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ABSTRACT 
 

In this thesis, a process to identify cost-efficient tracking solutions for interplanetary 

missions is presented. The process is flexible enough to be used in a wide variety of cases with 

different constraints. Mission designers will be able to use this process to not only identify the 

most cost-efficient tracking methods for any particular mission, but also to learn about the 

characteristics of a cost-efficient solution. 

In the process, complete tracking solutions are generated, tested, and compared. Tracking 

solutions combine a tracking schedule, defining when and for how long a spacecraft is tracked, 

and an antenna configuration, defining which antennas are used. A representation of tracking 

schedules is used that defines all schedules as a function of the number of tracking intervals and 

the grouping of these intervals into sets. This representation allowed a wide range of potential 

solutions to be tested while also being simple enough to offer easy identification of trends in the 

final data. 

 The process presented in this thesis consists of selecting a range of the variables defining 

each tracking solution, identifying constraints that limit the choices for these variables, and 

testing and comparing the efficiency of each of the available solutions. The tracking efficiency, a 

variable defined in this thesis, is used to compare the solutions. It is a measure of how well the 

observations of a tracking solution are converted to measurable decreases in the uncertainty in the 

estimate of the spacecraft’s state.  

In order to demonstrate the results of this process, a representative lunar trajectory is 

examined. This demonstration includes the selection of the range of independent variables to test, 

the specific parameters of the trajectory to be tested, and the simulator that will be used. Several 

cases, each with different constraints, will be considered in the demonstration. 
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The results of the process allow for quick identification of the most cost-efficient 

solution. They also show trends in the independent variables that show the sensitivity of cost-

efficiency to each of the variables. These trends allow the mission designer to understand the 

trade-offs in their selection of the variables. By identifying these trends and patterns, more 

customizable searches can be used to obtain more specific results. The process created an end 

product that met all of the research goals.  



v 

 

TABLE OF CONTENTS 

List of Figures ........................................................................................................................ v 

List of Tables ......................................................................................................................... vi 

Acknowledgements ................................................................................................................ vii 

Chapter 1 Introduction ........................................................................................................... 1 

Terminology ................................................................................................................... 2 
Motivation ...................................................................................................................... 3 
Research Goals ............................................................................................................... 4 
Analysis Overview ......................................................................................................... 5 
Thesis Overview............................................................................................................. 6 

Chapter 2 Background ........................................................................................................... 8 

Tracking of Interplanetary Spacecraft ............................................................................ 8 
Using Time Delay for Range Determination .......................................................... 9 
Using Doppler Shift for Range Rate Determination ............................................... 10 

Deep Space Network ...................................................................................................... 12 
Extended Kalman Filter.................................................................................................. 14 

Chapter 3 Analysis ................................................................................................................. 19 

Process Overview ........................................................................................................... 19 
Nominal Trajectory Generation in Systems Tool Kit ..................................................... 22 
Measurement Simulation in Orbit Determination Tool Kit ............................................ 23 
Generation of Custom Tracking Schedules .................................................................... 24 
Antenna Configurations ................................................................................................. 28 
Process Automation with MATLAB .............................................................................. 30 
Tracking Efficiency ........................................................................................................ 31 

Chapter 4 Results ................................................................................................................... 33 

Case 1: Defined Total Amount of Tracking Time .......................................................... 33 
Case 2: Defined Number of Intervals per Set ................................................................. 48 
Case 3: Defined Antenna Configuration ......................................................................... 63 
Case 4: No Constraints ................................................................................................... 72 
Case 5: Defined Maximum Covariance Requirement .................................................... 75 
Case 6: Defined Maximum Cost .................................................................................... 78 
Case 7: Defined Maximum Cost and Maximum Gap in Coverage Duration .................. 82 

Chapter 5 Conclusions and Future Work ............................................................................... 87 

References.............................................................................................................................. 89 

 



vi 

 

LIST OF FIGURES 

Figure 2.1: Graphical Representation of the Three Methods of Doppler Tracking................. 11 

Figure 2.2: Deep Space Network Complexes ......................................................................... 12 

Figure 2.3: Extended Kalman Filter Flowchart ...................................................................... 17 

Figure 3.1: Flowchart of Overall Process ............................................................................... 21 

Figure 3.2: Examples of Custom Tracking Schedules ............................................................ 27 

Figure 3.3: Range of Tracking Schedules Tested ................................................................... 28 

Figure 4.1: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 2400 s ................................................................................................ 35 

Figure 4.2: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 4800 s ................................................................................................ 36 

Figure 4.3: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 7200 s ................................................................................................ 37 

Figure 4.4: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 9600 s ................................................................................................ 38 

Figure 4.5: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 12000 s .............................................................................................. 39 

Figure 4.6: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 14400 s .............................................................................................. 40 

Figure 4.7: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 16800 s .............................................................................................. 41 

Figure 4.8: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 19200 s .............................................................................................. 42 

Figure 4.9: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 21600 s .............................................................................................. 43 

Figure 4.10: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for 

Total Tracking Time of 24000 s ..................................................................................... 44 

Figure 4.11: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set 

Averaged Across All Total Tracking Times ................................................................... 47 

Figure 4.12: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 1 .................................................................................. 50 



vii 

 

Figure 4.13: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 2 .................................................................................. 51 

Figure 4.14: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 3 .................................................................................. 52 

Figure 4.15: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 4 .................................................................................. 53 

Figure 4.16: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 6 .................................................................................. 54 

Figure 4.17: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 8 .................................................................................. 55 

Figure 4.18: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 12 ................................................................................ 56 

Figure 4.19: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 24 ................................................................................ 57 

Figure 4.20: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals Averaged Across All Numbers of Intervals per Set ......................................... 59 

Figure 4.21: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of 

Intervals per Set for Antenna Configuration 1 ................................................................ 64 

Figure 4.22: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of 

Intervals per Set for Antenna Configuration 2 ................................................................ 65 

Figure 4.23: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of 

Intervals per Set for Antenna Configuration 3 ................................................................ 66 

Figure 4.24: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of 

Intervals per Set for Antenna Configuration 4 ................................................................ 67 

Figure 4.25: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of 

Intervals per Set for Antenna Configuration 5 ................................................................ 68 

Figure 4.26: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of 

Intervals per Set Averaged Across All Antenna Configurations..................................... 70 

Figure 4.27: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (No Constraints) ............................................................................. 73 

Figure 4.28: Average Covariance vs. Antenna Configuration (Covariance Limited) ............. 76 

Figure 4.29: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (Covariance-Limited) ..................................................................... 77 



viii 

 

Figure 4.30: Number of Observations vs. Antenna Configuration (Cost-Limited) ................. 80 

Figure 4.31: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (Cost-Limited) ................................................................................ 81 

Figure 4.32: Number of Observations (Weighted) vs. Length of Gaps in Coverage (Cost 

and Gap Duration Limited) ............................................................................................ 84 

Figure 4.33: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (Cost and Gap Duration Limited) ................................................... 85 
 

 



ix 

 

LIST OF TABLES 

Table 2.1: Antennas of the Deep Space Network, .................................................................. 13 

Table 3.1: Mission Orbital Parameters ................................................................................... 23 

Table 3.2: Initial Position and Velocity Uncertainties (1σ) .................................................... 24 

Table 3.3: Antenna Configurations for Analysis .................................................................... 29 

Table 4.2: Most Cost-Efficient Solution for All Tested Intervals per Set ............................... 60 

 
 



x 

 

ACKNOWLEDGEMENTS 
 

First, I would like to thank my advisor, Dr. David Spencer, for his incredible support and 

patience. Second, I would like to thank Dr. Melton and Dr. Lesieutre for being on my thesis 

committee and for providing valuable feedback. Third, I would like to thank my grandmother, for 

her interest in my studies and for making this thesis possible. Finally, I would like to thank my 

parents, for their continual support and encouragement.  



Chapter 1  
 

Introduction 

This thesis presents methods for identifying tracking solutions for interplanetary 

spacecraft that offer sufficient knowledge of the spacecraft’s state over the course of the mission 

while minimizing the amount of observation time, and therefore the mission operations cost. To 

demonstrate these methods, the process of identifying a low-cost tracking solution is shown for a 

spacecraft on a representative lunar landing trajectory under several different conditions. These 

cases include different constraints that limit the options the mission designer can choose from 

when selecting a tracking solution. In each case, solutions consisting of several different tracking 

schedules and antenna configurations are compared. Simulated ground station observations of the 

satellite for each of these potential solutions are generated and subsequently processed through an 

extended Kalman filter. The performances of each tracking solution are compared using a value 

defined as “tracking efficiency,” which is a measure of the efficiency of utilizing spacecraft 

observations to minimize the uncertainty in estimates of the spacecraft state. 

Over the last decade and continuing through today, the private space industry has 

experienced substantial growth. New companies are frequently entering the market that promise 

to provide access to space that is more efficient, more frequent, and more cost-effective than the 

typical operations of the past. These emerging companies form a collective group named 

“NewSpace”. 

So far, none of these NewSpace companies have ventured further than geostationary 

orbit. However, several have plans to conduct missions to the Moon, asteroids, and even Mars. 

The companies targeting these locations plan to conduct a wide range of activities there, ranging 

from resource extraction to permanent human settlements. 
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For every one of these companies, the success of their missions will rely on their ability 

to communicate with their spacecraft from Earth. As these companies, and future companies that 

are yet to be established, launch their spacecraft and execute their missions, the number of objects 

in interplanetary space will grow. However, the number of ground stations that currently exist to 

support interplanetary spacecraft are limited, and many NewSpace companies will be unwilling to 

fund construction of their own ground stations. For these companies to succeed, they will need to 

rent time on existing deep space networks that are already in high demand by planetary science 

missions launched by national space agencies. In order to lower tracking costs, NewSpace 

companies will need to develop cost-effective tracking solutions that minimize the amount of 

tracking time while still offering sufficient knowledge of the spacecraft’s state. 

Terminology 

An important point should be made here about the terminology used in this thesis. When 

monitoring Earth orbiting spacecraft with ground stations, there are separate communications 

passes (where the spacecraft relays data back to Earth) and tracking passes (where, in many 

circumstances, a radar signal is projected from the ground station and reflected off the spacecraft, 

which provides information about the spacecraft’s position and velocity). However, when 

monitoring interplanetary spacecraft, there are not two distinct types of passes. Instead, tracking 

data is derived from the properties of the spacecraft’s communication signal. Whenever an 

interplanetary spacecraft is communicating with the ground, it is also being tracked. 

Throughout the thesis, tracking of interplanetary spacecraft is discussed, as are numerous 

terms such as “tracking schedules,” “tracking solutions,” and “tracking intervals”. It must be 

emphasized that these terms, in reality, describe when and how to use a ground station to 

communicate with the spacecraft, and tracking data is derived from each communication. 
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Dedicated tracking schedules exist for Earth orbiters, but they do not exist for interplanetary 

spacecraft. Therefore, a mission designer will use the results of this analysis to derive a rough 

order of magnitude estimate of the communications schedule that offers the most cost-efficient 

amount of tracking data. 

Motivation 

The error in the knowledge of the spacecraft’s state is inversely correlated with the 

number of measurements taken (except in cases where the spacecraft and/or sensors behave 

unexpectedly, which is described later). Ideally, operators would prefer constant observation of 

their craft, as it would offer them extremely accurate knowledge of the spacecraft’s state when the 

spacecraft is broadcasting. However, there are two major reasons why taking constant 

measurements of a single spacecraft are undesirable for both the spacecraft operator and for the 

ground station’s management. 

 The first is mission cost. When a group uses a ground station to communicate with their 

spacecraft, it costs money to rent tracking time on that station (the exact cost is subject to change 

over time, and a specific value is not used in this thesis). For the Deep Space Network†, managed 

by NASA and one of only two networks that are able to continually monitor interplanetary 

spacecraft as the Earth rotates (the other being the European Space Tracking Network‡, 

ESTRACK, managed by the European Space Agency), the costs of reserving time can be very 

high. For many of the NewSpace companies coming to the market looking to execute 

interplanetary missions, this cost of communicating with their spacecraft may be prohibitive if a 

tracking schedule is not efficiently designed. To lower mission cost, it will be in each company’s 

                                                     
† http://deepspace.jpl.nasa.gov/; accessed 10/4/14 
‡ http://www.esa.int/Our_Activities/Operations/Estrack_tracking_stations; accessed 11/12/14 
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best interests to minimize the time they are using ground station antennas, especially if it is a 

specialized and expensive network like the DSN. 

The second is mission mix. NASA, being the owner of the DSN, is a science and 

exploration organization and will drive to support as many missions as they can in order to collect 

the most scientific data and support as many exploration activities as possible. In order to 

maximize the number of missions being supported, the DSN will seek to minimize the amount of 

time each individual mission uses the network. 

Together, these two factors drive to minimize the amount of time the DSN is used to 

track a single spacecraft. Yet, as stated earlier, the desire to have extremely accurate knowledge 

about the state of a spacecraft drives to maximize the number of observations of a spacecraft. 

Therefore, there is a trade-off between spacecraft state knowledge and mission cost/mission 

diversity, which spurs the interest in understanding methods for generating cost-efficient tracking 

solutions with sufficient performance. 

Research Goals 

The goal of this thesis is to show a process to create graphs that will allow a mission 

designer to quickly identify ways to achieve a cost-efficient tracking schedule. First, the end 

product should allow for identification of rough order of magnitude estimates of the parameters 

defining the most cost-efficient tracking solution. Second, the end product should show the 

sensitivity of the cost-efficiency of a solution to each parameter, to demonstrate to the mission 

designer which variables are most important. Third, the end product should allow the mission 

designer to estimate the robustness of the selected solution to changes in the constrained 

variables. Finally, the end product should display a wide enough range of solutions that patterns 

can be identified to guide a future search. The process in this thesis is not meant to be the final 
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step in selecting a tracking solution, and should be followed with more customizable searches 

informed by the process’ results. 

Analysis Overview 

 When a mission designer is choosing how to communicate with a spacecraft, there are 

two pieces that they must determine: the schedule that defines when communication is turned on, 

and the antenna configuration that defines which ground stations are used for receiving the 

communications signal. The combination of these two parts (the usage of a particular schedule 

with a particular antenna configuration) create what is defined in this thesis as a "tracking 

solution" for the mission. This thesis assumes there are three variables that the mission designer 

can define in their selection of a tracking solution: the total number of tracking intervals in the 

schedule, the grouping of these intervals in the schedule (which indirectly defines the lengths of 

the gaps in coverage), and the antenna configuration used (the term “antenna configuration” 

includes information about the number, size, and location of the selected antennas). 

 However, there are situations where the mission designer will be limited in their selection 

of these variables. The constraints limiting a mission designer include both hard constraints 

(when a variable must be equal to exactly one value) and soft constraints (when a variable can be 

equal to a range of values). If, for example, several antennas have already been reserved for 

another mission, and there are only a few unreserved antennas, this is a soft constraint, as the 

number of antennas used in the antenna configuration are, at maximum, all of the available 

antennas. 

 This thesis presents methods for selecting cost-efficient spacecraft tracking solutions 

under a range of different constraints. These methods are demonstrated by conducting the 

analysis required for a spacecraft on a hypothetical lunar landing mission and presenting the 
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results. Exact results are presented as examples and are be applicable to the mission used in the 

analysis. The process, however, is applicable to any interplanetary mission. 

 In the analysis, seven cases are considered, each with different constraints. For every 

case, several tracking schedules are tested in combination with several antenna configurations to 

determine which tracking solution offers the best performance. Performance is calculated as a 

function of both the average uncertainty in the estimate of the spacecraft state over the length of 

the mission and the number of observations taken of the spacecraft. These two values together 

define a solution’s “tracking efficiency,” which is a measure of the effectiveness of converting 

measurements to decreases in uncertainty in the estimate of the spacecraft state. 

Thesis Overview 

Chapter 2 presents a brief background of the topics relevant to the analysis. First, the 

tracking methods used for interplanetary spacecraft are described. It covers the theory and 

equations behind the time delay measurements used to calculate range and the Doppler tracking 

used for range rate measurements. The second section of the chapter covers the characteristics of 

the Deep Space Network. Antenna size options at each of the three DSN locations and a brief 

discussion of the relative costs of using each dish size for tracking are discussed. The third 

section of the chapter discusses the Extended Kalman Filter, the process it follows and the 

equations it uses. 

In Chapter 3, the analysis steps are outlined. First, a more detailed view of the proposed 

process is described. Second, the parameters and the design of the sample orbit to be used for the 

demonstration of the analysis are shown. Next, the set-up and functionality of Orbit 
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Determination Tool Kit (ODTK)§, the program that generates and filters the simulated tracking 

data, are covered. After that, the generation of the custom tracking schedules are discussed, 

including the definition and representation of the two variables that are used to define each 

schedule (total number of tracking intervals and number of intervals per interval set). Next, the 

antenna configurations to be tested are presented. Finally, the tracking efficiency value used to 

compare the performance of each tracking solution is described, including the equations used to 

calculate it. 

In Chapter 4, the methods for identifying cost-effective tracking solutions is shown for 

several scenarios using a representative lunar landing trajectory. Seven different cases are 

considered, each with different constraints. Mission designers will be able to use the methods 

presented in this thesis to generate rough order of magnitude estimates of cost-efficient tracking 

schedules that meet the constraints of the mission. 

Finally, in Chapter 5, conclusions are stated. Opportunities for future work and additional 

analysis are also presented, in case any researchers wish to build on the methods shown here. 

  

                                                     
§ http://www.agi.com/products/odtk/; accessed 8/26/14 
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Chapter 2  
 

Background 

In this chapter, three topics will be covered that constitute the background of the analysis 

in this thesis. First, the tracking of interplanetary spacecraft will be discussed. This will include 

the equations used by analysts to calculate the time delay and Doppler shift of the spacecraft’s 

communication signal, from which range and range rate is determined. Second, the Deep Space 

Network, one of the only two networks in the world that can provide uninterrupted 

communications with interplanetary spacecraft, will be shown. Antenna sizes, locations, and a 

rough order of magnitude cost model for time rented on the network will be discussed. Third, the 

Extended Kalman Filter will be presented. This filter is used commonly in orbit determination 

methods to process noisy tracking data and determine a spacecraft’s true state. 

Tracking of Interplanetary Spacecraft 

In order to determine the state (position and velocity) of a spacecraft, the range and range 

rate of the craft relative to the ground station is extracted from the spacecraft’s communications 

signal. These observed values, when used in combination with the expected values calculated 

with the system’s equations of motion, provide sufficient information for the orbit determination 

program to determine the spacecraft’s position and velocity vectors with respect to an Earth-

centered coordinate frame. Analysts are able to determine the range and range rate by looking at 

two properties of the spacecraft’s communications signal: the time delay and the Doppler shift. 
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Using Time Delay for Range Determination 

By measuring the time delay between when a communications signal is transmitted to the 

spacecraft and when the return signal is received by the ground station, the range between the 

spacecraft and the ground station can be computed. Most of this delay comes from the signal 

taking time to travel through space at the speed of light. There is also small contributions due to 

both atmospheric attenuation and the processing of the signal on board the spacecraft, as the 

signal takes time to be received, processed, amplified, and retransmitted. However, this 

processing time can be measured before launch and then subtracted from the measured time 

delay. 

Using the time delay, the range can be calculated using Equation ( 2.1 ), where 𝑟 is the 

range between the transmitter and the receiver, 𝑐 is the speed of light, τ is the time between the 

signal transmission and signal reception, and 𝑡𝑝 is the time delay due to the signal processing on-

board the spacecraft 

 𝑟 = 𝑐 ∗ (
τ − 𝑡𝑝

2
) ( 2.1 ) 

  

 In order to derive a value for 𝜏 from the waves of the communications signals, the Deep 

Space Network measures the phase change between the phase of the transmitter’s clock when a 

signal is transmitted and the phase of the receiver’s clock when the return signal is received. The 

calculation is shown in Equation ( 2.2 )1, where 𝑡𝑇 is the time of signal transmission, 𝑡𝑅 is the 

time of signal receipt, 𝜓𝑇(𝑡𝑇) is the phase of the transmitter’s range clock at the time of signal 

transmission. 𝜓𝑅(𝑡𝑅) is the phase of the receiver’s range clock at the time of signal receipt, 

𝑑𝜓/𝑑𝑡 is the rate of change of the signal’s phase, and τ is the time delay between signal 

transmission and receipt 



10 

 𝜓𝑇(𝑡𝑇) − 𝜓𝑅(𝑡𝑅) = ∫
𝑑𝜓

𝑑𝑡
𝑑𝑡

𝑡𝑇

𝑡𝑅−𝜏

 ( 2.2 ) 

 Upon closer inspection of Equation ( 2.2 ), it is seen that an unambiguous value of 𝜏 

cannot be found. Since a signal’s phase repeats periodically, the equation has infinite possible 

solutions for 𝜏. However, when Equation ( 2.2 ) is solved alongside the predicted state of the 

spacecraft based on past observations, an unambiguous value for range can be found. This 

process of calculating range based on past values of range is called sequential ranging. 

Using Doppler Shift for Range Rate Determination 

By measuring the Doppler shift of the spacecraft’s communication signal, the range rate 

between the spacecraft and the ground station can be found. The Doppler shift is a measurable 

effect caused by the motion of a transmitter relative to a receiver. For any object that generates a 

frequency, whether it is a sound wave or a light wave, the motion of the transmitter relative to the 

receiver causes the frequency to change slightly. If the transmitter and receiver are moving closer 

together, the measured frequency appears higher than the transmitted frequency. If the two are 

moving farther apart, the measured frequency appears lower. 

Doppler measurements for spacecraft tracking can be taken by three different methods: 

one-way, two-way and three-way2. One-way Doppler measurements are when the spacecraft 

transmits a signal at a known frequency and the ground station measures that signal to determine 

velocity. In two-way and three-way Doppler measurements, the signal originates from the ground 

station, is received and amplified by the spacecraft and retransmitted back to Earth, and the return 

signal is received by a ground station. In two-way Doppler, the same ground station that sends the 

uplink signal also receives the downlink signal. In three-way Doppler, the uplink station and 

downlink station differ. These three methods are shown graphically in Figure 2.1. Note that the 
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graphic merely shows the communication paths, and does not show the actual change in 

frequency due to the Doppler Effect. 

 

 

Figure 2.1: Graphical Representation of the Three Methods of Doppler Tracking 

 

Regardless of which of the above methods is used, the core of the Doppler shift 

calculation is the same. The transmitted frequency is known. By comparing the received 

frequency with the known transmitted frequency, the radial velocity between the ground station 

and the spacecraft can be calculated using Equation ( 2.3 ), where 𝑓0 is the transmitted frequency, 

𝑓𝑟 is the received frequency, Δ𝑣 is the radial velocity of the transmitter with respect to the 

receiver, and 𝑐 is the speed of light 

 𝑓𝑟 − 𝑓0 =
Δ𝑣

𝑐
𝑓0 ( 2.3 ) 
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Deep Space Network 

All American interplanetary spacecraft launched since 1961 have used the Deep Space 

Network (DSN), managed by NASA, for tracking and communication3. The DSN consists of 

three sites spaced evenly around the world, at intervals of approximately 120 degrees longitude. 

This arrangement allows the network to maintain uninterrupted communication with 

interplanetary spacecraft as the Earth rotates. The three sites are located in Canberra, Australia, 

Madrid, Spain, and Goldstone, California, as shown in Figure 2.2. 

 

Figure 2.2: Deep Space Network Complexes4 

 

Each of these sites has at least two 34-meter dishes and one 70-meter dish. The 34-meter 

dishes are of three different types: High-Speed Beam Waveguide (HSB), Beam Waveguide 

(BWG), and High-Efficiency (HEF). These types describe how each antenna takes measurements 

and is a function of how the antenna was constructed and the signal processing equipment it 
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contains. The specific way each of these antenna types operates are not covered in this thesis. 

However, it is important to know that there are three types of 34-meter dishes in the DSN, as the 

costing models used in this thesis are dependent on the type of antenna, both size and type. A list 

of the antennas that compose the Deep Space Network, including their sizes and types, is 

provided in Table 2.1. 

 

Table 2.1: Antennas of the Deep Space Network5,** 

Station Name Size Type 

Goldstone, California DSS-13 34-meter BWG 

DSS-14 70-meter  

DSS-15 34-meter HEF 

DSS-24 34-meter BWG 

DSS-25 34-meter BWG 

DSS-26 34-meter BWG 

DSS-27 34-meter HSB 

DSS-28 34-meter HSB 

Canberra, Australia DSS-34 34-meter BWG 

DSS-35 34-meter BWG 

DSS-43 70-meter  

DSS-45 34-meter HEF 

Madrid, Spain DSS-54 34-meter BWG 

DSS-55 34-meter BWG 

DSS-63 70-meter  

DSS-65 34-meter HEF 

 

When missions want to use the DSN communicating with their spacecraft, they are 

required to pay for usage time. As the exact cost of DSN support changes over time, a specific 

value is not used in this thesis. However, NASA has developed an algorithm that estimates the 

cost of using the DSN6, and though exact values aren’t used, the weighting scheme the algorithm 

implements to calculate the cost as a function of antenna size is used in the performance 

calculation of each solution. The algorithm is shown in Equation ( 2.4 ), where 𝐴𝐹 is the 

weighted aperature fee per hour of use (a set value defined by NASA), 𝑅𝐵 is the contact 

                                                     
** Active antennas as of November 2014 
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dependent hourly rate, 𝐴𝑊 is the aperture weighting, and 𝐹𝐶 is the number of station contacts per 

calendar week 

 𝐴𝐹 = 𝑅𝐵[𝐴𝑊(0.9 + 𝐹𝐶/10)] ( 2.4 ) 

 The aperture weighting term is designed to incentivize use of the smaller antennas. The 

value of the aperture weighting term, 𝐴𝑊, is 0.80 for 34-meter HSB stations, 1.00 for 34-meter 

BWG and HEF stations, and 4.00 for 70-meter stations6. This means time on the 70-meter dishes 

costs at least four times as much as time on any of the 34-meter dishes. This weighting scheme is 

used for calculation of the tracking efficiency, further described at the end of this chapter. When 

calculating the tracking efficiency of each tracking solution, the total number of observations 

taken is a weighted value, where observations from 70-meter dishes contribute four times as 

much as observations from 34-meter dishes. 

Extended Kalman Filter 

When communications signals are received by ground stations, the signals are inherently 

noisy. This noise can come from a variety of sources, including atmospheric effects and electrical 

noise. In order to process the noise out of the communications signals and develop spacecraft 

tracking data to determine the true state of the spacecraft, a Kalman filter is often used7. The 

Kalman filter was designed by Rudolf Kalman in the 1950’s to process noisy measurement data 

for a system with known equations of motion8. It can be characterized as an adaptive least-

squares sequential filter.  

The Kalman filter, in its most basic form, works by comparing the observed/measured 

values from sensors and tracking stations to expected values calculated from the equations of 

motion of the spacecraft. However, it contains several features that make its estimates more 



15 

accurate over time than a typical least squares filter. Arguably the most significant feature is that 

it is adaptive. The more measurements the filter processes, the more accurate its estimates 

become. With every measurement, the filter calculates the deviation between what the equations 

of motions indicate the measured value should be and what the actual measurement is. This 

deviation is also known as the residual. If there is a large residual in the measurement, that means 

that either 1) the measurement is in error, possibly because of a faulty sensor or a lot of noise, or 

2) the equations of motion or one of the constants used in the equations of motion defining the 

system is incorrect. The Kalman filter is able to store this inconsistency in a matrix that is updated 

with each new measurement. This matrix, called the covariance matrix, is stored for the length of 

the mission and acts as a sort of “memory” for the filter. It stores the calculated uncertainty of the 

filter’s estimate of the state. If a residual is measured consistently, the values in the covariance 

matrix grow, indicating there is a detected error in that value, and the filter adapts to a solution 

that better fits the data it has received. 

The extended Kalman filter operates in a similar way to the standard Kalman filter but it 

is better suited for non-linear problems9. The equations of motion of an orbit are all non-linear, so 

an extended Kalman filter should offer better results than a standard Kalman filter. The steps and 

equations in the Extended Kalman filter are shown in Figure 2.3, a flow chart sourced from 

Tapley, Schutz and Born in Ref. 9. 

In the flowchart, several variables are used. 𝑿 is a vector representing the spacecraft’s 

state (position and velocity) and �̇�(𝑡) is a vector representing the change in the spacecraft’s state 

(position and velocity). Φ is the state transition matrix, which is used to a state at one time to a 

state at a later time. 𝐴 is the equations of motion matrix, and contains equations relating the value 

of the state vector to the value of the change in state vector. 𝐴 is also used to propagate the state 

transition matrix forward in time. 𝑃 is the covariance matrix, and contains estimates of the 

inaccuracy in the filter’s prediction of each state variable. 
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The observation variables include the following. 𝒀 is a vector containing the observed 

measurement. 𝐺 is the observation function, which takes as input the reference trajectory and the 

current time value, and outputs the value of the expected measurement. 𝒚 is a vector storing the 

difference between 𝒀 and 𝐺 (the difference between the expected measurement and the observed 

measurement). 𝒚 is called the residual. 𝐻 is the observation-state matrix, which is the partial 

derivative of 𝐺 with respect to the state vector. 𝑅 is the noise matrix, and is a user-defined 

constant. It consists of the noise levels that are predicted in the observed measurement. Finally, 𝐾 

is the gain matrix, which defines how much the filter weights the residual in its predictions. 

Several notations also appear throughout the filter’s steps. An asterisk (∗) over a term 

means that it is a nominal or expected value. A caret (^) over a term means that it is an a priori 

(immediately preceding the measurement) estimate of the value. A bar (–) over a term means that 

it is an a posteriori (immediately succeeding the measurement) estimate of the value. A dot (∙) 

over a term means that it is the derivative of the value. A tilde (~) over a term is merely an 

identifier, and doesn’t indicate anything about the value. 
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Figure 2.3: Extended Kalman Filter Flowchart9
 

  

 As seen in the filter process, the state estimate 𝑿 is updated every time there is an 

observation. Assuming that the spacecraft is behaving approximately nominally, and isn’t 

deviating significantly from predictions, every observation 𝒀 causes the covariance 𝑃 to decrease. 

Intuitively, this makes sense. If an observation has been taken indicating the position and velocity 

of the spacecraft, the uncertainty is low because there is recent evidence of the spacecraft’s state. 

As time passes between observations, the uncertainty in knowledge about the spacecraft’s state 
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builds up. Again, intuitively this makes sense. As time passes without an observation, random 

errors and noise have more time to build up and affect the state, and so there should be a larger 

uncertainty. This effect is why satellite operators would prefer to have constant measurements. 

With constant measurements, there is no time for random errors and noise, and therefore the 

uncertainty, to build up. However, this can be cost prohibitive. 

On the other end of the spectrum, too few measurements can cause additional problems 

in the filter. If the measurements are very sparse, and the residuals become too large, the errors 

grow to a point where the equations of motion are unsolvable and the filter diverges. The point 

where the filter diverges is characterized by a sharp increase in the trace of the covariance matrix. 

Once the filter has diverged, new measurements do not affect the solution, and the problem 

becomes unsolvable until the filter is restarted. 

A Kalman filter, in the end, provides an estimate of the true state of the spacecraft and a 

value of the uncertainty in that estimate. This uncertainty is used in the tracking efficiency 

calculation. By using the average value of the trace of the covariance matrix over the length of the 

mission, there is a direct way to compare the performance of each test case. 
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Chapter 3  
 

Analysis 

For this analysis, the process for identifying cost-effective tracking strategies under a 

range of constraints is demonstrated for a representative lunar landing mission. First, an overview 

of the process to be demonstrated is presented. Second, the Earth-Moon trajectory constructed for 

this demonstration in Systems Tool Kit (STK)†† is shown. Third, ODTK and its ability to 

accurately simulate and filter ground measurements is discussed. Fourth, the tracking schedule 

parameters used to represent a wide range of schedule types is presented, along with examples 

that demonstrate the flexibility of this simple representation. Fifth, the antenna configurations 

used in this demonstration are shown, along with notes about additional considerations that must 

be made by mission designers when selecting their own configurations to test. Sixth, the use of 

MATLAB to automate the analysis process is discussed. Last, the tracking efficiency, a measure 

of the cost-efficiency of a tracking solution, is shown, along with equations and examples. 

Process Overview 

 The process that mission designers should follow to generate the desired end product 

consists of five main steps. First, the trajectory should be defined. In most cases, this will already 

have been done well before the analysis even begins, as that would be one of the first items 

generated in the design phase. 

 Second, the constraints in the selection of the tracking solution should be identified. For 

example, if the Deep Space Network only has time available on a limited number of antennas, 

then there would be constraints on the antenna configuration selection. Constraints should be 

                                                     
†† http://www.agi.com/products/stk/; accessed 8/10/14 
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categorized into hard constraints, where an exact value must be met, and soft constraints, where a 

range of values is acceptable. They should also be categorized by whether they affect an 

independent variable or a dependent variable, as that informs when the constraint is applied. 

 Third, the independent variables should be identified, and the range of potential values of 

those variables should be defined by the mission designer. Several discrete values from across the 

range should be selected as test cases. In order to identify patterns in the data, it is recommended 

that the values selected be fairly evenly spaced across the range.  

 Fourth, tracking solutions consisting of all combinations of these independent variable 

values must be tested in a simulator. The simulator must include a mock tracking data generator 

and an Extended Kalman Filter to process the tracking data. The goal is to calculate a realistic 

value of the performance of each tracking solution, as it would be used in operations. 

 Finally, the results of the simulation will be used to generate a measure of the cost-

efficiency of the solution. This measure allows for comparison of the performance of all of the 

potential solutions. 

 A flow chart of the process to test an individual tracking solution is shown in Figure 3.1. 

For a case where there are many potential solutions, the process shown should be repeated for 

every solution allowed by the constraints. 
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Figure 3.1: Flowchart of Overall Process
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Nominal Trajectory Generation in Systems Tool Kit 

In order to generate simulated measurements of a spacecraft, an ephemeris is required 

that provides the true state of the spacecraft over time. STK, along with the Astrogator add-on††, 

is used to generate the orbit and then the ephemeris is exported to ODTK. 

The example orbit generated for the analysis is an Earth-Moon transfer. The launch is 

from Kennedy Space Center in Florida on July 31, 2016. Immediately after launch, the spacecraft 

enters a low-inclination (~28 degrees), 300 kilometer altitude circular parking orbit. After 2.5 

orbits, it executes a trans-lunar injection (TLI) maneuver near the ascending node, which puts the 

craft into a three day cruise phase to the Moon. This mission profile is similar to that of the 

Apollo missions10. However, unlike the Apollo missions which first entered a lunar parking orbit, 

this simulated spacecraft is placed on a direct descent trajectory, which means that the spacecraft 

does not go into orbit around the Moon prior to landing. The trajectory is designed using a similar 

methodology to Carrico and Loucks in Ref. 11. The significant orbital parameters are shown in 

Table 3.1. 

All of the orbital parameters, including launch date, are selected arbitrarily and do not 

correspond to any particular mission. The goal is to generate a simple lunar transfer trajectory that 

did not incorporate any particularly unique features, so the analysis methods are applicable to a 

wide range of missions. 

 

 

 

 

 

                                                     
†† http://www.agi.com/products/stk/modules/default.aspx/id/stk-astrogator; accessed 11/24/14 
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Table 3.1: Mission Orbital Parameters 

Mission Phase Parameter Value 

Launch Epoch 31 Jul 2016 13:46:12 UTCG 

Pre-TLI Epoch 31 Jul 2016 17:52.47 UTCG 

 Semi-major axis 6677.383 km 

 Eccentricity 0.00181 

 Inclination 28.111 deg 

 Right ascension of the ascending note 346.804 deg 

 Argument of periapsis 322.285 deg 

 True anomaly 18.202 deg 

TLI Delta-V 3.1396 km/s (impulsive) 

Post-TLI Epoch 31 Jul 2016 17:52:47 UTCG 

 Semi-major axis 321571.03 km 

 Eccentricity 0.9793 

 Inclination 28.111 deg 

 Right ascension of the ascending note 346.808 deg 

 Argument of periapsis 340.42 deg 

 True anomaly 0.0652 deg 

Landing Epoch 3 Aug 2016 09:32:06 UTCG 

(stopped on lunar impact) 

 

Measurement Simulation in Orbit Determination Tool Kit 

Orbit Determination Tool Kit (ODTK) is the software used in this thesis to simulate each 

potential tracking solution. Though STK is very capable at designing trajectories, its ability to 

accurately simulate measurements is not as developed as those in Orbit Determination Tool Kit 

(ODTK). 

A useful feature of the program for this analysis is the ODTK Facility Database. This 

digital repository of hundreds of different ground stations from around the world, including those 

of the Deep Space Network, includes information about the properties and restrictions of each 

station. Allowable measurement types, noise levels, drift rates, minimum and maximum slew 

rates and elevations for tracking are all examples of properties included in a ground station’s file. 

ODTK uses these values when it is simulating measurements from a ground station in order to 
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generate accurate simulations of tracking data from that station. For example, when simulated 

measurements are generated using a ground station object in ODTK, measurements that are 

outside the capabilities of the antennas (for example, the spacecraft is below the station’s 

minimum elevation or traveling faster across the sky than the antenna can slew) are not created. 

After the simulated tracking data is generated, it is processed through an ODTK filter. 

The ODTK filter is based on an Extended Kalman Filter12. Several parameters of the filter are 

user defined, including the initial values for the uncertainty in each element of the orbit’s state. 

As these initial values affect the final results of the thesis, their values are presented here. The 

values used are the default values for new “Satellite” objects in ODTK and are shown in Table 

3.2. As with the orbital parameters, the uncertainties are selected arbitrarily and do not 

correspond to any particular mission. 

 

Table 3.2: Initial Position and Velocity Uncertainties (1σ) 

Variable Value 

Radial Position Uncertainty 50 m 

In-Track Position Uncertainty 100 m 

Cross-Track Position Uncertainty 20 m 

Radial Velocity Uncertainty 0.06 m/s 

In-Track Velocity Uncertainty 0.04 m/s 

Cross-Track Velocity Uncertainty 0.02 m/s 

 

Generation of Custom Tracking Schedules 

 To generate a custom tracking schedule, two parameters are used in this thesis to define 

the properties of the schedule: the total number of tracking intervals and number of intervals per 

interval set. These two variables are defined below. Examples of different tracking schedules are 

also presented to show how the values of the variables affect the structure of the schedule. Recall 
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that for interplanetary spacecraft, tracking data is extracted from the spacecraft’s communications 

signal, and dedicated tracking passes do not exist. Though this thesis uses the terminology 

“tracking schedule”, in reality they are communications schedules. 

Tracking Schedule Parameters 

 To facilitate the discussion of the analysis, several terms are now defined. The term 

“tracking interval” is defined as a period of time the length of a single observation during which 

tracking is turned on. For any individual station taking observations of a satellite, it takes exactly 

one observation per tracking interval. Note that this does not mean that there is only one 

observation per tracking interval. The number of observations taken per tracking interval is a 

function of the number of antennas that have a view of the satellite at that time. If a satellite is in 

the view of three antennas during one tracking interval, and all three antennas are being used for 

tracking, then three observations are taken (one per antenna). 

 The term “interval set” is defined as a group of tracking intervals. As an example, a two-

interval tracking set is an interval that is two measurements in length. Each custom tracking 

schedule consists of a number of tracking sets that are equally spaced in time across the entire 

mission. 

 The term “gap in coverage” is defined as a period of time between any two consecutive 

interval sets. When a custom tracking schedule is being generated, MATLAB calculates the 

length of the gaps in coverage in such a way that all of the gaps are the same length. This 

calculation is shown in the next section. 
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Tracking Schedule Calculations 

 Using the selected tracking schedule parameters, several other variables defining the 

schedule are calculated using Equations ( 3.1 ) through ( 3.4 ). In all of the equations, 

numIntervals is the total number of tracking intervals, numSets is the total number of interval 

sets, numGaps is the total number of gaps in coverage, timePerInterval is the time per tracking 

interval, timePerGap is the time per gap in coverage, timePerSet is the time per interval set, 

numIntervalsPerSet is the number of intervals per interval set, and totalMissionLength is the total 

length of the mission (for the sample scenario to be analyzed in this thesis, totalMissionLength is 

equal to 229159 seconds) 

 numSets =
numIntervals

numIntervalsPerSet
 ( 3.1 ) 

 numGaps = numSets − 1 ( 3.2 ) 

 timePerSet =  timePerInterval × numIntervalsPerSet ( 3.3 ) 

 timePerGap =
totalMissionLength − numIntervals × timePerInterval

numGaps
 ( 3.4 ) 

 

Tracking Schedule Examples 

 Several examples of tracking schedules based on various parameters are shown 

graphically in Figure 3.2. In each schedule, a gray rectangle corresponds to a tracking interval, 

and the parameters defining the schedule are shown on the right hand side. In this figure, it is seen 

how the values of the tracking schedule parameters affect the structure of the generated tracking 
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schedule, and how the gaps in coverage are calculated in such a way that the interval sets are 

equally spaced across the mission length. 

 

Figure 3.2: Examples of Custom Tracking Schedules 

 

 Several parameters are the same across all the tracking schedules. Each observation, and 

therefore each tracking interval, is arbitrarily defined as taking 10 seconds. Every schedule starts 

at time 0 s, which corresponds to immediately after TLI, and ends at time 229159 s, which 

corresponds to the lunar landing at the end of the mission. For any observation, there are no 

restrictions to which antennas can track the spacecraft for that individual observation. Allowable 

measurement types are sequential ranging, two-way Doppler and three-way Doppler. 

Range of Values for Tracking Parameters 

 For the demonstration, ten different values of the total number of tracking intervals and 

eight different values for number of intervals per set are used. All of the test cases are shown in 

matrix form in Figure 3.3. Every dot in the chart indicates a separate tracking schedule. The rows 
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indicate the total number of tracking intervals combinations and the columns indicate the number 

of intervals per set. 

 

Figure 3.3: Range of Tracking Schedules Tested 

 

 For this demonstration, multiples of 24 are chosen for the total number of tracking 

periods because they are evenly divisible by several denominators. This allows many different 

options for number of intervals per set, and therefore allows for numerous tracking schedule 

structures to be tested. 

Antenna Configurations 

Five different antenna configurations are tested in the analysis. All of them are 

“symmetric” configurations, which is defined in this thesis as configurations where the same 

number and type of antennas are being used at each of the DSN sites (e.g. one 34-meter dish and 
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one 70-meter dish per site). The five configurations that are tested are shown visually in Table 

3.3. A dot in a cell means that the antenna of that column is turned on and used for tracking when 

testing the configuration of that row. 

Table 3.3: Antenna Configurations for Analysis 

 

 

 When a mission designer is choosing antenna configurations to test when identifying 

cost-effective tracking solutions, they will be able to choose whichever configurations they are 

the most likely to use. For this analysis, several were chosen arbitrarily as example cases. 

 “Asymmetric” antenna configurations, where the number and type of antennas used are 

not the same at each location, are not used in this analysis. They can be tested if desired, though 

care must be taken to ensure that the results of any of the asymmetric cases are not over 

generalized. If an asymmetric configuration were used for the trajectory in this thesis, the effect 

of selecting any particular site as the “odd one out” would be minimal. However, this is not 

always the case. For a highly inclined orbit, for example, the satellite may never be in view of 

some of the stations (e.g. a lunar transfer orbit departing over the North Pole means that the 

satellite does not have contact with Canberra, in the Southern Hemisphere, during the first part of 

its transfer). The mission designer should use their knowledge of the orbit to ensure that results of 
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one tested antenna configuration are not considered to be relevant for antenna configurations that 

appear to have a similar layout. 

Process Automation with MATLAB 

The majority of the analysis is automated with MATLAB. For every test case, after the 

STK ephemeris is built, MATLAB begins by generating and setting up an ODTK scenario. First, 

all of the DSN antennas in the test case’s antenna configuration are imported into the scenario as 

tracking objects from the ODTK Facility Database. Next, a satellite object is created and added to 

the scenario. The satellite object’s ephemeris is set to the ephemeris generated earlier in STK and 

the orbit uncertainty is set to the values in Table 3.2. A simulator object is then created and added 

to the scenario for each satellite. A custom tracking schedule is then generated in MATLAB that 

has the parameters of that test case (defined values for total number of tracking intervals and the 

number of intervals per set), and the schedule is paired with the simulator object. This ensures 

that simulated measurements follow that test case’s custom tracking schedule. Finally, a filter 

object is created and added to the scenario. It processes the simulated measurements to calculate 

estimates of the spacecraft’s state over the length of the mission. 

 After the simulator and filter are run, the results are exported from ODTK and processed 

in MATLAB. The number of observations taken by each facility are stored in a data file and 

processed to calculate a weighted observation count for that tracking solution (further described 

below). The results of the filter are also stored in a data file and then processed. The average 

values for each state variable’s uncertainty over the length of the mission are calculated. Both the 

weighted measurement count and the average uncertainty are used in calculating the value of the 

tracking efficiency for each tracking solution. 
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Tracking Efficiency 

 In order to directly compare test cases, a value is created and named the “tracking 

efficiency”. The tracking efficiency value combines a tracking solution’s average state 

uncertainty and number of measurements taken of the spacecraft into one value and is a measure 

of the cost-effectiveness of the tracking schedule. A higher tracking efficiency indicates a 

tracking solution that achieved good performance (a lower average uncertainty) with less 

observations. A lower tracking efficiency indicates a tracking solution that achieved poor 

performance (a higher average uncertainty) with more observations. The higher the tracking 

efficiency for a tracking solution, the more efficiently the observations are used in estimating the 

spacecraft state, and the more cost-efficient the tracking solution is. 

 The uncertainty in the orbital state is quantified using the trace of the covariance matrix 

(as seen in the Extended Kalman Filter section defined as 𝑃). The covariance matrix for the 

orbital state is defined shown in Equation ( 3.5 ), where 𝑃𝑗,𝑘 is the covariance of 𝑗 with respect to 

𝑘, 𝑅, 𝐼 and 𝐶 are the radial, in-track, and cross-track positions, and �̇�, 𝐼̇, and �̇� are the radial, in-

track, and cross-track velocities 

 P =  

[
 
 
 
 
 
 
𝑃𝑅,𝑅 𝑃𝑅,𝐼 𝑃𝑅,𝐶 𝑃𝑅,�̇� 𝑃𝑅,𝐼̇ 𝑃𝑅,�̇�

𝑃𝐼,𝑅 𝑃𝐼,𝐼 𝑃𝐼,𝐶 𝑃𝐼,�̇� 𝑃𝐼,𝐼̇ 𝑃𝐼,�̇�

𝑃𝐶,𝑅 𝑃𝐶,𝐼 𝑃𝐶,𝐶 𝑃𝐶,�̇� 𝑃𝐶,𝐼̇ 𝑃𝐶,�̇�

𝑃�̇�,𝑅 𝑃�̇�,𝐼 𝑃�̇�,𝐶 𝑃�̇�,�̇� 𝑃�̇�,𝐼̇ 𝑃�̇�,�̇�

𝑃𝐼̇,𝑅 𝑃𝐼̇,𝐼 𝑃𝐼̇,𝐶 𝑃𝐼̇,�̇� 𝑃𝐼̇,𝐼̇ 𝑃𝐼̇,�̇�

𝑃�̇�,𝑅 𝑃�̇�,𝐼 𝑃�̇�,𝐶 𝑃�̇�,�̇� 𝑃�̇�,𝐼̇ 𝑃�̇�,�̇�]
 
 
 
 
 
 

 ( 3.5 ) 

 

 The trace of the covariance matrix is calculated with Equation ( 3.6 ) 

 tr(P) =  𝑃𝑅,𝑅 + 𝑃𝐼,𝐼 + 𝑃𝐶,𝐶 + 𝑃�̇�,�̇� + 𝑃𝐼̇,𝐼̇ + 𝑃�̇�,�̇�  ( 3.6 ) 
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 As opposed to using the uncertainty in any one component of the state vector to 

determine the performance of a tracking solution, the trace of the covariance matrix provides a 

more holistic measure of the uncertainty in the Kalman filter’s estimation of the spacecraft state. 

 The second part of the tracking efficiency calculation, the total number of observations 

taken of the spacecraft, is a weighted calculation based on antenna size using the weighting 

scheme discussed in the Deep Space Network section of Chapter 2. Observations taken with 70-

meter dishes contribute four times as much as observations taken with 34-meter dishes. This 

calculation is shown in Equation ( 3.7 ), where numObsWeighted is the weighted observation 

count, numObs34−meter is the number of observations taken by 34-meter dishes, and 

numObs70−meter is the number of observations taken by 70-meter dishes 

 𝑛𝑢𝑚𝑂𝑏𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑛𝑢𝑚𝑂𝑏𝑠34𝑚𝑒𝑡𝑒𝑟 + 4 ∗ 𝑛𝑢𝑚𝑂𝑏𝑠70𝑚𝑒𝑡𝑒𝑟 ( 3.7 ) 

 

 Using both of the values calculated above, the tracking efficiency is calculated using 

Equation ( 3.8 ) 

 

 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
1

𝑛𝑢𝑚𝑂𝑏𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ∗ 𝑡𝑟(𝑃)𝑎𝑣𝑒
 ( 3.8 ) 

 

 The tracking efficiency is defined as a function of a product of the two values so that 

neither value is “overpowering” in the calculation, as could happen if it was defined as a sum. 
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Chapter 4  
 

Results 

For the analysis, processes for identifying cost-efficient tracking solutions for a number 

of cases with particular constraints are shown for a representative Earth-Moon trajectory. As only 

one orbit is analyzed in this thesis, the specific results presented are not generalizable. However, 

the processes to identify cost-efficient solutions are applicable to any mission profile. 

The process is shown for seven cases, each with different constraints. Case 1 covers when 

the total amount of tracking time is defined. Case 2 discusses when the number of intervals per 

set is defined. In Case 3, the antenna configuration is defined. Case 4 demonstrates the process 

when nothing is defined and there are no constraints. Case 5 covers when there is a defined 

maximum covariance. Case 6 shows how to select the best tracking solution when there is a 

defined maximum tracking cost. Finally, Case 7 considers a defined maximum length of the gaps 

in coverage. 

Case 1: Defined Total Amount of Tracking Time 

This case discusses the process for a scenario where the total amount of tracking time is 

defined. Therefore, this case is an optimization problem across two variables (number of intervals 

per set and antenna configuration) with one hard constraint (the total amount of tracking time). 

Each tracking interval has a duration of 10 seconds. In this analysis, the total amount of tracking 

time for each solution is set equal to 10 times the weighted number of observations. 
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Process to Identify Most Cost-Efficient Solution 

 Ten different examples of this case are presented, one for each amount of total tracking 

time considered in this thesis. The first example is for a total tracking time of 2400 seconds. 

Tracking simulations for every potential tracking solution using this tracking time are run. As 

there are five different antenna configurations and eight different values for intervals per set that 

can be used with the tracking time, forty different solutions must be tested. Then, the tracking 

efficiency of all the potential solutions are compared. 

 The results here must be shown three-dimensionally. For the easiest readability, heat 

maps are chosen to display the three-dimensional results. The results of this first example are 

presented in Figure 4.1. 
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Figure 4.1: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 2400 s 

 

Each section of the heat map corresponds to a different potential solution. For this case, 

each column corresponds to an antenna configuration, and each row corresponds to a number of 

intervals per set. The color of each section corresponds to the tracking efficiency achieved. The 

most cost-efficient tracking solution can be identified by selecting the section with the highest 

tracking efficiency. For this particular trajectory and total tracking time, the solution using 

Antenna Configuration 5 and grouping the intervals in sets of 1 offers the highest tracking 

efficiency. 
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 The second example is for a tracking schedule with 4800 seconds of total tracking time. 

The process for this example is the same as the process for the first. There are again forty possible 

solutions, and the section with the highest tracking efficiency is selected. The results for this 

example are presented in Figure 4.2. For this particular trajectory and total tracking time, the 

solution using Antenna Configuration 5 and grouping the intervals in sets of 1 offers the highest 

tracking efficiency. 

 

Figure 4.2: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 4800 s 
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 The third example is for a tracking schedule with 7200 seconds of total tracking time. 

The results for this example are presented in Figure 4.3. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 1 

offers the highest tracking efficiency. 

 

 

Figure 4.3: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 7200 s 
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 The fourth example is for a tracking schedule with 9600 seconds of total tracking time. 

The results for this example are presented in Figure 4.4. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 1 

offers the highest tracking efficiency. 

 

 

Figure 4.4: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 9600 s 
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 The fifth example is for a tracking schedule with 12000 seconds of total tracking time. 

The results for this example are presented in Figure 4.5. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 2 

offers the highest tracking efficiency. 

 

 

Figure 4.5: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 12000 s 
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 The sixth example is for a tracking schedule with 14400 seconds of total tracking time. 

The results for this example are presented in Figure 4.6. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 1 

offers the highest tracking efficiency. 

 

 

Figure 4.6: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 14400 s 
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 The seventh example is for a tracking schedule with 16800 seconds of total tracking time. 

The results for this example are presented in Figure 4.7. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 1 

offers the highest tracking efficiency. 

 

 

Figure 4.7: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 16800 s 
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 The eighth example is for a tracking schedule with 19200 seconds of total tracking time. 

The results for this example are presented in Figure 4.8. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 4 

offers the highest tracking efficiency. 

 

 

Figure 4.8: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 19200 s 
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 The ninth example is for a tracking schedule with 21600 seconds of total tracking time. 

The results for this example are presented in Figure 4.9. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 1 

offers the highest tracking efficiency. 

 

 

Figure 4.9: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 21600 s 
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 The tenth example is for a tracking schedule with 24000 seconds of total tracking time. 

The results for this example are presented in Figure 4.10. For this particular trajectory and total 

tracking time, the solution using Antenna Configuration 5 and grouping the intervals in sets of 1 

offers the highest tracking efficiency. 

 

 

Figure 4.10: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set for Total 

Tracking Time of 24000 s 
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Sensitivity of Solution to Variables 

The plots shown in the above examples provide much more information than just the 

most cost-efficient solution. The heat map format allows the mission designer to quickly view the 

sensitivity of the tracking efficiency to the independent variables. Each section on a plot 

represents a solution that is the combination of one constant and two variables. If the mission 

designer is restricted in his selection of a tracking solution and they are only allowed to select and 

define one of the two independent variables, they can look at the plot to determine which of the 

two variables is more important to cost-efficiency. 

For this sample trajectory, and a total tracking time of 24000 seconds, the most cost-

efficient solution uses Antenna Configuration 5 and intervals grouped in sets of 1. To determine 

the sensitivity of the cost-efficiency relative to each of the independent variables, the average 

performance of each column can be compared to the average performance of each row. The 

dimension with the higher average performance represents the variable to which the cost-

efficiency is most sensitive. As can be seen in Figure 4.10, the average tracking efficiency across 

the solutions in the “Antenna Configuration 5” column is higher than the average across the 

solutions in the “1 Interval per Set” row. If a mission designer must decide between two 

solutions: one using Antenna Configuration 5 and not 1 interval per set, or one using 1 interval 

per set and not Antenna Configuration 5, they can look at the results and determine that, for a 

constant tracking time, the tracking efficiency is most strongly related to the antenna 

configuration. The designer should select the option using Antenna Configuration 5. 
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Robustness of Solution 

 Another analysis can be done using the results of the examples above to estimate the 

robustness of the selected solution. All of the figures above display the performance of all the 

possible solutions for each fixed amount of total tracking time. However, there may be cases 

where the exact amount of total tracking time is still defined, but it is subject to change. If a 

mission designer wants to select a tracking solution that is robust to changes in the defined 

amount of total tracking time, they can average the results of each of the individual total tracking 

time cases and identify the option with the best average performance. 

 For this sample trajectory, the results of this calculation are presented in Figure 4.11. The 

solution that is most robust to changes in the total tracking time is found by selecting the section 

with the highest average tracking efficiency across all the cases. In this case, the most robust 

solution uses Antenna Configuration 5 with intervals grouped in sets of 1. 
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Figure 4.11: Tracking Efficiency vs. Antenna Configuration vs. Intervals per Set Averaged 

Across All Total Tracking Times 

Summary 

 In summary, in the event that a total amount of tracking time is defined, mission 

designers can select the most cost-efficient tracking solution by testing all the possible solutions 

with that total tracking time. For this example, there are five antenna configurations and eight 

values for intervals per set, so there are forty solutions to test. However, a mission designer can 

select as many options for each of these variables as desired. The most cost-efficient tracking 

solution of the choices tested is the option with the highest tracking efficiency value. 
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 In the event that the mission designer desires to use a different solution than the most 

cost-efficient option, they can look at the relative performance of all the solutions for a defined 

total tracking time to identify patterns that allow them to make cost-efficient decisions. For this 

example, it is seen from the results that the cost of using more than one 34-meter antenna per site 

is generally not worth the extra accuracy if selecting based on cost-efficiency. Additionally, for 

most of the tracking times tested, evenly spacing the tracking intervals across the length of the 

mission offers the most cost-efficient solution. A mission designer generating a tracking schedule 

for this mission would be able to see that, if they decided to deviate from the most cost-efficient 

solution, they will achieve the best performance on average by using Antenna Configuration 5 

and/or intervals in sets of 1. 

Case 2: Defined Number of Intervals per Set 

This case discusses the process for a scenario where the number of intervals per set is 

defined. Therefore, this case is an optimization problem across two variables (total number of 

tracking intervals and antenna configuration) with one hard constraint (number of intervals per 

set). 

Process to Identify Most Cost-Efficient Solution 

 Eight different examples of this case are presented, one for each of the possible number 

of intervals per set considered in this thesis. The first example is using 1 interval per set. Tracking 

simulations for every potential tracking solution using this number of intervals per set are run. As 

there are ten different values for total number of tracking intervals and five different values for 

antenna configuration that can be used with the number of intervals per set, fifty different 
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solutions must be tested. Then, the tracking efficiency of all the potential solutions are compared. 

The results of this example are presented in Figure 4.12. 

 As in Case 1, the results must be shown three-dimensionally, and heat maps are again 

used. Each section of the heat map corresponds to a different potential solution. For this case, 

however, each row corresponds to a total number of tracking intervals, and each column 

corresponds to an antenna configuration. The color of each section corresponds to the tracking 

efficiency achieved. The most cost-efficient tracking solution can be identified by selecting the 

section with the highest tracking efficiency. For this particular trajectory and number of intervals 

per set, the solution using Antenna Configuration 5 and 240 total tracking periods offers the 

highest tracking efficiency. 
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Figure 4.12: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 1 
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 The second example is using 2 intervals per set. The process for this example is the same 

as the process for the first. There are again fifty possible solutions, and the section with the 

highest tracking efficiency is selected. The results for this example are presented in Figure 4.13. 

For this particular trajectory and number of intervals per set, the solution using Antenna 

Configuration 5 and 240 total tracking periods offers the highest tracking efficiency. 

 

 

Figure 4.13: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 2 
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 The third example is using 3 intervals per set. The results for this example are presented 

in Figure 4.14. For this particular trajectory and number of intervals per set, the solution using 

Antenna Configuration 5 and 240 total tracking periods offers the highest tracking efficiency. 

 

 

Figure 4.14: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 3 
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 The fourth example is using 4 intervals per set. The results for this example are presented 

in Figure 4.15. For this particular trajectory and number of intervals per set, the solution using 

Antenna Configuration 5 and 240 total tracking periods offers the highest tracking efficiency. 

 

 

Figure 4.15: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 4 
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 The fifth example is using 6 intervals per set. The results for this example are presented 

in Figure 4.16. For this particular trajectory and number of intervals per set, the solution using 

Antenna Configuration 5 and 240 total tracking periods offers the highest tracking efficiency. 

 

 

Figure 4.16: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 6 
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 The sixth example is using 8 intervals per set. The results for this example are presented 

in Figure 4.17. For this particular trajectory and number of intervals per set, the solution using 

Antenna Configuration 5 and 240 total tracking periods offers the highest tracking efficiency. 

 

 

Figure 4.17: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 8 
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 The seventh example is using 12 intervals per set. The results for this example are 

presented in Figure 4.18. For this particular trajectory and number of intervals per set, the 

solution using Antenna Configuration 5 and 240 total tracking periods offers the highest tracking 

efficiency. 

 

 

Figure 4.18: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 12 
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 The eighth example is using 24 intervals per set. The results for this example are 

presented in Figure 4.19. For this particular trajectory and number of intervals per set, the 

solution using Antenna Configuration 5 and 480 total tracking periods offers the highest tracking 

efficiency. 

 

 

Figure 4.19: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals for Intervals in Sets of 24 
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Sensitivity of Solution to Variables 

For this sample trajectory, and intervals grouped in sets of 8, the most cost-efficient 

solution uses Antenna Configuration 5 and 240 total tracking intervals. To determine the 

sensitivity of the cost-efficiency relative to each of the independent variables, the average 

performance of each column can be compared to the average performance of each row. The 

dimension with the higher average performance represents the variable to which the cost-

efficiency is most sensitive. As can be seen in Figure 4.17, the average tracking efficiency across 

the solutions in the “Antenna Configuration 5” column is higher than the average across the 

solutions in the “240 Total Tracking Intervals” row. If a mission designer is forced to decide 

between two solutions: one using Antenna Configuration 5 and not 240 total tracking intervals, or 

one using 240 total tracking intervals and not Antenna Configuration 5, they can look at the 

results and determine that, for a constant number of intervals per set, the tracking efficiency is 

most strongly related to the antenna configuration. The designer should select the option using 

Antenna Configuration 5. 

Robustness of Solution 

 Another analysis can be done using the results of the examples above to estimate the 

robustness of the selected solution. All of the figures above display the performance of all the 

possible solutions for each fixed value for number of intervals per set. However, there may be 

cases where the number of intervals per set is still defined, but it is subject to change. If a mission 

designer wants to select a tracking solution that is robust to changes in the defined number of 

intervals per set, they can average the results of each of the individual number of intervals per set 

cases and identify the option with the best average performance. 
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 For this sample trajectory, the results of this calculation are presented in Figure 4.20. The 

solution that is most robust to changes in the number of intervals per set is found by selecting the 

section with the highest average tracking efficiency across all the cases. In this case, the most 

robust solution across all potential numbers of intervals per set uses 240 total intervals and 

Antenna Configuration 5. 

 

 

Figure 4.20: Tracking Efficiency vs. Antenna Configuration vs. Number of Tracking 

Intervals Averaged Across All Numbers of Intervals per Set 
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Differences Across Presented Examples 

A mission designer may also be able to derive strategies for selecting cost-effective 

tracking solutions by comparing the most efficient strategy for each example. If the most cost-

effective solution is the same for all the examples, it may imply that cost-efficiency is not a 

function of the fixed variable. However, if the most cost-effective solution differs across the 

example, it may imply that cost-efficiency is a function of the fixed variable. A summary of the 

results of all eight examples tested in this case is shown in Table 4.1.  

 

Table 4.1: Most Cost-Efficient Solution for All Tested Intervals per Set 

Intervals 

per Set 

Antenna 

Configuration 

Total Number of 

Tracking Intervals 

1 5 240 

2 5 240 

3 5 240 

4 5 240 

6 5 240 

8 5 240 

12 5 240 

24 5 480 

 

 The most significant thing to note is that the most cost efficient tracking solution for each 

defined number of intervals per set is the same for 7 of the 8 options. When holding the grouping 

of the intervals constant, the most cost-efficient option for total number of tracking intervals is 

generally the same. Since the solution does not change as a function of the number of intervals 

per set, it first appears that the grouping of the intervals does not significantly affect the 

performance of a given tracking solution. 

 However, the most cost-efficient solution for 24 intervals per set differs from the rest, 

with 480 tracking intervals being the best option as opposed to 240 tracking intervals. It is 

hypothesized that this is related to the length of the gaps in coverage in the schedules. For a 
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defined number of intervals per set, as the total number of intervals decreases, the number of sets 

decreases as well. Less tracking sets corresponds to longer gaps in coverage. With 240 tracking 

intervals grouped in sets of 24, there are 10 sets evenly spaced across the mission. With 480 

tracking intervals grouped in sets of 24, there are 20 sets. Though it is not proven in this analysis, 

it is suspected that the decrease in uncertainty due to having 20 sets (versus 10 sets) evenly 

spaced across the mission is significant enough that it justifies the cost of the 240 extra tracking 

intervals required. 

 The existence of the discrepancy in the most cost-efficient total number of tracking 

periods for 24 intervals per sets indicates that the grouping of intervals may, in fact, affect the 

performance of a given tracking solution. This is further indicated by the fact that the solutions 

for the other seven values of intervals per set use the minimum tested value of total number of 

intervals. This may indicate that the tested values of total number of intervals did not go low 

enough to show the effect on cost-efficiency of changing the value of intervals per set. As the 

tested total numbers of tracking intervals were selected arbitrarily, so this is possible. 

 As the total number of intervals was not tested lower than 240, this hypothesis cannot be 

proven using the data collected. Additionally, there are not enough data points to definitively 

show a trend in the cost efficiencies. In order to test this hypothesis, the analysis in this thesis 

would have to be re-run for lower numbers of tracking intervals. 

Additional Considerations for Mission Designer 

 This case highlights a weakness of the method outlined in this thesis. Some patterns and 

trends that are important to the mission designer may not be visible if too narrow of a range is 

used for the tested values of a variable. On the other hand, however, testing too wide of a range 

may take a very long time. As this method is meant to offer the mission designer a relatively 
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quick rough order of magnitude estimate of the schedule requirements, it may not be worth the 

time to run a long, intensive analysis. It is recommended that a mission designer arbitrarily select 

a moderately wide range of values to test, and if a potential pattern is seen towards one edge of 

the range, the range can be expanded and retested as necessary. 

Summary 

 In summary, in the event that a number of intervals per set is defined, mission designers 

can select the most cost-efficient tracking solution by testing all the possible solutions with that 

number of intervals per set. For this example, there are five antenna configurations and ten values 

for total number of tracking intervals, so there are fifty solutions to test. However, a mission 

designer can select as many options for each of these variables as desired. The most cost-efficient 

tracking solution of the choices tested is the option with the highest tracking efficiency value. 

 In the event that the mission designer desires to use a different solution than the most 

cost-efficient option, they can look at the relative performance of all the solutions for a defined 

number of intervals per set to identify patterns that allow them to make cost-efficient decisions. 

For this example, it is seen from the results that the cost of using more than one 34-meter antenna 

per site is generally not worth the extra accuracy if selecting based on cost-efficiency. 

Additionally, for most of the values of intervals per set tested, it appears that there is a minimum 

number of total tracking solutions that offers the optimum trade-off between tracking cost and 

achieved accuracy. A mission designer generating a tracking schedule for this mission would be 

able to see that, if they decided to deviate from the most cost-efficient solution, they will achieve 

the best performance on average by using Antenna Configuration 5 and/or 240 total tracking 

intervals. 
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Case 3: Defined Antenna Configuration 

This case discusses the process for a scenario where the antenna configuration is defined. 

Therefore, this case is an optimization problem across two variables (total number of tracking 

intervals and number of intervals per set) with one hard constraint (antenna configuration). 

Process to Identify Most Cost-Efficient Solution 

 Five different examples of this case are presented, one for each of the possible antenna 

configurations considered in this thesis. The first example is using Antenna Configuration 1. 

Tracking simulations for every potential tracking solution using this antenna configuration are 

run. As there are ten different values for total number of tracking intervals and eight different 

values for intervals per set that can be used with the antenna configuration, eighty different 

solutions must be tested. Then, the tracking efficiency of all the potential solutions are compared. 

As in Case 1, the results must be shown three-dimensionally, and heat maps are again used. The 

results of this example are presented in Figure 4.21. 

As in the charts in Case 1, each section of the heat map corresponds to a different 

potential solution. For this case, however, each row corresponds to a total number of tracking 

intervals, and each column corresponds to a number of intervals per set. The color of each section 

corresponds to the tracking efficiency achieved. The most cost-efficient tracking solution can be 

identified by selecting the section with the highest tracking efficiency. For this particular 

trajectory and antenna configuration, the solution using 240 intervals grouping the intervals in 

sets of 1 offers the highest tracking efficiency. 
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Figure 4.21: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of Intervals 

per Set for Antenna Configuration 1 
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The second example is using Antenna Configuration 2. The process for this example is 

the same as the process for the first. There are again eighty possible solutions tested, their results 

plotted, and then the section with the highest tracking efficiency is selected. The results are 

presented in Figure 4.22. For this particular trajectory and antenna configuration, the solution 

using 240 total tracking periods grouped in sets of 1 offers the highest tracking efficiency. 

 

 

Figure 4.22: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of Intervals 

per Set for Antenna Configuration 2 
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The third example is using Antenna Configuration 3. The results are presented in Figure 

4.23. For this particular trajectory and antenna configuration, the solution using 240 total tracking 

periods grouped in sets of 1 offers the highest tracking efficiency. 

 

 

Figure 4.23: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of Intervals 

per Set for Antenna Configuration 3 
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The fourth example is using Antenna Configuration 4. The results of this example are 

presented in Figure 4.24. For this example, the solution using 240 total tracking periods grouped 

in sets of 2 offers the highest tracking efficiency. 

 

 

Figure 4.24: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of Intervals 

per Set for Antenna Configuration 4 
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The fifth example is using Antenna Configuration 5. The results are presented in Figure 

4.25. For this particular trajectory and antenna configuration, the solution using 240 total tracking 

periods grouped in sets of 1 offers the highest tracking efficiency. 

 

 

Figure 4.25: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of Intervals 

per Set for Antenna Configuration 5 
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Sensitivity of Solution to Variables 

For this sample trajectory, and Antenna Configuration 3, the most cost-efficient solution 

uses 240 total tracking intervals grouped in sets of 1. To determine the sensitivity of the cost-

efficiency relative to each of the independent variables, the average performance of each column 

can be compared to the average performance of each row. The dimension with the higher average 

performance represents the variable to which the cost-efficiency is most sensitive. As can be seen 

in Figure 4.23, the average tracking efficiency across the solutions in the “240 Total Tracking 

Intervals” row is higher than the average across the solutions in the “1 Interval per Set” column. 

If a mission designer is forced to decide between two solutions: one using 240 total tracking 

intervals and not 1 interval per set, or one using 1 interval per set and not 240 total tracking 

intervals, they can look at the results and determine that, for a constant antenna configuration, the 

tracking efficiency is most strongly related to the number of tracking intervals. The designer 

should select the option using 240 tracking intervals. 

Robustness of Solution 

 Another analysis can be done using the results of the examples above to estimate the 

robustness of the selected solution. All of the figures above display the performance of all the 

possible solutions for each fixed antenna configuration. However, there may be cases where the 

antenna configuration is still defined, but it is subject to change. If a mission designer wants to 

select a tracking solution that is robust to changes in the antenna configuration, they can average 

the results of each of the individual antenna configuration cases and identify the option with the 

best average performance. 
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 For this sample trajectory, the results of this calculation are presented in Figure 4.26. The 

solution that is most robust to changes in the antenna configuration is found by selecting the 

section with the highest average tracking efficiency across all the cases. In this case, the most 

robust solution uses 240 tracking intervals grouped in sets of 1. 

 

 

Figure 4.26: Tracking Efficiency vs. Number of Tracking Intervals vs. Number of Intervals 

per Set Averaged Across All Antenna Configurations 
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Summary 

 In summary, in the event that the antenna configuration is defined, mission designers can 

select the most cost-efficient tracking solution by testing all the possible solutions with that 

configuration. For this example, there are eight values for intervals per set and ten values for total 

number of tracking intervals, so there are eighty solutions to test. However, a mission designer 

can select as many options for each of these variables as desired. The most cost-efficient tracking 

solution of the choices tested is the option with the highest tracking efficiency value.  

 In the event that the mission designer desires to use a different solution than the most 

cost-efficient option, they can look at the relative performance of all the solutions for a defined 

number of intervals per set to identify patterns that allow them to make cost-efficient decisions. 

For this example, it is seen from the results that the cost of using more than one 34-meter antenna 

per site is generally not worth the extra accuracy if selecting based on cost-efficiency. 

Additionally, for most of the antenna configurations tested, it appears that there using a low 

number of tracking intervals evenly spaced is a strategy to achieving cost-efficiency. However, it 

is hypothesized that too few tracking intervals will offer less performance. A mission designer 

generating a tracking schedule for this mission would be able to see that, if they decided to 

deviate from the most cost-efficient solution, they will achieve the best performance on average 

by using 240 tracking intervals and/or 1 interval per set. 

 Additionally, if the mission designer desires to identify a solution that is most robust to 

changes in the antenna configuration (for example, in case some of the antennas are diverted to 

other spacecraft), they can select it using this method. By determining the average performance 

across all antenna configurations, the solution most robust to these changes can be found by 

selecting the option with the highest efficiency. 
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Case 4: No Constraints 

This case discusses the process for a scenario where there are no restrictions and nothing 

predefined. Therefore, this case is an optimization problem across three different variables (total 

number of tracking intervals, number of intervals per set, and antenna configuration) with no 

constraints. 

Process to Identify Most Cost-Efficient Solution 

Tracking simulations for every potential tracking solution are run. As there are ten 

different values for total number of tracking intervals, eight different values for intervals per set, 

and five different antenna configurations, 400 different solutions must be tested. Then, the 

tracking efficiency of all the potential solutions are compared. The results of this process are 

presented in Figure 4.27. 

 As opposed to previous cases, the results of Case 4 must be shown four-dimensionally. 

To display this, a plot of multiple heat maps are used. Each heat map corresponds to one antenna 

configuration, and is constructed the same way as the heat maps in Case 2. A common color scale 

to display tracking efficiency is used across all the heat maps. This allows for comparison of 

tracking efficiency across all 400 potential solutions. The most cost-efficient tracking solution 

across all three variables is identified by selecting the section of all five plots with the highest 

tracking efficiency. For this example, a solution using 240 total tracking intervals, 1 interval per 

set, and Antenna Configuration 5 offers the highest tracking efficiency.  
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Figure 4.27: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (No Constraints) 

Sensitivity of Solution to Variables 

 In this case, several of the patterns seen in earlier cases are also seen here. Generally, it is 

seen that the average cost-efficiency of solutions using Antenna Configuration 5 is higher than 

the average for any of the other configurations. Additionally, most of the best solutions are in the 

low tracking intervals/low intervals per set section of the plots. For most of the values of intervals 

per set tested, it appears that there is a minimum number of total tracking solutions that offers the 

optimum trade-off between tracking cost and achieved accuracy. A mission designer generating a 
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tracking schedule for this mission would be able to see that, if they decided to deviate from the 

most cost-efficient solution, they will achieve the best performance on average by using Antenna 

Configuration 5, 240 total tracking intervals, and/or 1 interval per set. 

Summary 

 In summary, in the event that there are no constraints, mission designers can select the 

most cost-efficient tracking solution by testing all the possible solutions. For this example, there 

are five antenna configurations, eight values for number of intervals per set, and ten values for 

total number of tracking intervals, so there are four hundred solutions to test. However, a mission 

designer can select as many options for each of these variables as desired. The most cost-efficient 

tracking solution of the choices tested is the option with the highest tracking efficiency value. 

 In the event that the mission designer desires to use a different solution than the most 

cost-efficient option, they can look at the relative performance of all the solutions for a defined 

number of intervals per set to identify patterns that allow them to make cost-efficient decisions. 

For this example, it is seen from the results that Antenna Configuration 5 offers the largest 

selection of cost-efficient options, indicating that the cost of using more than one 34-meter 

antenna per site is generally not worth the extra accuracy if selecting based on cost-efficiency. 

This indicates that cost-efficiency is most sensitive to the antenna selection. By looking at the 

results further, it is seen that cost-efficiency is second most sensitive to the number of tracking 

intervals and least sensitive to the number of intervals per set. A mission designer generating a 

tracking schedule for this mission would be able to see that, if they decided to deviate from the 

most cost-efficient solution, they will achieve the best performance on average by using Antenna 

Configuration 5, 240 total tracking intervals, and/or 1 interval per set. 
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Case 5: Defined Maximum Covariance Requirement 

This case discusses the process for a scenario where there are no restrictions on tracking 

schedule or antenna configuration, but there is a maximum covariance requirement. Therefore, 

this case is an optimization problem across three different variables (total number of tracking 

intervals, number of intervals per set, and antenna configuration) with one soft constraint 

(maximum covariance). 

Process to Identify Most Cost-Efficient Solution 

This case is different from the other cases shown so far because, as opposed the previous 

cases where the constraint is on the independent variables, the constraint in this case is on the 

dependent variable. The process for this case begins by running tracking simulations for every 

possible tracking solution, as in Case 3. Once the results are found, all of the solutions that do not 

meet the maximum covariance requirement are removed. Then, the tracking efficiency of all the 

remaining solutions are compared. 

For the example presented here, a maximum average covariance of 1500 is arbitrarily 

defined as the requirement. The first step, the removal of any test cases with an average 

covariance higher than the defined requirement, is shown in Figure 4.28. On the plot, every point 

represents one tracking solution, and they are shown versus their average covariance values. A 

red ‘X’ on the plot indicates a test case that was rejected and removed from the data set because it 

did not meet the covariance requirement. 
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Figure 4.28: Average Covariance vs. Antenna Configuration (Covariance Limited) 

 

The second step is to compare the tracking efficiencies of the remaining solutions. All of 

the cases are shown on heat maps using the same tracking efficiency color scale. These results are 

shown in Figure 4.29. The crossed-out sections are the solutions removed in the first step of this 

process, and the color of those sections is set to black for extra clarity when looking at the plots. 
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Figure 4.29: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (Covariance-Limited), where a crossed out section indicates a rejected 

solution option 

 

 The most cost-efficient option of the remaining tracking solutions is identified by 

selecting the section from all five plots with the highest tracking efficiency. For this example, the 

solution using 240 total tracking intervals, 1 interval per set, and Antenna Configuration 5 offers 

the highest tracking efficiency. 
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Sensitivity of Solution to Variables 

For this sample trajectory, and a maximum covariance, the most cost-efficient solution 

uses Antenna Configuration 5, 240 total tracking intervals, and intervals grouped in sets of 1. To 

determine the sensitivity of the cost-efficiency relative to each of these independent variables, the 

average performance relative to each variable can be compared. The variable with the higher 

average performance represents the variable to which the cost-efficiency is most sensitive. As can 

be seen in Figure 4.29, the average tracking efficiency across the remaining solutions in the 

“Antenna Configuration 5” section is higher than the average across the solutions in any of the 

other antenna configurations. The sensitivity of cost-efficiency is most strongly related to the 

antenna configuration selected. For this particular case, the cost-efficiency of the remaining 

solutions is most strongly related to the total number of tracking intervals, as evidenced by the 

fact that the average performance by row is higher than the average performance by column. 

When selecting a tracking option for this case, the mission designer should prioritize the use of 

Antenna Configuration 5, as that is the variable most strongly affecting cost-efficiency. 

Case 6: Defined Maximum Cost 

This case discusses the process for a scenario where there are no restrictions on tracking 

schedule or antenna configuration but there is a maximum cost requirement. Therefore, this case 

is an optimization problem across three different variables (total number of tracking intervals, 

number of intervals per set, and antenna configuration) with one soft constraint (maximum cost). 

Cost is assumed to be directly proportional to the weighted number of observations, so the 

constraint in this problem is applied based on the weighted measurement count. 
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Process to Identify Most Cost-Efficient Solution 

As in Case 4, the constraint is on a dependent variable. This process consists of first 

testing all combinations of variables, as in Case 3. Once the results are found, all of the solutions 

that do not meet the maximum cost requirement are removed. The remaining solutions are then 

compared, and the option with the highest tracking efficiency is identified. 

For the example presented here, a maximum weighted observation count of 20,000 is 

arbitrarily defined as the requirement. The first step, the removal of any test cases with a 

weighted observation count higher than the defined requirement, is shown in Figure 4.30. On the 

plot, every point represents one tracking solution, and they are shown versus their weighted 

observation counts. A red ‘X’ on the plot indicates a test case that was rejected and removed from 

the data set because it did not meet the cost requirement. 
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Figure 4.30: Number of Observations vs. Antenna Configuration (Cost-Limited) 

 

The second step is to compare the tracking efficiencies of the remaining solutions. All of 

the cases are shown on heat maps using the same tracking efficiency color scale. These results are 

shown in Figure 4.31. The crossed-out sections are the cases removed in the first step of this 

process, and the color of those sections is set to black for extra clarity when looking at the plots. 
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Figure 4.31: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (Cost-Limited), where a crossed out section indicates a rejected solution 

option 

 

 The most cost-efficient option of the remaining tracking solutions can be identified by 

selecting the section from the five plots with the highest tracking efficiency. For this example, the 

solution using 240 total tracking intervals, 1 interval per set, and Antenna Configuration 5 offers 

the highest tracking efficiency. 
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Sensitivity of Solution to Variables 

For this sample trajectory, and a maximum cost, the most cost-efficient solution uses 

Antenna Configuration 5, 240 total tracking intervals, and intervals grouped in sets of 1. To 

determine the sensitivity of the cost-efficiency relative to each of these independent variables, the 

average performance relative to each variable can be compared. The variable with the higher 

average performance represents the variable to which the cost-efficiency is most sensitive. As can 

be seen in Figure 4.31, the average tracking efficiency across the remaining solutions in the 

“Antenna Configuration 5” section is higher than the average across the solutions in any of the 

other antenna configurations. The sensitivity of cost-efficiency is most strongly related to the 

antenna configuration selected. For this particular case, the cost-efficiency of the remaining 

solutions is most strongly related to the total number of tracking intervals, as evidenced by the 

fact that the average performance by row is higher than the average performance by column. 

When selecting a tracking option for this case, the mission designer should prioritize the use of 

Antenna Configuration 5, as that is the variable most strongly affecting cost-efficiency. 

Case 7: Defined Maximum Cost and Maximum Gap in Coverage Duration 

This case discusses the process for a scenario where there are no restrictions on tracking 

schedule or antenna configuration, but there is both a maximum cost and a maximum gap in 

coverage duration requirement. Therefore, this case is an optimization problem across three 

different variables (total number of tracking intervals, number of intervals per set, and antenna 

configuration) with two soft constraints (maximum cost and maximum gap in coverage duration). 
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 As in Cases 5 and 6, the constraints are on a dependent variable. Therefore, the process 

for this case is mostly the same as the process in Case 5 and Case 6. However, because there are 

two constraints on dependent variables instead of just one, the process is slightly different. 

For the example presented here, a maximum gap in coverage length of 500 seconds is 

arbitrarily defined as the gap length requirement and a maximum cost of 20,000 is arbitrarily 

defined as the cost requirement. The first step, the removal of any test cases that don’t meet the 

maximum cost requirement or maximum gap length requirement, is shown in Figure 4.32, where 

the plot on the right shows a zoomed-in view of the accepted region of the plot on the left. A red 

‘X’ on the plot indicates a test case that was rejected and removed from the data set because it did 

not meet the requirement. There are two overlapping rejection regions seen on the plot that 

correspond to each of the two requirements. 
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Figure 4.32: Number of Observations (Weighted) vs. Length of Gaps in Coverage (Cost and 

Gap Duration Limited) 

 

The second step is to compare the tracking efficiencies of the remaining solutions. All of 

the cases are shown on heat maps using the same tracking efficiency color scale. These results are 

shown in Figure 4.33. The crossed-out sections are the solutions removed in the first step of this 

process, and the color of those sections is set to black for extra clarity when looking at the plots. 
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Figure 4.33: Tracking Efficiency by Antenna Configuration Across Several Different 

Tracking Schedules (Cost and Gap Duration Limited), where a crossed out section indicates 

a rejected solution option 

 

 The most cost-efficient option of the remaining tracking solutions can be identified by 

selecting the section from the five plots with the highest tracking efficiency. For this example, the 

solution using 480 total tracking intervals, 1 interval per set, and Antenna Configuration 5 offers 

the highest tracking efficiency. 



86 

Sensitivity of Solution to Variables 

For this sample trajectory, and a maximum cost and maximum gap in coverage duration 

length, the most cost-efficient solution uses Antenna Configuration 5, 480 total tracking intervals, 

and intervals grouped in sets of 1. To determine the sensitivity of the cost-efficiency relative to 

each of these independent variables, the average performance relative to each variable can be 

compared. The variable with the higher average performance represents the variable to which the 

cost-efficiency is most sensitive. As can be seen in Figure 4.33, the average tracking efficiency 

across the remaining solutions in the “Antenna Configuration 5” section is higher than the 

average across the solutions in any of the other antenna configurations. The sensitivity of cost-

efficiency is most strongly related to the antenna configuration selected. Also, for this particular 

case, the cost-efficiency of the remaining solutions is most strongly related to the number of 

intervals per set, as evidenced by the fact that the average performance by column is higher than 

the average performance by row. When selecting a tracking option for this case, the mission 

designer should prioritize the use of Antenna Configuration 5, as that is the variable most strongly 

affecting cost-efficiency. 

Additional Considerations for Mission Designer 

 The way each tracking schedule is created in the analysis, every gap in coverage is the 

same length. However, if schedules are generated in a different way, where gaps in coverage are 

of variable length, an additional step is required to search through the generated tracking schedule 

and identify the length of the longest gaps in coverage. 
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Chapter 5  
 

Conclusions and Future Work 

In this thesis, methods for identifying cost-efficient tracking solutions were demonstrated 

for an Earth-Moon trajectory under a variety of different constraints. Though the specific results 

presented in this thesis are not applicable to any mission but the one used here, the process can be 

applied to a wide range of interplanetary missions. The results of the process meet the research 

goals. They are able to provide the mission designer with information about the sensitivity of 

cost-efficiency to the independent variables. They can be used to determine the most robust 

solution to unexpected changes in the constrained variables. They can show patterns in the data 

that inform the mission designer about trade-offs in selection of the independent variables and 

will assist in defining a starting point and a search direction for more detailed and configurable 

searches. Overall, this process provides a valuable tool for any mission designers seeking to 

generate a cost-efficient tracking schedule. 

Several options exist for further work. First, the fidelity of the cost model can be 

increased. An expanded cost calculation for use of the DSN exists that provides an even more 

accurate estimate of the cost, though it includes other variables that were not covered in this 

thesis, including costs of calibrating the DSN before every observation. In order to generate a 

more accurate estimate of the cost, these additional variables should be incorporated into the 

calculation of the tracking efficiency. This expanded cost calculation can be found in Reference 

6. 

Furthermore, the tracking schedule representation used in this thesis offers a wide variety 

of options for generated schedules, though there are other ways of defining the schedule that 

would offer even more schedule options. For example, a binary string where every element 

indicates whether tracking is on or off for a period of time would be an extremely configurable 
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way to represent a tracking schedule. This representation would be also be well suited for a 

method of identifying cost-effective solutions using evolutionary strategies. 

Additionally, this thesis does not include methods of cost saving through the use of 

antenna arraying. The DSN includes the capability to array multiple smaller dishes together to 

achieve similar, or better, performance than using a single larger antenna. This analysis did not 

consider these cases, even though they may offer cost savings, especially with missions that 

require the use of the bigger, 70-meter dishes. 

Finally, the methods shown in this thesis are only for single spacecraft tracking. They do 

not provide an overall cost-efficient tracking solution for tracking multiple spacecraft at once. For 

future analysis, it would be useful to consider the requirements of multiple spacecraft together to 

determine the most cost-efficient solution for the entire set of missions. 

All of these opportunities for future work will allow the results to be generalizable to a 

wider variety of situations. However, the methods shown in this thesis are sufficient to provide 

rough order of estimate values for the performance of different tracking solutions across a 

considerable range. The methods shown in this thesis can assist mission designers in identifying 

cost-effective tracking solutions for a large variety of spacecraft under several different 

constraints. 
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