.8 2034 22
11 174 2034 76
11 18 2034 2

Continued on Next Page. ..
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Table E.1 — Continued

Month Day Year Frequency
12 29.6 2034 23
12 30.2 2034 5}
12 30.8 2034 22

6 2.3 2035 12
6 2.9 2035 88
10 20.4 2035 100
8 29 2039 100
12 31.1 2039 16
12 31.7 2039 63
1 1.3 2040 21
2 21.2 2040 3
2 21.8 2040 7
2 224 2040 8
2 229 2040 8
2 23.5 2040 3
2 241 2040 1
4 10.7 2040 25
4 11.3 2040 75

E.2 Case Il
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There are 44 encounters distinct by half a day. About half of these occur more

than once but less than twenty times.

Case II is slightly more continuous than Case I because the ratio of encounters

distinct by half a day to those distinct by fifteen days is greater for Case II.



Table E.2: The encounters of Case II that are distinct by

half a day and their frequency.

Encounters Frequency
Month Day Year
9 26 2013 25
9 26.6 2013 29
9 27.1 2013 32
9 277 2013 13
9 283 2013 1
9 275 2014 27
9 28.1 2014 70
9 287 2014 3
2 99 2015 4
2 10.5 2015 9
2 11.1 2015 6
2 11.7 2015 8
2 123 2015 7
2 129 2015 5
2 13,5 2015 11
2 14 2015 5
2 146 2015 10
2 152 2015 5
2 15.8 2015 13
2 164 2015 11
2 17 2015 5
2 17.6 2015 1
11 275 2015 2
11 28.1 2015 24
11 28.7 2015 28
11 29.3 2015 28
11 29.9 2015 17

Continued on Next Page. ..
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Table E.2 — Continued

Month Day Year Frequency
11 30.5 2015 1
2 29.3 2016 33
2 29.8 2016 67
9 19.2 2030 49
9 19.8 2030 49
9 204 2030 2
1 29 2031
1 29.6 2031 64
1 30.2 2031 28
10 12.3 2031 16
10 12,9 2031 72
10 13.5 2031 12
3 89 2032 100
12 11.1 2032 47
12 11.7 2032 53
3 45 2033 41
3 51 2033 59
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E.3 Case 111
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There are 172 encounters that are distinct by half a day. The majority occur more

than once but less than twenty times in the 100 runs. Case III is by far the most

continuous case.

Table E.3: The encounters of Case III that are distinct

by half a day and their frequency.

Encounters Frequency Encounters Frequency
Month Day Year Month Day Year
9 2.2 2010 5 12 12.9 2010 3
9 2.8 2010 15 12 13.5 2010 7
9 34 2010 26 12 14 2010 2
9 4 2010 24 12 14.6 2010 3
9 46 2010 30 12 15.2 2010 2
12 2.8 2010 1 2 182 2021 34
12 3.4 2010 6 2 18.8 2021 43
12 4 2010 2 2 194 2021 23
12 4.6 2010 ) 4 14.3 2021 4
12 5.2 2010 ) 4 149 2021 4
12 5.8 2010 7 4 154 2021 D
12 6.3 2010 6 4 16 2021 7
12 6.9 2010 9 4 16.6 2021 9
12 7.5 2010 8 4 172 2021 7
12 8.1 2010 8 4 178 2021 11
12 87 2010 4 4 184 2021
12 9.3 2010 6 4 19 2021
12 9.9 2010 2 4 19.6 2021 10
12 10.5 2010 4 4 20.2 2021 12
12 11.1 2010 6 4 20.8 2021 8
12 11.7 2010 2 4 21.4 2021 2
12 12.3 2010 2 4 22 2021 1

Continued on Next Column. ..

Continued on Next Page. ..



Table E.3 — Continued

Month Day Year Frequency || Month Day Year Frequency
4 226 2021 4 5 7.4 2022 3
4 23.1 2021 1 9 243 2022 6
5 99 2021 6 9 249 2022 24
5 10.5 2021 11 9 254 2022 23

11 14 2021 2 9 26 2022 22

11 14.6 2021 2 9 26.6 2022 19

11 15.1 2021 2 9 27.2 2022

11 157 2021 4 9 27.8 2022

11 16.3 2021 4 2 25 2023

11 16.9 2021 3 2 25.6 2023 28

11 175 2021 4 2 26.2 2023 31

11 18.1 2021 ) 2 26.7 2023 22

11 18.7 2021 3 2 273 2023 12

11 19.3 2021 6 9 87 2023

11 19.9 2021 6 9 93 2023 7

11 20.5 2021 2 9 99 2023 18

11 21.1 2021 1 9 10.5 2023 14

12 13.2 2021 2 9 11 2023 11

12 13.7 2021 33 9 11.6 2023 14

12 14.3 2021 3 9 12.2 2023 7
5 1.4 2022 2 9 12.8 2023 6
5 2 2022 9 134 2023 3
5 2.6 2022 16 9 14 2023 4
5 3.2 2022 17 9 14.6 2023 d
5 3.8 2022 20 9 15.2 2023 4
5 4.4 2022 16 9 15.8 2023 2
) 5 2022 10 9 164 2023 1
5 5.6 2022 6 12 2.7 2023 D
5 6.2 2022 4 12 3.3 2023 14
5 6.8 2022 12 3.9 2023 24

Continued on Next Column. ..

Continued on Next Page. ..
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Table E.3 — Continued

Month Day Year Frequency || Month Day Year Frequency
12 4.5 2023 29 11 14 2034 12
12 5.1 2023 23 11 2 2034 13
12 5.7 2023 ) 11 2.6 2034 10

1 20.7 2034 17 11 3.2 2034 6
1 21.3 2034 21 4 175 2035
1 219 2034 38 4 18.1 2035 14
1 225 2034 23 4 18.7 2035 20
1 231 2034 1 4 19.3 2035 13
4 14.2 2034 2 4 199 2035 13
4 14.8 2034 2 4 20.5 2035 13
4 154 2034 2 4 21.1 2035 11
4 16 2034 1 4 21.7 2035 5
4 16.6 2034 2 4 223 2035 2
4 17.1 2034 1 4 229 2035 2
5 9.8 2034 1 4 23.5 2035 2
5 104 2034 13 9 11.7 2035 3
5 11 2034 29 9 123 2035 9
5 11.6 2034 21 9 129 2035 30
5 12.2 2034 21 9 13.5 2035 25
5 12.8 2034 9 9 14.1 2035 19
5 134 2034 4 9 14.7 2035
5 14 2034 1 9 153 2035
10 277 2034 3 9 159 2035 4
10 28.3 2034 3 1 28.7 2036 93
10 28.9 2034 3 1 29.2 2036 46
10 29.5 2034 8 1 29.8 2036 1
10 30.1 2034 13 9 139 2036 8
10 30.7 2034 ) 9 14.5 2036 24
10 31.3 2034 15 9 15.1 2036 33
10 31.8 2034 9 9 15.7 2036 29

Continued on Next Column. ..

Continued on Next Page. ..
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Table E.3 — Continued

Month Day Year Frequency || Month Day Year Frequency
9 16.3 2036 6
10 23.2 2036 1
10 23.8 2036 11
10 244 2036 17
10 25 2036 20
10 25.6 2036 17
10 26.1 2036 32
10 26.7 2036 2
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