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Abstract

A future where space mining and cargo transportation is fast approaching reality,
for such a future, one needs a way to efficiently transport the materials gathered
in space to Earth or other space based depots. The focus of this thesis is on such
return trajectories from Lagrange point orbits to Earth. Since travel in space is
currently very expensive, it is desired to utilize more efficient methods to travel
through space. Current trajectory design methods require a lot of computational
resource which contributes to mission cost. This thesis presents an approximate,
computationally inexpensive method to scan the available search space and obtain
the locations and trajectories associated the with lowest ∆V , which can be used as
an initial guess that can be later used in advanced methods to obtain ∆V optimal
trajectories. The use of invariant manifolds in the Earth-Moon system is proposed
for this purpose. The three-body system is studied and a simplified methodology
for the design of trajectories from the Lagrange point orbits is presented. The
techniques to generate the invariant manifold associated with Lagrange point orbits
is presented. To obtain the best possible trajectory based on ∆V requirements,
an optimization scheme is introduced to select the best location on the manifold
to initiate transfer. While gradient based methods have been previously used to
study optimal trajectories in the three-body system, these are computationally very
expensive. Therefore, this thesis tackles the computational requirements associated
with design of the space trajectories in the Earth-Moon-spacecraft three-body
system for space transportation. The solver used to survey the search space of the
invariant manifold is presented. The two-body approximation is utilized to provide
quick, preliminary study of the transfers in space, allowing the mission designer to
be able to devise a suitable trajectory in the three-body system using the insights
from the two-body approximation. Essentially, the burden of finding the location
of the transfer point with the minimum ∆V transfer is offloaded to the particle
swarm optimization algorithm that uses a simplified Lambert’s solver to scan the
search space on the manifold and provide the patch point with the lowest ∆V . The
solver used here is validated using the results obtained from literature for transfers

iii



from Earth to a Lagrange point orbit. Validation results show that the technique
used is able to provide fairly accurate results for a two-impulse scenario at a very
significant computational advantage. Then, the method is used to generate results
for Earth return trajectories. The ∆V requirements from Lambert’s solver for halo
and Lyapunov orbits of L1, L2 points are presented. The trends obtained using this
method shows the location of orbit insertion in the LEO that has the potential of
providing the lowest ∆V . The present analysis suggests that it is possible to reach
almost any inclination from the manifold of a halo LPO without incurring huge ∆V
costs if the target location for insertion along the final orbit’s true anomaly is either
at the ascending or the descending node. ∆V was found to increase as the point
of insertion approached a true anomaly corresponding to maximum z-component
displacement from the equator. These trends seem to hold for higher inclinations
of the final orbit. Similar trends seem to hold for transfers from Lyapunov orbit
as well. The results and initial and final ∆V vectors obtained by this method has
the potential to be used as an initial guess for gradient-based methods. Finally,
ways to improve upon the solver and the optimization algorithm are suggested.
The technique maybe combined with gradient-based methods to quickly and with
reasonable accuracy locate the point on the manifold in the vicinity of the optimal
point and then a detailed analysis may be pursued for better and more ∆V optimal
results.
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Chapter 1 |
Introduction

1.1 Motivation
The high cost of space exploration is one of the biggest problems for space missions
venturing out in the solar system. With traditional missions modeled on two-body
dynamics and impulsive thrust and with an inherent high risk of failures, executing
new mission concepts are rendered economically challenging. In the face of such
challenges, Lagrange Point Orbits (LPOs) might be able to provide some necessary
respite. As the world looks towards space as the next frontier coupled with the
fact that technology that exists today is fast approaching the point where space
travel or long-duration space missions seem likely in the near future. Missions
currently under consideration seem particularly intriguing. One such mission may
utilize asteroids moved into an LPO of the Earth-Moon system that can potentially
be mined for essential elements. The mined material may be sent to a more
stable/secure facility in an LPO or sent straight to Earth or perhaps quite possibly
a combination of both. Such missions will have to rely on their minimum fuel
consumption to maximize the payload on the spacecraft. With that constraint
in mind, trajectories that utilize the natural gravitational environment (constant
energy manifolds) of our solar system can be used as a standard trajectory design.

Envisioning such a future where continuous flow of materials using spacecraft
to and from the LPOs is possible and the feasibility of such missions relies on
the re-usability of the spacecraft in the long term, the focus of this work is on
the design of optimal return trajectories from LPO to Earth as a sample return
mission in the Earth-Moon system. The problem as described in this body of
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work is essentially an extension of the work done by Abraham where he designed
optimal trajectories from a Geostationary Earth Orbit (GEO) orbit to L1 Lagrange
point in the Earth-Moon system using particle swarm optimization as his primary
optimization technique [2]. This thesis presents a return trajectory in the Earth-
Moon system from a selected initial orbit. Utilizing the natural dynamics on the
three-body system, the spacecraft is first perturbed from the initial orbit, placed
onto an unstable manifold of the initial orbit which will take the spacecraft away
from the initial orbit. At a location on the manifold closer to the final orbit, the
spacecraft will then be taken from the manifold to the desired final orbit and placed
in a Low Earth Orbit (LEO). Particle swarm optimization is used to select the
optimal point of departure on the manifold of the LPO and to optimize the transfer
from the manifold to the desired orbit.

Since solving for an optimal trajectory is computationally expensive, a major
objective of this work is to obtain a computationally efficient method to obtain the
results of the impulsive transfers in the three-body system. The method designed
in this thesis uses the two-body approximation to obtain the ∆V values for the
transfers from the manifold of a LPO to a LEO. The method is first validated
against available solutions in the literature for transfers from a LEO to the manifold
of a LPO and then extended to Earth-return transfers from LPOs. To understand
the trends that exist in transfers from LPO to LEO and how these may be exploited
to design efficient missions, analysis is performed on different LPO types and about
different Lagrange points to observe variations in the ∆V requirements and the
factors that influence them.

1.2 Background
The history of Lagrange point orbits began with the study and definition of N-
body problem and subsequently the three-body problem by Isaac Newton. While
the two-body problem provided powerful tools to study and design various orbits
around a central body and allowed us to understand the orbits of planets around
the sun, study of the N-body problem was essential to understand the long-term
evolution of these orbits in the presence of multiple gravitational sources. Since the
solar system is a representative of exactly such a system, motivation for this study
followed naturally. The three-body problem was taken up by Leonard Euler and
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Joseph-Louis Lagrange who managed to find families of periodic solution for the
collinear points (1767) and equilateral points (1772) respectively [3]. It was later
established by Poincaré [4] that analytical closed-form solution for systems with
more than two bodies is not possible due to the unavailability of sufficient constants
of motion. Subsequently multiple reductions to the generalized three-body problem
were made. In the reduced form of the three-body problem, called the Circular
Restricted Three-Body Problem (CR3BP), the periodic solutions result in five
points and came to be known as Lagrange Points. Orbits around these points are
known as Lagrange Point Orbits.

The existence of LPOs has been studied since the 18th century, when Euler first
discovered the collinear equilibrium points in the CR3BP. Since then, leading up to
the past few decades, the interest in the CR3BP has seen a tremendous rise especially
since now, missions based on the CR3BP are seen as a viable option for unmanned
space exploration missions. Whether as a relay station for communication (Apollo
missions) [5] or as a prospective way-point for longer missions such as a halo orbit
(a type of LPO) space station [5], the potential utility of these mission is hard to
miss. The study and application of DST has expanded the horizons of LPO based
missions. It has allowed mission designers to plan low-cost missions utilizing the
natural dynamics of the three-body system through the use of invariant manifolds
also known as interplanetary superhighways [6]. Since time-of-flight (TOF) is not
a strict constraint for unmanned missions, the use of constant energy manifolds
opens up a strong possibility for low-cost, long-duration missions, such as asteroid
mining and return, or sending supplies to a future moon base habitat. Apart from
the potential utility of such mission, the study of these orbits and the dynamics
associated with these orbits provides for a very interesting and challenging research
area for researchers.

1.3 Earlier Work
Up until now, most of the focus on trajectory designs have been from Earth to
LPO in the Earth-Moon system or Earth-Sun system. The International Sun-Earth
Explorer 3 (ISEE-3) was the first mission to fly to a Sun-Earth L1 halo orbit in
1978 [7]. Its objective was to study the Earth’s magnetosphere, cosmic rays and
solar flares. Since then, a number of missions have flown to LPOs, such as the
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Solar and Heliospheric Observatory (SOHO) which was sent to Sun-Earth L1 in
1995, and the Wilkinson Microwave Anisotropy Probe (WMAP) to Sun-Earth L2

in 2001 [2]. In 2007, ARTEMIS/THEMIS became the first mission to reach the
Earth-Moon Lagrange point. Another mission planned for the Sun-Earth L2 is the
James Webb Space Telescope (JWST) with a tentative launch date of October
2018 [2].

While the above mentioned missions were a designed as a one-way trip, Genesis,
on the other hand, was designed as a long-term sample return mission which utilized
the natural dynamics of the Sun-Earth system. It was sent to the Sun-Earth L1 point
to collect solar wind samples and returned to Earth using a low-energy trajectory.
Relying heavily on dynamical systems theory, its trajectory was designed to make
use of the manifolds and hetroclinic connection between the L1 − L2 points that
exists in the Sun-Earth system to coast on the return trajectory [8].

1.4 Structure of Thesis
This thesis is divided into chapters which are arranged in the order of the flow
of work and that was done. Chapter 2 begins with the study of the circular
restricted three-body dynamics and developing the mathematical model of the
system dynamics. The concept of zero energy curves is introduced which provides
foreshadow of the manifold theory and their usage. The stability of the Lagrange
points is discussed. The chapter ends with techniques to generate LPO using well
established differential correction methods.

Chapter 3 focuses on the techniques that aid in design and analysis of the
search space in an attempt to understand the environment of operation using
Dynamical System Theory (DST). Basics of DST are discussed to understand the
system behavior and application of manifolds to obtain constant energy pathways
which, in turn, facilitate the design of low-energy transfers from desired LPOs. A
general methodology for generating said manifolds for LPOs is introduced. Finally,
concepts of optimization problem are reviewed along with a basic discussion on the
techniques currently in use. One such technique is used in this work, namely, the
particle swarm optimization.

In Chapter 4, individual techniques of analysis previously discussed are combined
into one coherent method of generating optimized reliable trajectories. For this

4



purpose, the procedure to be employed is defined in terms of successive steps to
accomplish tasks at hand. Results in terms of the optimized trajectories and their
various qualities are presented.

In Chapter 5, a summary of the work is presented and conclusions are drawn
from comparisons made with other similar trajectories available in the literature.
Finally, some of the ideas that potentially follow from the current work are discussed
as the next step in the analysis of similar missions and trajectories.

Finally, Appendix A and Appendix B includes the tables for the results displayed
in chapter 4 for the L1 and L2 Lagrange point orbits respectively.
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Chapter 2 |
Dynamics

2.1 Orbital Dynamics
To study the orbital dynamics of a spacecraft under the gravitational influence of
two or more massive bodies, a mathematical model different from the two-body
model needs to be constructed. Newton’s N-body system of equations provides the
foundation upon which such model is constructed. However, as already discussed,
the N-body system doesn’t lend itself to a convenient solution in its general form.
One needs to look at ways to simplify the existing model in hopes of achieving
a solution. The circular restricted three-body problem is one of the most widely
used set of equations in modern astrodynamics as it gives a highly simplified model
of the general three-body problem that simulates fairly realistic dynamics model
without excessive modeling complexity. In essence, it describes the motion of a
body with negligible mass (usually a spacecraft) around two primaries with masses.

The main simplifying factors, consider the third-body to be massless relative
to the other two massive bodies. This implies that the gravitational effects of
the third-body on the primaries are negligible. This is the restriction that is
imposed on the problem otherwise, finding the solution tends to become a bit more
complicated. The second assumption is that the two massive bodies revolve around
the center-of-mass of the Earth-Moon system, called the barycenter, in a circular
orbit with a constant rate of rotation. Hence the primaries always lie on the same
line and this circular motion imposition allows for a highly simplified system of
equations. The selected frame of reference rotates along with the primaries such
that the primaries appears to be fixed in space. Further simplification is possible
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when the system is non-dimensionalized and represented in the cannonical units of
distance units [DU] and time unit [TU].

A major advantage of this system is that it allows us to realistically model the
dynamics of the Earth-Moon system or the Sun-Earth system. It allows study of
the Lagrange Points and the orbits around such points. Since an analytic solution
is not possible, orbits thus obtained cannot be described by conic sections like in
the case of a two-body problem. Therefore, to visualize the trajectories, numerical
integration of the equations of motions needs to be performed.

2.2 Coordinate System and Equations of Motion
This section defines the coordinate system, basic description of the equations of
motion of the CR3BP and provides an explanation of variables used in the equations
and the non-dimensional parameters.

Let m1 and m2 be the mass of the two primaries and m3 the mass of the
spacecraft where, m1 ≥ m2 >> m3. The coordinate system is defined such that
the barycenter of the primaries lies on the origin and the larger primary lies on
left side of the barycenter on the negative x-axis and the smaller primary is on the
right side of the barycenter as shown in Figure 2.1. The y-axis is orthogonal to the
x-axis in the plane of rotation of the two primaries. The z-axis is orthogonal to the
x− y plane and completes the right handed system. The unit vectors î, ĵ and k̂

are in the principal directions of the defined coordinate system. The position of
the spacecraft or the third body is defined with respect to the two primaries.

Let µ be the mass ratio as

µ = m2

m1 +m2
(2.1)

which leads to
1− µ = m1

m1 +m2
(2.2)

The distance between the primaries is non-dimensionalized to 1 distance unit (DU).
For the Earth-Moon system,this is equal to 384,400 km. The locations of the
primaries can be found using the equation of the center-of-mass (CM) described as

#–

RCM = m1
#–r 1CM

+m2
#–r 2CM

m1 +m2
(2.3)
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Figure 2.1. CR3BP Coordinate System.

where #–r 1CM
and #–r 2CM

are the position vectors of the two masses with respect to
the CM. Substituting r1CM

= 0 and r2CM
= 1 in Eq.(2.3), we get the location of

the CM with respect to m1 as µ. Similarly, when r2CM
= 0 and r1CM

= 1, we find
that the CM with respect to m2 is 1− µ. Hence, the position vectors of the three
bodies with respect to CM are as follows

#–

Pm1 =

−µ0
0

 ; #–

Pm2 =

1− µ
0
0

 ; #–

Pm3 =

xy
z

 (2.4)

The distance of the third body m3, from the two primary bodies m1 and m2,
respectively, is

r1 =
√

(x+ µ)2 + y2 + z2 (2.5)

r2 =
√

(x− (1− µ))2 + y2 + z2 (2.6)

The angular velocity of two masses in circular orbit is given as

ω =

√
G (m1 +m2)

r3
12

(2.7)
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where, r12 is the distance between the primaries which is equal to 1. The total
mass of the primaries is also equal to 1. Therefore the equation becomes

ω =
√
G (2.8)

The time can be written in terms of cannonical time units (TU) by dividing the
period of the orbit of the primaries around each other, T by 2π. The period is
given by

T = 2π

√
r3

12
m1 +m2

= 2π (2.9)

1(TU) = T

2π (2.10)

The angular velocity can be written as

ω = 2π
T

= 2π
2π = 1 (2.11)

ω =
√
G = 1⇒ G = 1 (2.12)

From Newton’s Law of Gravitation, the force between two arbitrary masses ma

and mb is given as

#–

F ab = G(mamb)
r3
ab

#–r ab (2.13)

where a and b are arbitrary variables representing two bodies. The positive or
negative sign of the force is due to the direction of the relative position vector. The
N-body equation then is given by

#̈–r 3 = −G(m1 +m3) #–r 13

r3
13

+G
N∑

j=2,j 6=3

mj

( #–r 3j

r3
3j
−

#–r 1j

r3
1j

)
(2.14)

Equation (2.14) is the general series N-body equation of the relative acceleration of
the spacecraft (body 3) with primary 1 as reference center [9]. For the three-body
system like the one under consideration, replacing N with 3 gives the required
expression. Since the system is in the synodic frame, the barycentric from of the
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expression is more useful for the current work.

#̈–r = −G
N∑

j=1,j 6=3

mj

r3
j3

#–r j3 (2.15)

Based on the Newton’s Laws, the forces on the spacecraft in a two-body system
can be written as follows

#–

F sc = #–

F 31 + #–

F 32 (2.16)
#–r 1 = #–r − #–r B1 (2.17)

Taking two time derivatives of Eq. (2.17) and substituting into Eq. (2.15) gives

#̈–r 1 = #̈–r − #̈–r B1 (2.18)
#̈–r 1 = −Gm1

r3
1

#–r 1 + Gm3

r3
1

#–r 1 (2.19)

#̈–r 1 = −G(m1 +m3)
r3

1

#–r 1 (2.20)

where r1 , r, m1, m3 are as defined in Figure 2.1, #–r B1 is the vector from the
barycenter to m1 and sc stands for spacecraft. Similarly

#̈–r 2 = −G(m2 +m3)
r3

2

#–r 2 (2.21)

Combining the two equations to form the three-body model gives the following
equation

#̈–r = −G(m1 +m3)
r3

1

#–r 1 −
G(m2 +m3)

r3
2

#–r 2 (2.22)

Since the third body m3 is of negligible gravitational influence, the mass of the
third body is neglected, i.e. m3 = 0. The above equation can be written in three
dimensions as follows

(ẍ− 2ωẏ − ω2x)̂i+ (ÿ + 2ωẋ− ω2y)ĵ + z̈k̂ = −µ1

r3
1

[
(x+ µ)̂i+ yĵ + zk̂

]
−µ2

r3
2

[
(x− 1 + µ)̂i+ yĵ + zk̂

]
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(2.23)

The terms on the left hand side are due to the fact that the synodic frame that is
considered for the analysis is a rotational system with angular velocity rate of ω,
hence centrifugal and Coriolis terms manifest in the equations of relative motion.
Recall that µ is the mass ratio as defined in Eq. (2.1), rather than the gravitational
parameter as is common in the literature. Finally, upon non-dimensionalization of
the equations, the final form of the equations becomes

ẍ = 2ẏ + x− (1− µ)(x+ µ)
r3

1
− µ(x+ µ− 1)

r3
2

ÿ = y − 2ẋ− (1− µ)y
r1

− µy

r3
2

z̈ = −(1− µ)z
r3

1
− µz

r3
2

(2.24)

Alternatively, a pseudopotential definition can also be used to generate the equations-
of-motion (EOM). The kinetic energy, KE, and the potential energy, PE, of the
spacecraft normalized with respect to the mass of the spacecraft is given as

KE = 1
2v

2 = 1
2[(ẋ− ωy)2 + (ẏ + ωx)2 + ż2]

PE = −Gm1

r1
− Gm2

r2
(2.25)

Non-dimensionalizing Eq.(2.25) gives the following

KE = 1
2[(ẋ− y)2 + (ẏ + x)2 + ż2]

PE = −(1− µ)
r1

− µ

r2
(2.26)

The Lagrangian [2], L can be written as

L = KE − PE

L =
{

1
2[(ẋ− y)2 + (ẏ + x)2 + ż2]
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+(1− µ)
r1

+ µ

r2

}
(2.27)

Given the Lagrangian of a system, the EOM can be obtained by applying the
Euler-Lagrange equation. Euler-Lagrange equation is given as

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (2.28)

The EOMs obtained using the Lagrangian are

ẍ− 2ẏ = −∂PE
∂x

+ x

ÿ + 2ẋ = −∂PE
∂y

+ y

z̈ = −∂PE
∂z

(2.29)

A suitable arbitrary function can be defined such that the right side of the
equations are obtained from the appropriate differential of the potential function.
Since this function is not the exact potential as defined earlier, it is called the
pseudopotential, and is of the form

U = −(1− µ)
r1

− µ

r2
− 1

2(x2 + y2) (2.30)

The equations can then be represented as

ẍ− 2ẏ = −∂U
∂x

ÿ + 2ẋ = −∂U
∂y

z̈ = −∂U
∂z

(2.31)

12



2.3 Dynamic Model and State Transition Matrix
The current section focuses on the definition of the state vector and the state
transition matrix of the system. The system of equations developed previously
are combined in the state space form to define the system as is used for numerical
computation. While the selection of the states of the system can be arbitrary,
generally it is better to select those states whose initial information can be easily
obtained and is capable of defining the complete system. Since the position and
velocity are the most commonly used states in a dynamical system, the current
analysis considers the following state vector for all future computations

#–

X =
[
x y z ẋ ẏ ż

]T
(2.32)

Since a system can be generically defined as

#̇–

X = F( #–

X, t) (2.33)

where F(X, t) simply states that the system is a nonlinear function of the state
and time. For the current work, the given system is written as

#̇–

X = F( #–

X) =



F1

F2

F3

F4

F5

F6


=



ẋ

ẏ

ż

2ẏ − ∂U

∂x

−2ẋ− ∂U

∂y

−∂U
∂z



(2.34)

Equation (2.34) can further be reduced by linearizing the EOMs to give the
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state space form as follows

#̇–

X(t) = A(t) #–

X(t) (2.35)

where A(t) is the Jacobian matrix and is equal to A(t) = ∂F
∂

#–

X
. It is obtained from

the Taylor series expansion of the system Eq. (2.33). The Jacobian for the desired
system is defined as

A(t) =



∂F1

∂x

∂F1

∂y

∂F1

∂z

∂F1

∂ẋ

∂F1

∂ẏ

∂F1

∂ż
∂F2

∂x

∂F2

∂y

∂F2

∂z

∂F2

∂ẋ

∂F2

∂ẏ

∂F2

∂ż
∂F3

∂x

∂F3

∂y

∂F3

∂z

∂F3

∂ẋ

∂F3

∂ẏ

∂F3

∂ż
∂F4

∂x

∂F4

∂y

∂F4

∂z

∂F4

∂ẋ

∂F4

∂ẏ

∂F4

∂ż
∂F5

∂x

∂F5

∂y

∂F5

∂z

∂F5

∂ẋ

∂F5

∂ẏ

∂F5

∂ż
∂F6

∂x

∂F6

∂y

∂F6

∂z

∂F6

∂ẋ

∂F6

∂ẏ

∂F6

∂ż



=



0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1

−∂Ux
∂x

−∂Ux
∂y

−∂Ux
∂z

−∂Ux
∂ẋ

2− ∂Ux
∂ẏ

∂Ux
∂ż

−∂Uy
∂x

−∂Uy
∂y

−∂Uy
∂z

−2− ∂Uy
∂ẋ

−∂Uy
∂ẏ

−∂Uy
∂ż

−∂Uz
∂x

−∂Uz
∂y

−∂Uz
∂z

−∂Uz
∂ẋ

−∂Uz
∂ẏ

−∂Uz
∂ż


(2.36)

Here Ux, Uy and Uz are the partial derivatives of the pseudopotential in Eq. (2.30)
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with respect to the x, y and z directions, respectively. These can be written as

A(t) =



0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1

−Uxx −Uxy −Uxz 0 2 0

−Uyx −Uyy −Uyz −2 0 0

−Uzx −Uzy −Uzz 0 0 0


(2.37)

The state of the system at a any future time can be obtained from the state
transition matrix (STM) given the state at present time, hence, it transitions the
current state tk to a state at a future time t. The state transition matrices are
incredibly useful in gradient based studies of dynamical systems. Mathematically,
the relations appears as

#–

X(t) = Φ(t, tk)
#–

X(tk) (2.38)

where,

Φ(t, tk) = ∂
#–

X(t)
∂

#–

X(tk)
(2.39)

Substituting Eq. (2.38) in Eq. (2.33), gives a relationship between the time
derivative of state transition matrix and the Jacobian as

Φ̇(t, tk) = A(t)Φ(t, tk) (2.40)

The expression in Eq. (2.40) becomes very useful for numerical computation.
Through this equation, the STM can be numerically integrated along with the
EOMs of the system for further use in various gradient based methods as will be
seen in later chapters. The STM also exhibits some very useful properties such as

Φ(ta, ta) = I (2.41)
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Φ(tc, ta) = Φ(tc, tb)Φ(tb, ta) (2.42)

Φ(tb, ta) = Φ(ta, tb)−1 (2.43)

These expression allows for checks to ensure the numerical methods are functioning
as expected.

2.4 Lagrange Points and their Stability
An essential aspect of the study of the dynamics of any system is the knowledge of
the equilibrium points and the behavior around these. It allows us the necessary
boundary conditions to linearize the system and study the stability modes of the
system. This section will focus on the study of equilibrium points in CR3BP also
known as Lagrange points and their stability characteristics. This is required to
understand the motion of the spacecraft in the vicinity of these points and is the
fundamental basis for the existence of Lagrange point orbits.

Equilibrium points, by definition, are points where a particle will remain sta-
tionary in the absence of disturbing forces. Setting the velocities and accelerations
to zero in the Eq. (2.31), the required form of the equations are

0 = −∂U
∂x

0 = −∂U
∂y

0 = −∂U
∂z

(2.44)

The derivative of the pseudopotential are given as

−∂U
∂x

= 0 = −(1− µ)(x+ µ)
r3

1
− µ(x− 1 + µ)

r3
2

+ x (2.45)

−∂U
∂y

= 0 = −(1− µ)y
r3

1
− µy

r3
2

+ y (2.46)

−∂U
∂z

= 0 = −(1− µ)z
r3

1
− µz

r3
2

(2.47)
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For Eq. (2.47) to be satisfied, z must be zero as the potential terms cannot
be zero. For Eq. (2.46), there can be two kinds of solutions. The trivial solution,
where y = 0, gives us collinear equilibrium points on the x axis namely, L1, L2 and
L3. The non-trivial solution gives us two more equilibrium points, L4 and L5 and
these along with the collinear points are the five points obtained from the system
dynamics commonly called the Lagrange points. Since for the collinear points, y
and z are zero, r1 and r2 reduce to the form

r3
1 = |x+ µ|3 (2.48)

r3
2 = |x+ µ− 1|3 (2.49)

then solutions for the collinear Lagrange points involve solving Eq. (2.45) for the
three regions of the space, namely, the far side of the two primaries with respect to
the barycenter (Regions II and III) and in between the two primaries (Region I).
The denominator for each of the regions is given as

Region I (L1)⇒

|x+ µ| = (x+ µ)

|x+ µ− 1| = −(x+ µ− 1) (2.50)

Region II (L2)⇒

|x+ µ| = (x+ µ)

|x+ µ− 1| = (x+ µ− 1) (2.51)

Region III (L3)⇒

|x+ µ| = −(x+ µ)

|x+ µ− 1| = −(x+ µ− 1) (2.52)

The above substitution to Eq. (2.45) gives the following equations

L1 → 0 = − (1− µ)
(x+ µ)2 + µ

(x+ µ− 1)2 + x

L2 → 0 = − (1− µ)
(x+ µ)2 −

µ

(x+ µ− 1)2 + x
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L3 → 0 = (1− µ)
(x+ µ)2 + µ

(x+ µ− 1)2 + x (2.53)

Equations (2.53) are easily solved in MATLAB using the ’fzero’ command. The
remaining two collinear points are relatively easy to find if one realizes that r1 and
r2 are equal as the remaining points lie on the vertices of the equilateral triangle
between the two primaries. The terms r1 and r2 are of the form

r1 =
√

(x+ µ)2 + y2

r2 =
√

(x+ µ− 1)2 + y2 (2.54)

Upon equating the two equations, the x-coordinate is obtained to be

x = 1
2 − µ (2.55)

Hence, one can easily obtain the y-coordinate upon substituting Eq.(2.55) in
the Eq. (2.54) as shown

y = ±
√

3
2 (2.56)

where conventionally, L4 lies on the positive side of y-axis and L5 lies on the
negative side of the y-axis. The Lagrange point locations in normalized form, for
the Earth-Moon system are shown in Table 2.1.

Table 2.1. Collinear Lagrange Point locations in the Earth-Moon system

Point x-Coordinate y-Coordinate
L1 0.8369 0
L2 1.1557 0
L3 −1.0051 0
L4 0.4878 0.8660
L5 0.4878 −0.8660

The Lagrange Points for the Earth-Moon system are plotted in Figure 2.2.
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Figure 2.2. Lagrange Points in canonical units

Having obtained the Lagrange point locations, their stability analysis can be
carried out. For a dynamic system, the stability of the system is obtained by
observing the eigenvalues of the system matrix A. This is the same as the Jacobian
matrix for the CR3BP. Eigenvalues are the roots if the characteristic equation of
the system matrix. The roots of the characteristic equation are also called the poles
of the system. A general characteristic equation is as given in the Eq. (2.57). For
the system under consideration with six states, Eq. (2.58) gives the required form.

f(λ) = |λI − A| = 0

λk + ak−1 λ
k−1 + · · ·+ a0 = 0 (2.57)

λ6 + a5 λ5 + a4 λ4 + a3 λ3 + a2 λ2 + a1 λ1 + a0 = 0 (2.58)

Upon solving the Jacobian for each of the Lagrange Point values, the eigenvalues
are obtained from MATLAB command ’eig’. Eigenvalues or poles of a system
provide a unique insight into the stability characteristics and modes of the system
near a stationary point. The system matrix must be a constant for eigenvalue
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analysis. Eigenvalues with negative real parts tends to decay towards the stationary
point exponentially and are considered stable. If the eigenvalue has a positive real
part, then it tends to exponentially increase and diverge towards infinity and is
considered to be unstable. If the eigenvalues occur in the form of complex conjugate
pairs, then the imaginary part describes the oscillatory motion of the system. The
real part governs whether the oscillatory motion is decreasing in magnitude (stable)
or increasing in magnitude (unstable). In the case where the eigenvalue is on the
imaginary axis, i.e. the real part is zero, then the system is neutrally stable.

Stability can also be understood as, if a particle placed near an equilibrium point
is deviated from its path and it tends to regain it previous state as time progresses,
then the particle is said to be in a stable equilibrium. If it tends to continue to
move away from its previous state, it is said to be in an unstable equilibrium or at
a saddle point.

The eigenvalues of the Lagrange points in the Earth-Moon system are shown in
Table 2.2.

Table 2.2. Eigenvalues of the Lagrange Points in the Earth-Moon system

Points λ1 λ2 λ3 λ4 λ5 λ6

L1 2.9321 -2.9321 −2.3344i 2.3344i -2.2688i 2.2688i
L2 2.1587 -2.1587 -1.8626i 1.8626i -1.7862i 1.7862i
L3 -1.0104i 1.0104i -0.17787 0.17787 -1.0053i 1.0053i
L4 -0.9545i 0.9545i -0.29821i 0.29821i -1i 1i
L5 -0.9545i 0.9545i -0.29821i 0.29821i -1i 1i

As can be seen above, each of the three collinear points have one positive real
eigenvalue, this causes the collinear points to be unstable. The eigenvalues for
the equilateral points are also shown. For convenience, the real parts of these
eigenvalues are omitted as they were of the order 10−15 or lower which at the limit
of machine precision which essentially means that they are zero as it can be caused
due to numerical error. Notice that the since the real part of L4 and L5 are zero,
these are then considered neutrally stable but recall that an actual system will
be subject to perturbations due to other massive bodies in the solar system and
hence, even these will be unstable points in reality. While the equilibrium points
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themselves might be unstable, orbits around these points are slightly unstable and
spacecraft placed there can be managed with minor trajectory correction maneuvers.

2.5 Jacobi Constant
In spite of being in the rotating frame of reference, there exists one constant of
integration for the system of equations as discussed previously. It is equivalent to
the energy of the system and is called the Jacobi constant(or Jacobi integral or
Jacobi energy). It is useful in defining the available regions of motion in space as a
function of the energy of the spacecraft. The expression for the Jacobi integral can
be obtained by first analyzing the square of the velocity

v2 = ẋ2 + ẏ2 + ż2 (2.59)

The time derivative of Eq. (2.59) gives,

d(v2)
dt

= 2
(
ẋẍ+ żz̈ + żz̈

)
(2.60)

substituting Eq. (2.34) into Eq. (2.60) gives

d(v2)
dt

= 2
[
ẋ
(
2ẏ − Ux

)
+ ẏ
(
− 2ẋ− Uy

)
+ ż
(
− Uz

)]
(2.61)

= 2
[
− Uxẋ− Uyẏ − Uz ż

]
(2.62)

Time derivative of the pseudopotential can be obtained by applying chain rule

dU

dt
= Uxẋ+ Uyẏ + Uz ż (2.63)

From Eq. (2.62) and Eq. (2.63) it follows that

d(v2)
dt

= −2dU
dt

(2.64)
d

dt

[
v2 + 2U

]
= 0 (2.65)

21



Integrating the Eq. (2.65) with respect to time gives the final expression for
the Jacobi constant as,

v2 + 2U = C (2.66)

where U is given by Eq. (2.30). Equation. (2.66) is the Jacobi integral equation
and C is the Jacobi constant. C only exists in the synodic frame of reference in
the case of the restricted three-body problem [9]. The Jacobi constant can help
define the regions of space which may be inaccessible to a given spacecraft of a
give Jacobi energy. These regions are called Hill’s Regions and are bounded by the
curves known as zero-velocity curves [2]. It means that the motion of any spacecraft
with a certain Jacobi energy is confined within the surface of that Jacobi energy
and the outer limits of spacecraft’s motion is defined by the zero-velocity curves as
upon reaching this threshold, the velocity of the spacecraft will effectively be zero
(i.e all the kinetic energy has been converted to potential energy) and will pulled
back towards the center of attraction.

Setting the velocity equal to zero in the Eq. (2.66) gives the limiting value of
the Jacobi constant as

2U = C (2.67)

Setting the x and y for the Lagrange point gives the value of C at the equilibrium
points. These are considered as the boundary conditions for the analysis of the
zero velocity as ideally, the velocity at the Lagrange points should be zero. The
zero velocity curves for the first three Lagrange points are shown in Figures 2.3-2.8.
Earth is at the center of the figure marked with a black star. For convenience,
the Lagrange points are not labeled. It is observed that as the Jacobi energy is
increased, more and more regions of space becomes accessible to the spacecraft.
For the Jacobi energy equivalent to that of L1 and L2 small sections open up in the
vicinity of the Lagrange points that allow access to slightly greater regions of space.
Since an orbit at L1 is still able to access the Moon, it shows that such orbits are
viable for sample return missions from the Moon as well.
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Figure 2.3. Zero Velocity Curves for Jacobi Energy of C = 1.65 in the Earth-Moon
system
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Figure 2.4. Zero Velocity Curves for Jacobi Energy of C = 1.5942 (L1) in the
Earth-Moon system
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Figure 2.5. Zero Velocity Curves for Jacobi Energy of C = 1.591 in the Earth-Moon
system
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Figure 2.6. Zero Velocity Curves for Jacobi Energy of C = 1.5861 (L2) in the
Earth-Moon system
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Figure 2.7. Zero Velocity Curves for Jacobi Energy of C = 1.5061 (L3) in the
Earth-Moon system
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Figure 2.8. Zero Velocity Curves for Jacobi Energy of C = 1.5 in the Earth-Moon
system
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Figure 2.9. Zoomed in Zero Velocity Curves for Jacobi Energy of L1 point in the
Earth-Moon system
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Figure 2.10. Zoomed in Zero Velocity Curves for Jacobi Energy of L2 point in the
Earth-Moon system

2.6 Lagrange Point Orbits
This section will focus on the different kinds of possible Lagrange point orbits. A
method of obtaining families of these orbits using differential correction techniques
is presented. Finally, the Lagrange point of interest is identified and the desired
orbit to be used for transfer is obtained. While it is recognized that LPOs maybe
periodic or quasi-periodic orbits close to various Lagrange points, it is important
to realize that the Lagrange point themselves do not attract the objects in an LPO.
It is the combined dynamics and gravitational interaction of the three-body system
that allows for regions of equilibrium. Another fact that is important, is to realize
that while the Lagrange points are not stable points in space, i.e. an object placed
at a Lagrange point will not remain stationary with respect to the two massive
bodies, it is possible to place an object in orbit around the point with minimal
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orbit correction maneuvers for a longer duration.
Some different types of Lagrange point orbits are :

Lyapunov Orbits : These are planar orbits that lie in the orbital plane of the
two massive bodies. These exhibit a characteristic ’kidney bean’ shape.

Halo Orbits : These are three-dimensional orbits that, with large z-component,
look like a halo around the one of the primaries when viewed from the other
one. In an ideal system, these are periodic and are categorized as northern or
southern halo orbit, depending on the out-of-plane or z-component of the orbit.

Lissajous Orbits : These are three-dimensional, confined within a certain region
of space near a Lagrange point. These are quasi-periodic in nature such that
they look like a chaotic orbits in the short term but these do exhibit a certain
amount of periodicity when viewed over longer integration times.

Apart from the ones mentioned above, there are a few more LPOs with complex
shapes such as axial orbits, vertical orbits, resonant orbits, distant prograde orbits
and distant retrograde orbits [10]. These orbits occur in the dynamical system due
to specific conditions and each one has its own characteristics. For the purposes
of this thesis, the focus will largely remain on Lyapunov and halo orbits. Having
established the different types of LPOs, the focus now shifts to the generation of
such orbits in the Earth-Moon system to design optimal transfer trajectories from
these towards a Earth.

2.7 Generation of Lagrange Point Orbits
One of the most important requirements for designing a transfer trajectory is to
start with an initial orbit. Since the orbits around Lagrange points do not conform
to conic shapes like a circle or an ellipse, it becomes very difficult to generate initial
conditions for an initial orbits. However, certain numerical techniques have been
developed, that allows us to obtain orbits which exhibit a certain characteristics.
Howell [11] gives a very simple algorithm to generate seed orbits to generate
families of orbits using single shooting. Multiple shooting methods are also used
for generating the initial conditions [12] [2] [13], if the estimated states around an
orbit are available. Multiple shooting is especially useful when a periodic orbit is
desired while using the full ephemeris model of the solar system. Continuation
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techniques such as pseudo-arclength continuation methods are employed when it
is desired to study the families of orbits of a certain type [2], [12], [13], [10], [14].
The differential correction methods utilize the symmetry of the CR3BP to exploit
certain characteristics of the LPO. The procedure is fairly simple.

The initial condition of the orbit is defined using some analytic approximations
provided by the Richardson or Linstead-Poincaré approximation [15]. The initial
state of the orbit is then corrected by integrating the orbit between two intercepts of
the x - z axis. The particle lies on the x-axis initially. This implies that y-location
is initially zero. The initial velocity along the x-direction is considered to be zero so
that the initial y-direction velocity is normal to the x-axis. In case of a Lyapunov
orbit, the z-coordinate and hence the z-direction velocity remains zero throughout
the orbit due to the planar nature of the orbit. Due to the symmetry of the orbit,
the next intercept of the x-z plane is expected at the half orbit point where the
y-velocity is normal to the x-axis but in the opposite direction. This provides the
state vector conditions at t = T/2 given by such that y-location is again zero, the
x-direction velocity is expected to be zero as this is the farthest point along the
x-axis that the particle is expected to travel i.e. yT/2 = 0 and ẋT/2 = 0 where T/2
stands for the half-period. Since the expected states at two points along the orbit
are established, therefore this problem can be formulated as a two-point boundary
value problem (TPBVP). This TPBVP can be solved using the single shooting
algorithm using Newton’s method. The initial conditions and desired conditions at
the half orbit can be written as

#–

X t0 =
[
xt0 0 0 0 ẏt0 0

]T
(2.68)

#–

XT/2 =
[
xT/2 0 0 0 ẏT/2 0

]T
(2.69)

Here, the xt0 and ẏt0 are considered to be the free variables. The free variables are
free to change between successive iterations. The desired values of yT/2 and ẋT/2

are obtained by integrating the equations of motion Eq. (2.31) till the first x axis
intersection. This ensures that the yT/2 = 0 condition is always satisfied. Since the
equations are numerically integrated, generally the state vector obtained at T/2 is
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of the following form

#–

XT/2 =
[
xT/2 0 0 ẋT/2 ẏT/2 0

]T
(2.70)

Since it is desired to obtain ẋT/2 = 0, the initial condition for xt0 needs to be
adjusted. Such an adjustment will also cause a change in the integration half time
T/2 therefore the following procedure is is used to make the adjustment

δ
#–

X(T/2) ≈ Φ(T/2, t0)δ #–

X(t0) + ∂
#–

X

∂t
δ(T/2) (2.71)

where, δ #–

X(T/2) is the change in the final conditions required to obtain the desired
final condition at T/2. δ

#–

X(t0) is the desired correction to the initial vector to
make the δ #–

X(T/2) = 0. Φ(T/2, t0) is the state transition matrix obtained from Eq.

(2.40).∂
#–

X

∂t
is the time rate of change of the state vector obtained by evaluating the

equations of motion at T/2. Finally, δ(T/2) is the change in the half period due to
driving δ #–

X(T/2) to zero. The forms of δ #–

X(T/2) and δ #–

X(t0) are

δ
#–

X(T/2) =
[
δxT/2 0 0 −δẋT/2 δyT/2 0

]T
(2.72)

δ
#–

X(t0) =
[
δxt0 0 0 0 δyt0 0

]T
(2.73)

Hence Eq. (2.71) can now be written as



δxT/2

0
0

−δẋT/2

δyT/2

0


≈



φ1,1 φ1,2 φ1,3 φ1,4 φ1,5 φ1,6

φ2,1 φ2,2 φ2,3 φ2,4 φ2,5 φ2,6

φ3,1 φ3,2 φ3,3 φ3,4 φ3,5 φ3,6

φ4,1 φ4,2 φ4,3 φ4,4 φ4,5 φ4,6

φ5,1 φ5,2 φ5,3 φ5,4 φ5,5 φ5,6

φ6,1 φ6,2 φ6,3 φ6,4 φ6,5 φ6,6


(T/2,t0)



δxt0

0
0
0
δẏt0

0


+



ẋ

ẏ

ż

ẍ

ÿ

z̈


δ(T/2)

(2.74)

Note that the desired change in δẋT/2 has a negative sign. This is the deviation in
the desired state vector at the half-period and needs to be driven to zero. δ(T/2)
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is obtained by using the fact that yT/2 is always zero. This is caused due to the
integration termination condition.The term δ(T/2) is written as follows

δ(T/2) = −φ2,1δxt0 − φ2,5δẏt0
ẏ

(2.75)

Finally, the equation for driving δẋT/2 is given as

− ˙xT/2 ≈
(
φ4,1 − φ2,1

ẍ

ẏ

)
δxt0 +

(
φ4,5 − φ2,5

ẍ

ẏ

)
δẏt0 (2.76)

Keeping the initial xt0 as a constant, Eq. (2.76) is used solve for the estimated
adjustment in the ẏt0 such that the error in ẋT/2 is below a desired tolerance ε

δẏt0 ≈
[
φ4,5 − φ2,5

ẍ

ẏ

]−1 [
− ẋT/2

]
(2.77)

Since this is based on the linear model of dynamics, a few iterations are required
to achieve the desired convergence. It is important to note that this process is
highly sensitive to the initial conditions used in the initial seed state vector. For a
three-dimensional halo orbit, a similar process is followed, however, the initial z
location is now desired such that such that the initial z velocity is zero i.e. z is at
an extremum. Similar to the case with Lyapunov orbit, the half orbit conditions
for this case are expected to be yT/2 = 0, ẋT/2 = 0 and żT/2 = 0. δ #–

X(T/2) and
δ

#–

X(t0) for a halo orbit becomes

δ
#–

X(T/2) =
[
δxT/2 0 δzT/2 −δẋT/2 δyT/2 −δzT/2

]T
(2.78)

δ
#–

X(t0) =
[
δxt0 0 δzt0 0 δyt0 0

]T
(2.79)

Substituting these vectors in Eq. (2.74) and following the same process as shown
above, the equations become

δ(T/2) = −φ2,1δxt0 − φ2,3δzt0 − φ2,5δẏt0
ẏ

(2.80)

The objective in this case is to drive the ẋT/2 and żT/2 to zero. This is done through
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the equations

−ẋT/2 ≈
(
φ4,1 − φ2,1

ẍ

ẏ

)
δxt0 +

(
φ4,3 − φ2,3

ẍ

ẏ

)
δzt0 +

(
φ4,5 − φ2,5

ẍ

ẏ

)
δẏt0

−żT/2 ≈
(
φ6,1 − φ2,1

z̈

ẏ

)
δxt0 +

(
φ6,3 − φ2,3

z̈

ẏ

)
δzt0 +

(
φ6,5 − φ2,5

z̈

ẏ

)
δẏt0 (2.81)

The adjustments to the initial conditions are obtained by either keeping xt0 or zt0
as constant and adjusting the other along with ẏt0 . Keeping xt0 as constant, the
final equations for adjustments to the initial conditions are

[
δzt0

δẏt0

]
≈

φ4,3 − φ2,3
ẍ

ẏ
φ4,5 − φ2,5

ẍ

ẏ

φ6,3 − φ2,3
z̈

ẏ
φ6,5 − φ2,5

z̈

ẏ


−1 [
−ẋT/2

−żT/2

]
(2.82)

This methodology is employed throughout the thesis for generating periodic LPOs.
Now that the periodic orbits and the method to obtain them is established, methods
used to define trajectories to and from these orbits needs to be discussed. The next
chapter presents the analysis techniques and finally, the optimization problem as
used in this thesis.
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Chapter 3 |
Analysis

This chapter showcases the techniques used to analyze the orbits and to obtain the
final optimized trajectory. First, an introduction to the DST as relevant to this
thesis is presented. A brief description of invariant manifold and their application
to the trajectory design problem is discussed. Then, a methodology to generate
the manifolds is provided.

The basics of optimization theory are presented next. A general optimization
problem and some basic methodologies used to solve optimization problems are
discussed. Finally, a description of particle swarm optimization procedure to be
used in the present work is presented along with a description of the strategy to
solve the desired trajectory optimization problem.

3.1 Introduction to Dynamical Systems Theory
DST was developed as a way to study the complex dynamics of non-linear system.
A number of books provide detailed description of the basic concepts of dynamical
systems such as Strogatz [16], Wiggins [17], Guckenheimer [18]. Essentially it deals
with the graphical description of the system in the phase space and recognizing
characteristic points in the space that govern the flow of the state of the system
when certain condition are met. It helps to study the different states that a system
can achieve and allows one to distinguish between desirable and undesirable states.
Based on the knowledge, it then becomes possible to change the dynamics of the
system by providing appropriate inputs to steer the system to achieve a desired
state.

The dynamical system may either be considered as continuous or discrete. The
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solution of the system in case of a continuous system is called a flow. For a discrete
system, the solution is called a map [16]. Since the system studied in this thesis
is represented in the form of a differential equation, it is a continuous system and
therefore, the system as presented in this thesis is considered as a flow.

The objective of DST is to characterize the dynamics of the system using
graphical tools and methods instead of actually solving the system of equations.
The study of the system near the equilibrium points in this greatly helps in this
regard. Once the fixed points are recognized, the evolution of the flow near
these points are studied. The system is linearized near the fixed points and the
eigenvectors of the Jacobian matrix helps characterize the stability of the flow at
and near these points. Qualitative changes in the properties of the system due to
quantitative changes to the system parameters help characterize the existence of
points called bifurcation points. Bifurcation points are interesting because near
these points, the system dynamics changes in very significant ways [16]. These
could be creation of fixed points, or annihilation of previously existing fixed points.
This becomes relevant when studying the flow of a system whose parameters change
with time. In case of the CR3BP, the existence of multiple types of Lagrange Point
Orbits are due to bifurcation of one family of orbits from another family of orbits.
These points and the conditions to achieve them, while interesting, are not the
focus of this thesis. Work by Parker [10], Grebow [19] and others have detailed
discussion on this topic.

3.2 Monodromy Matrix
Untill now, the STM was used in finding the solution of initial conditions for a
periodic orbit given initial estimates. It is able to give us the required changes in
the initial conditions because the STM characterizes the sensitivity of the change
in final state to the change in initial state of the system. Since it contains the
knowledge of the evolution of the system, it is able to provide the knowledge of
the stability of an orbit [10]. The state transition matrix, when integrated for the
entire period of a periodic orbit, is called the monodromy matrix. That is,

M = Φ(T, t0) (3.1)
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where T is the period of the orbit. Consider a vertical plane at the initial condition
of the orbit. This will be a point on the vertical plane with the trajectory of
the orbit flowing normal to this plane. For a periodic orbit, integrating the orbit
trajectory for exactly one period yields another point exactly coinciding with and
initial point. Hence the periodic orbit will be represented as a single fixed point
on this map. Such a map is called a Poincaré map. It effectively reduces the
dimensionality of the dynamics by one [10]. The monodromy matrix then serves as
a linear map that transitions the initial state to the final state (in discrete intervals
of the period of the orbit), corresponding to individual points on the Poincaré
map [14]. Knowledge of the flow in the phase space of the system in the vicinity of
this point on the map can be extracted from the eigenvalues and eigenvectors of
the monodromy matrix. Since the selection of the initial point is arbitrary, the can
eigenvectors change for each individual initial state along a period orbit but the
eigenvalues remain the same for a particular orbit as it is a property of the orbit
itself.

Recall that the linearization performed in Chapter 2 of the EOMs was done
with the assumption that the system is very close to the equilibrium point. That
same analysis can be extended for linearization of motion about an entire LPO,
however, now the Jacobian matrix will have explicit time dependence. Details of this
analysis are provided in Abraham [2] and Rausch [14], among others. Essentially
the analysis uses Floquet’s Theorem given in Perko [20] to obtain a solution for the
monodromy matrix to get insight into eigenvalues of the monodromy matrix since
the eigenvalues characterizes the stability of the orbit.

It is shown in Abraham [2] that for a closed, periodic orbit, at least one
eigenvalue of the monodromy matrix is one, i.e. Λ = 1 where Λ represents one
of the eigenvalues of the monodromy matrix. Furthermore, for periodic orbits in
the CR3BP, due to the symmetry about the x-z plane and time invariance of the
system under t→ −t, it can be shown that eigenvalues of the monodromy matrix
occur in reciprocal pairs as shown in [11] [21] [10] [14].

Λi =
(

Λ1,
1

Λ1
, Λ2,

1
Λ2
, 1, 1

)
(3.2)

Once the eigenvalues are obtained, eigenvectors can be computationally generated.
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3.3 Invariant Manifolds
Having obtained the eigenvalues and eigenvectors of the monodromy matrix, in-
vestigations into the stability characteristics can now begin. It is known that each
eigenvalue has an associated eigenvector. From basic stability analysis, eigenvalues
with negative real part are stable and the corresponding eigenvector spans the
stable subspace, while eigenvalues with positive real part are unstable and the
corresponding eigenvector spans the unstable subspace. The phase space of the
system is the entire set of possible states that an object in the system can achieve.
The stable and unstable subspaces are a subset of the entire phase space such
that motion along the eigenvectors and in turn their respective subspaces implies
motion or trajectories of the system in phase space. The set of trajectories that
exponentially diverge due to a perturbation in the initial conditions are defined
as the unstable trajectories, conversely, trajectories that exponentially converge to
the periodic orbit are called stable trajectories. The set of all unstable trajectories
originating from the periodic orbit form a surface in the three-dimensional space.
This surface is called the invariant unstable manifold WU and likewise, the surface
formed by the set of all stable trajectories terminating at the periodic orbit is called
the invariant stable manifold W S. Since the trajectories are entirely dependent on
the eigenvectors of the periodic orbit and do not vary under the natural dynamics
of the system, these are called invariant.

It is important to note that for a neutrally stable orbit (no positive or negative
eigenvalues), like in the case of orbits in the two-body dynamics, there are no stable
or unstable manifolds as a perturbed initial state results in a new orbit around the
final state. In case of a purely stable orbit, there will exist only a stable manifold
but no unstable manifolds, hence it is not possible to naturally move away from
an orbit as the perturbations will bring the spacecraft back to the initial orbit.
Fortunately, the orbits about collinear Lagrange points are unstable in nature,
i.e. there exists atleast one stable and one unstable eigenvalue with corresponding
eigenvectors [10], therefore it is possible to use the existence of stable and unstable
manifolds to design low energy trajectories to and from the LPO.

Another important aspect of manifolds is that apart from the trajectories
originating from and terminating at unstable periodic orbits, manifolds are also
possible for the Lagrange points themselves. Since the collinear Lagrange points
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are unstable, there are trajectories possible to and from these points. Hence there
are manifolds possible for periodic orbits as well as for the Lagrange points [10].

3.4 Generation of Manifolds
It is possible to computationally generate these manifolds using the eigenvectors
of the monodromy matrix and their associated stable and unstable subspaces.
However, while the eigenvectors do specify an orientation in space, they are not
specific to a direction and hence multiplying them with a negative number gives
a new direction for the vector. Therefore, for each type of manifold, there exist
two directions in which the manifold can evolve. These directions are termed as
interior manifold for the manifold moving towards the smaller primary and exterior
manifold for manifold moving towards the larger primary. The initial state of the
periodic orbit is perturbed using the required eigenvectors by either adding to
or subtracting the scaled eigenvector from the initial state and then numerically
integrated either forwards or backwards in time,

#–

Xpert = #–

X ± ε
#–

V

|V |
(3.3)

ε = η√
V 2
x + V 2

y + V 2
x

where ε is the normalized magnitude of the perturbation and #–

V represents the
appropriate eigenvector for the desired manifold. The ± sign represents the interior
and exterior directions of the evolution of the manifold. If a stable manifold is
desired, then the eigenvector #–

V S associated with the stable eigenvalue is used and
then the integration is performed backwards in time since the trajectories on this
manifold approaches the periodic orbit. On the other hand, if the unstable manifold
is desired, the appropriate eigenvector #–

V U is used and the integration is performed
forwards in time since the trajectories on this manifold evolves forwards in time as
it moves away from the initial orbit.

The process described above will produce a single trajectory on the manifold as
only one state was perturbed. To generate a representation a surface, the periodic
orbit is first discretized to have a preselected number of states along the orbit. This
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selection will be based on the desired number of trajectories on the manifold. Then
each state is perturbed as shown above, integrated forwards in time for one period
to generate the monodromy matrix for each state to generate the eigenvectors
for each state. Then each state is perturbed using their respective eigenvectors
and integrated based on the type on manifold. The procedure as discussed in
refrences [2] [10] and [22], is summarized as follows.

• The initial conditions for the periodic Lagrange point orbit is corrected using
the single shooting algorithm to ensure that no discontinuities exists between
the initial and final states.

• The state is integrated for one period and the monodromy matrix is calculated.

• The eigenvalues and eigenvectors of the monodromy matrix are calculated
such that #–

V S is the eigenvector associated with the stable eigenvalue and #–

V U

is the eigenvector associated with the unstable eigenvalue.

• A perturbation magnitude ε is defined as approximately 100 km [10] in non-
dimensional units and is normalized based on the velocity of the orbit state
under consideration. A small perturbation will cause the trajectory to remain
close to the LPO and will take a long time to move away from the LPO,
requiring longer integration times to generate the trajectory until a certain
point in space. A large perturbation will cause the linear assumption of the
STM to be violated and the produced trajectories will not represent the actual
manifold. Parker [10] mentions that for Earth-Moon systems, perturbations
are of the order of 100 km and for Sun-Earth system, they are of the order of
1000 km.

• The eigenvectors are normalized. This is done to ensure a commensurate
amount of perturbation for each state.

• The perturbation is calculated based on the Eq. (3.3).

• The perturbed states are then integrated forwards for unstable and backwards
for stable manifolds.

• The entire process is repeated for each discretized initial state on the periodic
orbit.
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3.5 General Optimization Problem
Now that the manifolds are defined, it is necessary to discuss how they are used to
generate optimal trajectories. The objective of this thesis is to utilize the invariant
manifolds of the LPOs to obtain optimal transfers from the LPO to a LEO orbit.
This can be done by picking a point on the manifold and calculating the ∆V
required to transfer the spacecraft to an orbit around the Earth. The point on the
manifold that provides the minimum ∆V is considered to be the optimal point for
initiating the transfer. Selection this optimal point is the task of the optimization
algorithm.

In general, an optimization problem can be stated as follows,

min(or max) f( #–x )

subject to x ∈ S (3.4)

where f( #–x ) (also known as the cost function) is the function that is required to be
minimized, #–x is the vector of decision variables and S is the set of all feasible values
of #–x . For the purposes of this thesis, the decision variable vector #–x is represented
by the the state vector #–

X, since it is desired to find the state of the spacecraft
which will result in the minimum transfer cost and S will be the set of all points
on the manifold. f( #–

X) will be a function that calculates the minimum ∆ #–

V (or
transfer cost) required to transfer to LEO.

3.6 Optimization Techniques
Optimization problems can be various types such as linear programming, non-linear
programming, convex optimization, discrete optimization, constrained optimization,
unconstrained optimization among others. There are a multitude of optimization
techniques available, each designed to optimize a specific type of problem. It is very
difficult to find a single technique capable of optimizing all kinds of problems. The
most common types of optimization techniques are gradient-based methods covered
in a variety of texts such as Sergiy and Panos [23] and Nocedal and Wright [24].
These, as the name suggests, uses the gradients of the cost functions to determine
the extremum of the function at a particular value of the decision variable until
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the function value converges to a pre-defined tolerance. The first- and second-
order optimality conditions provide the necessary and sufficient conditions for
investigation of an optimal solution [23].

While gradient based methods are widely used, there are a number of difficulties
with using such methods. First, these require an initial estimate of the solution to
be accurate to a certain degree to be able to reach a solution within finite time.
While for simple problems this can be easily accomplished, for problems with higher
complexities, generation of said initial guesses can be very tedious if not impossible.
Second, while it is possible to obtain the gradients and Hessian of the cost functions
used in the evaluation of the optimality conditions for fairly complex problems, for
problems where the cost functions are not defined as simple equations, obtaining
analytical expressions for the gradient and Hessian can be very computationally
expensive and in many cases, impossible. For such problems, multiple heuristic
based optimization methods have been developed such as Evolutionary algorithms
which includes algorithms like Bacteria Foraging, Genetic algorithms among others.
These are designed on the patterns of evolution of organisms. Swarm algorithms
which includes techniques like Particle Swarm, Ant colony optimization etc. are
based on the social interactions within a group of organisms and Physical algorithms
with methods like Simulated Annealing, Ray optimization among others. These
are based on the physical systems that occur in nature [25]. These techniques are
based on heuristic techniques which circumvent the need to calculate the gradients.

3.7 Particle Swarm Optimization
Particle swarm is a swarm intelligence algorithm first introduced by Kennedy and
Eberhart in 1995 [26]. It is based on the social interaction and swarming behavior of
a flock of birds. The basic idea behind the algorithm is based on social interaction
between particles (birds) in a swarm to reach a desired location (food). It is robust
technique and has been widely used in a variety of applications [27]. The most
attractive part is that the algorithm comprises of just two simple equations to
model the swarm behavior

vi+1 = CI v
i + CC rand(0, 1) [XBest

P −X i]
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+CS rand(0, 1) [XBest
G −X i] (3.5)

X i+1 = X i + vi+1 (3.6)

where X i is the decision variable at the ith iteration. The term, v, is generally called
the velocity but is technically a ∆X update to the current position calculated at
then end of the iteration. XBest

P and XBest
G are value of the decision variable that

yields the best value of cost function till the ith iteration for each individual particle
in the swarm and any particle in the swarm respectively. The variables CI , CC and
CS are the inertial, cognitive and social components of the velocity. CI represents
the tendency of the particle to follow the current path i.e. the Newtonian motion.
Each particle ’remembers’ its best known location (location of minimum cost) and
this is represented by CC which is the cognitive component and it directs the motion
of the particle towards a previously known best location. Finally, CS represents
the component that is gained through the social interaction of the swarm. The
swarm is able to communicate the best known location untill the current iteration
and thus the particle will attempt to reorient its position based on this global
best location [2] [26]. The values for CI , CC and CS are based on the works by
Abraham [2] and Conway [28], [29] and are listed below.

CI = 0.15 (3.7)

CC = 1 (3.8)

CS = 1 (3.9)

3.8 Search Space
Since the search space for the problem under consideration consists of all points
on each individual trajectory of the manifold, it is convenient to parameterize the
space space based on the trajectory number k and the location of the point from
the LPO defined by the value τ such that

Xmanifold(k, τ) ∈ W S/U (3.10)

where W S/U represents the stable and unstable manifold sets. The value τ is
normalized over the entire TOF of a particular trajectory and lies between (0, 1).
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The trajectory number k is also calculated as the modN , i.e k = mod (k,N). This
ensures that if the trajectory number is exceeded greater than N , it will still remain
a valid trajectory in the search space. This allows for a convenient and standard
update of the position of every particle throughout all trajectories in terms of k
and τ .

3.9 Boundary Conditions
Now that the search space is parameterized, the velocity update for each particle is
defined based on the two parameters introduced above namely, trajectory number
k, and the time since departure from the LPO called τ , normalized between 0 and 1.
However, since each position update adds to the previous known location, there is
a possibility that the particle might end up outside the allowable space. Therefore,
certain boundary conditions need to be imposed to maintain a particle within the
search space. The limits of the search space has been defined above, it also helps to
limit the maximum change in the trajectory number (i.e. velocity in the parameter
δk) and the maximum jump in the location based on time δτ . The following limits
are imposed.

δτmax = ±1
2 (3.11)

δkmax = 1
2 N (3.12)

vi+1
max =

[
δkmax δτ

]
(3.13)

where N is the total number of trajectories in the manifold. Additionally, in case
the particle is found to leave the search space, the particle location and the velocity
for the next iteration is changed as follows.

X i+1
k = mod(k,N) (3.14)

X i+1
τ = 1.0 (if τ > 1)

X i+1
τ = 0.0 (if τ < 0) (3.15)

δτ i+1 = 0 (3.16)
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where i is the iteration number, X i+1 is the updated state of the particle, δτ is the
change in τ of the particle for the next iteration. Notice that δk is not changed as
it can loop back upon itself based on the mod function.

3.10 Cost Function
The most important element of the optimization problem is the cost function. It
determines the complexity of the problem and is a major concern when selecting an
appropriate method for optimization. This work focuses on the two-burn impulsive
transfer from the manifold to an LEO orbit. This is achieved using the solution
to Lambert’s problem where the method exploits the natural geometry of orbits
in the two-body dynamics to determine the initial and final velocity vectors and
therefore the trajectory in the two-body system. The procedure is simple and is well
studied in the literature ( [30], [31], [9]). Given the initial and final position vectors,
it is possible to obtain the velocity vectors by solving a TPBVP. The selection
of this methods was driven by the fact that computations involving numerical
integration methods tend to be very expensive and time consuming. Using this
method, one can obtain the quick initial estimates of the impulses required to
transfer from the manifold to the desired Earth orbit in a very time efficient manner.
It also allows quick variation of the parameters of the PSO algorithm and allows for
experimentation with different types of cost functions by adding the TOF constraint
along with velocity change ∆V .

The Lambert’s solution is utilized here to obtain the velocity vectors and the
magnitude of the total ∆V required for the complete transfer from the manifold
to an LEO orbit. The objective is to find the transfer scheme which minimizes
this ∆V . It must be noted that Lambert’s solution works for a single gravitational
center of attraction and as such will provide incorrect values for the velocities.
However, this method is primarily used to facilitate quick analysis of the transfers
and the expected orders of magnitudes for the ∆V requirements.

The difference in the gravitational potentials of the Earth system compared to
the combined Earth-Moon system yields a 1.2% difference, hence the velocity values
obtained via this method can provide good initial estimates for gradient-based
optimization techniques. To minimize the impact of using two different systems,
the search space boundary close to the LPO is defined by the plane normal to the
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x-y plane located at a distance equal to of radius of the Sphere-of-Influence (SOI)
of the Moon along the x-axis. This is done because transfers originating closer to
the Moon will result in higher deviation in the final result.

3.11 Particle Swarm Optimization Procedure
Having defined the cost function, the entire solution process can now be summarized
as follows:

• The particles for the procedure are randomly initialized based on τ and k
values. The values of initial velocity v and global best XBest

G are also initialized
for use during the first iteration.

• For each particle, the τ and k values are converted to the state vector and
lies on the search space defined within the specified boundaries.

• The final state vector on the LEO is defined as this will form the final condition
(second radius vector) for the Lambert’s problem solver.

• The initial state on the manifold is converted to the dimensional, Earth-
Centered Inertial (ECI) system from the canonical, CR3BP system.

• The initial state (of the particle) and final state (of the LEO) are now passed
to the Lambert’s solver and the value for ∆V is obtained and stored. This
process is repeated for every particle in the swarm.

• The value of ∆V (cost function) is now compared to the personal best XBest
P

and the global best XBest
G to determine the best transfer location in the

current iteration.

• The velocity update vi+1 is calculated based on the X i, XBest
P , XBest

G and the
previous velocity vi.

• The boundary conditions on the particle position X i+1 and the velocity vi+1

are imposed as required.

• A convergence criteria is defined as a predefined percentage of particle in the
vicinity of the XBest

G .
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• The states of the particles are updated with the calculated velocities and
the entire process is repeated till either convergence is achieved or till the
maximum loop iterations have been completed.

The global best obtained from the above procedure is the closest point to the global
optimal location on the search space found by the PSO algorithm.

3.12 Lambert’s Solver
The method of solution for the transfer ∆V in this thesis is based on the Lambert’s
Problem solver. The method uses two-body assumption to find the initial and final
velocity requirements, given the initial and final radius. Additionally it also requires
the transfer time to be provided to the solver to obtain the required velocity changes.
The procedure to find the solution to the Lambert’s problem is well established
and studied in astrodynamics. The basic algorithm is taken from Curtis [30] and
the transfer time of flight between the two radii is obtained from Prussing and
Conway [31] as the transfer time for the minimum energy semi-major axis between
the two radii. The initial radius vector is taken as the initial point from which the
transfer is initiated. The second and final radius vector is the desired vector in the
final orbit. Since this method requires a final vector to be given, the final orbit
must be known and well defined and a state on the final is then selected as the
target to be achieved. The procedure as presented in [30] is summarized as follows.

Let #–r 1 and #–r 2 be the initial and final radius vectors respectively. Then the
transfer angle between the two radii can be calculated using the equation

cos ∆θ =
#–r 1 · #–r 2

r1 r2
(3.17)

r1 =
√

#–r 1 · #–r 1 and r2 =
√

#–r 2 · #–r 2 (3.18)

where ∆θ is the transfer angle between the two radii. Since there is a quadrant
ambiguity associated with the cos−1 function, the following equation is used

( #–r 1 × #–r 2)Z = r1r2 sin(∆θ) cos i (3.19)

where ( #–r 1 × #–r 2)Z represents the normal component of the cross product of #–r 1

and #–r 2. The sign of ( #–r 1 × #–r 2)Z is used to determine the required quadrant of the
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transfer angle. For prograde trajectories this is done as

∆θ =
cos−1

( #–r 1 · #–r 2

r1 r2

)
if( #–r 1 × #–r 2)Z ≥ 0

2π − cos−1
( #–r 1 · #–r 2

r1 r2

)
if( #–r 1 × #–r 2)Z < 0

The method presented in Curtis [30] uses Lagrange coefficients f, g, ḟ and ġ
and the universal variable χ to simplify the analysis. The Lagrange coefficients are
presented as follows

f = 1− µr2

h2 (1− cos ∆θ) (3.20)

g = r1r2

h
sin ∆θ (3.21)

ḟ = µ

h

1− cos ∆θ
sin ∆θ

[
µ

h2 (1− cos ∆θ)− 1
r1
− 1
r2

]
(3.22)

ġ = 1− µr1

h2 (1− cos ∆θ) (3.23)

In terms of the universal variable χ, the Lagrange coefficients can be re-written
as

f = 1− χ2

r1
C(z) (3.24)

g = ∆t− 1
√
µ
χ3S(z) (3.25)

ḟ =
√
µ

r1r2
χ
[
zS(z)− 1

]
(3.26)

ġ = 1− χ2

r2
C(z) (3.27)

where z = αχ2 and α is the reciprocal of the semimajor axis of the transfer trajectory
and ∆t is the transfer time-of-flight. S(z) and C(z) are Stumpff functions. h is
the specific angular momentum of the associated transfer trajectory. Upon equating
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and simplifying (3.21) and (3.25), a relation between ∆t and ∆θ can be obtained
as

√
µ∆t = χ3S(z) + Aχ

√
C(z) (3.28)

A = sin ∆θ
√

r1r2

1− cos ∆θ (3.29)

Simplifying the Eq. (3.28) further, we can write

√
µ∆t =

[ y(z)
C(z)

]3/2
S(z) + A

√
y(z) (3.30)

y(z) = r1 + r2 + A
zS(z)− 1√

C(z)
(3.31)

Equation (3.30) can be used to solve for z using Newton’s method iteratively
by making use of the following equation

zi+1 = zi −
F (zi)
F ′(zi)

(3.32)

where F (zi) and F ′(zi), in simplified form, are defined as follows

F (z) =
[
y(z)
C(z)

]3/2

S(z) + A
√
y(z)−√µ∆t (3.33)

F ′(zi) =
[
y(z)
C(z)

]3/2{
1
2z

[
C(z)− 3S(z)

2C(z)

]
+ 3S(z)2

4C(z)

}

+ A

8

[
3S(z)
C(z)

√
y(z) + A

√
C(z)
y(z)

]
(z 6= 0) (3.34)

F ′(zi) =
√

2
40 y(0)3/2 + A

8

[√
y(0) + A

√
1

2y(0)

]
(z = 0) (3.35)

The z obtained from the Newton’s method is then substituted in to the Lagrange
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coefficients to obtain the values of f, g, ḟ and ġ. For this, one last simplification is
performed on the Eq. (3.30) such that the Lagrange coefficients are dependent on
y(z) and Stumpff functions S(z) and C(z).

f = 1− y(z)
r1

(3.36)

g = A

√
y(z)
µ

(3.37)

ḟ =
√
µ

r1r2

√
y(z)
C(z)

[
zS(z)− 1

]
(3.38)

ġ = 1− y(z)
r2

(3.39)

The values of the initial and final velocities on the transfer trajectory are
obtained as,

#–v 1 = 1
g

( #–r 2 − f #–r 1) (3.40)

#–v 2 = 1
g

(ġ #–r 2 − #–r 1) (3.41)

Finally, to be able to use this method, the procedure requires the transfer time
between the two radii. This is obtained from the methodology described in the
Prussing and Conway [31] for the minimum energy transfer.

Let the two position vectors #–r 1 and #–r 2 be joined by a chord c. These three
lines then form a triangle. It is found that for a minimum energy transfer, the
semimajor axis is given as

am = s

2 (3.42)

s = r1 + r2 + c

2 (3.43)

where, am is the semimajor axis associated with the minimum energy transfer
trajectory. s is the semiperimeter of the triangle which can be obtained by applying
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the law of cosines using ∆θ as the angle between the radii. Then, the minimum
energy time-of-flight is obtained from

√
µtm =

[
s3

8

]1/2

(π − βm + sin βm) (3.44)

where βm for the minimum energy transfer is obtained from

sin(βm/2) =
[
s− c
s

]1/2

(3.45)

The time-of-flight, tm obtained from this method is used as the desired time of
flight from the manifold to the LEO. Since the objective is to obtain the lowest
∆V , this choice for the time-of-flight seems reasonable.

Now that the description of the problem and the various individual methods
to be used have been completely defined, the results obtained by employing the
above mentioned methodology will be presented next, followed by the discussions
and concluding remarks in Chapter 5.
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Chapter 4 |
Methodology and Results

Having described the various techniques and procedures to be followed for the
treatment of orbits, the procedures are now used for the desired orbit. The
methodology to be followed is showcased in detail and the results of each of the
previous steps are presented. The first step in finding valid solutions to the desired
problem is to validate the procedures and algorithms developed for this thesis.
For the work presented in this chapter, initially, it is attempted to recreate the
results of the work presented by Abraham et al. [1], [2]. The idea is to use the
same initial conditions to create the manifold as close as possible to the one used
by Abraham [1] and obtain an optimized trajectory for the same transfer using
the techniques developed in this thesis. Abraham et al. used a single shooting
differential corrections solver to optimize a transfer from an initial LEO to a desired
LPO using the invariant manifold and particle swarm optimization. The mission
profile in [1] are the same as the one presented in reference [2], the latter also uses
low-thrust model to find the optimal low-thrust trajectory along with a PSO/single
shooting technique.

4.1 Validation
The initial conditions used by Abraham et al. were found to be non-periodic, possibly
due to numerical error and had to be corrected through differential corrections
algorithm. For this purpose, the x-z plane intersection was first obtained by
integrating the initial conditions used by Abraham et al. (column 2 in Table 4.1)
backwards in time to obtain the state vector at positive z intersection (column
3 in Table 4.1). The conditions so obtained were corrected using the differential

53



corrections algorithm as discussed previously and are presented in column 4 in
Table 4.1.

Table 4.1. Initial Conditions for the Validation Orbit (µ = 0.012150515)

States Initial Condition Initial x-z State Corrected x-z State

x (DU) 0.86622405 0.86589479 0.86589479
y (DU) 0.01167019 -7.58941520e-19 0
z (DU) 0.18691218 0.18742934 0.18740607
ẋ (DU/TU) 0.01387055 2.16420739e-06 0
ẏ (DU/TU) 0.24527016 0.24633128 0.24632922
ż (DU/TU) -0.02179277 -2.54628854e-06 0

The period for the initial orbit as given in reference [2] is P = 2.31339 [TU].The y-
coordinate, ẋ-coordinate and the ż-coordinate of the corrected state was considered
as zero due to their small magnitudes. The algorithm took only two iterations to
reach the final state with a period of T = 2.313613. The difference in the initial
and final states after the correction was of the order 10−8 or smaller. The resulting
orbit is shown in Figure 4.1.
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Figure 4.1. Initial Orbit used for Validation in canonical units

Finally, as a last step, the initial conditions so obtained were integrated and
the point on this corrected orbit, which was closest to the initial point presented
by Abraham is shown in Table 4.2.

Table 4.2. Corrected Initial Conditions for L1 Halo orbit used by Abraham

States Initial Conditions
x (DU) 0.866224082613834
y (DU) 0.0116722218230222
z (DU) 0.186888845428483
ẋ (DU/TU) 0.0138714392076127
ẏ (DU/TU) 0.245267826404146
ż (DU/TU) -0.0217942137764217

Now that the initial conditions are established, the next step is the generation
of manifolds. The stable manifold of the orbit is shown in Figure 4.2. The number
of desired trajectories for the manifold is N = 791. The author has recreated the
orbit and manifold used in [1] with a similar color scheme.
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Figure 4.2. Manifold of the LPO as used in [1]

Having obtained the manifold, the PSO algorithm along with the Lambert’s
solver were used to optimize the slow and fast transfers to the LPO. While the
initial orbit (LEO) used in [2] was defined based on the radius and inclination, the
solver used in this thesis requires the state vector at the final condition. For this
reason, a specific final point on orbit was defined. This was done using the six
classical orbital elements. The final orbit used by Abraham ensured a circular orbit
based on the terminating condition when shooting to achieve the required initial
orbit from the manifold. Similarly, the final state vector used for the Lambert’s
solver assumed a circular orbit with a radius of 400 km, the right ascension Ω,
argument of perigee ω, and eccentricity e were taken to be zero at the final state.
The transfers in [2] were optimized for two cases, one for inclination, iLEO = 28°
and one for any inclination. For the Lambert’s solver, the cases with iLEO = 28°
and iLEO = 0° were optimized for minimum ∆V . Since an inclination change is one
of the most expensive maneuvers, an iLEO = 0° was selected in hopes to achieve
the lowest ∆V to closely represent the any inclination scenario used by Abraham.
Finally, for the single shooting method used by Abraham, the true anomaly, θLEO,
at the point of insertion into the LEO (’departure’ since the objective is to transfer
from LEO to LPO) was not a concern since the method automatically finds the
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best point of insertion based on least ∆V . However, for the Lambert’s solver used
in this thesis, the true anomaly of the desired LEO orbit had to be provided as it
would rigidly enforce the final radius vector and its spacial location with respect
to the primaries. For this reason, multiple trials were conducted to obtain the
true anomaly that gave the lowest ∆V for a particular transfer. The two kinds of
transfers as defined by Abraham [1] are as follows.

• Slow Transfer: The search space for this transfer ranges from the L1 La-
grange point until the end of the trajectory at the y-z axis crossing crossing
from the negative side, i.e. when the x-coordinate changes from negative to
positive. This transfer involves a longer coast time on the manifold, as the
spacecraft is allowed to jump on to the manifold near the Earth.

• Fast Transfer: This transfer requires the spacecraft to travel directly to
the LPO and jump on to the manifold in the vicinity of the LPO. For this,
the allowable search space for the PSO algorithm is the trajectory segments
between the initial point of the trajectory (t = 0) on the LPO and the L1

Lagrange point.

It was observed that for the slow transfer, a true anomaly, θLEO = 0° gave the
most suitable result in comparison to that by Abraham and for the fast transfer,
θLEO = 180° resulted in the lowest total ∆V cost. A comparison of the results
obtained by the two techniques are presented in the Table 4.3. The results for the
single shooting Method (SS) are taken directly from [1].
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Table 4.3. Comparison of the Lambert Solver and single shooting Solver

Solver Type i ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)

SS Slow any 3.040 0.507 3.89 150.84 3.548 154.73
Lambert Slow 0 3.063 0.80 3.60 157.76 3.863 161.37

SS Slow 28 3.047 0.629 3.76 133.38 3.676 137.14
Lambert Slow 28 3.12 0.68 3.88 177.28 3.810 181.17

SS Fast any 3.070 0.373 4.98 90 3.443 94.98
Lambert Fast 0 3.097 0.643 4.94 172.55 3.740 177.50

SS Fast 28 3.069 0.444 4.89 60.94 3.513 65.83
Lambert Fast 28 3.094 0.405 4.99 173.04 3.499 178.04

Table 4.3 shows that the ∆V for both the slow and fast transfer schemes closely
follow that obtained in [2]. The values obtained for i = 28° for both slow and
fast solutions of Lambert’s method are very close to the values obtained by the
single shooting method for the corresponding transfers. The difference is larger
between the any inclination scenario for single shooting solver and the iLEO = 0°
assumption of the Lambert’s Solver as is reasonable since it is not possible to
find the most optimal inclination using Lambert’s solver without investigating
the final orbit condition in small increments of inclination. ∆V1, which is the
energy change required to leave the parking LEO are very close in magnitude in
all cases. The ∆V2, which is the energy change required to insert the spacecraft
into the stable manifold has a slightly higher difference. This could be due to the
fact that ∆V2 occurs further away from the Earth as compared to ∆V1 and the
differences between the two-body approximation from the Lambert’s Solver and the
three-body single shooting solver used by Abraham starts to take effect. Another
reason for this difference could be due to the slight differences in the generation of
the manifold. In spite of trying to achieve a close approximation of the manifold,
it is possible that numerical error, accuracy of the integration, changes in the
’ode113’ integration algorithm provided by Mathworks might have contributed to
the differences seen above. Differences in the magnitude of initial perturbation
used when generating the manifold would have contributed to the difference. Since
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integration is performed for long periods of time to obtain the trajectories, small
initial differences can cause larger differences in the final location of the optimal
point along the trajectory.

The total TOF for both types of transfers have strong differences for the single
shooting and the Lambert solver. But, since the majority of the difference is in
the time of coast on the manifold, this could be attributed to the fact that a small
perturbation at the time of generating the manifold may cause the spacecraft to
experience multiple revolutions before leaving the LPO.

Despite the difference in the kinds of systems assumed in each case, i.e. three-
body system in single shooting and two-body system in Lambert’s Solver, the
difference in the magnitudes in the ∆VT are fairly small. This implies that the
two-body assumption in the Earth-Moon system is still valid for preliminary mission
planning. The computational time to achieve this result using the Lambert’s solver
was a fraction of the time required to solve using the single shooting technique.
This method, therefore, allows the mission planner to make quick adjustments
to the mission profile and study the changes in the overall mission ∆V costs.
Additionally, the performance of the optimization algorithm can be studied by
making adjustments to the particle swarm algorithm and studying the results can
be without being prohibited by the computation time requirements.

The solutions from Lambert’s method resulted in significant time savings com-
pared to the single shooting method. Since the Lambert’s method doesn’t require
any numerical integrations, the solutions so obtained are very quick. On average,
a single case ran for 30 seconds. This value varied in case when the maximum
number of iterations were changed or when the number of particles were changed.
Therefore, there was approximately 1400 fold decrease in time required to solve for
the lowest ∆V transfer which is a reduction by 3 orders of magnitude compared to
the single shooting technique. These time savings are significant because it the user
to change the parameters of the algorithm and study the variations very quickly.
In cases when the mission designer needs to change the number of trajectories in
the manifold or change the LPO, the results from these changes can be obtained
very quickly allowing the mission designer to explore many mission designs without
the computational expense.

An important observation that is made in accordance with the findings of
Abraham in [1] is that even with the solutions using the Lambert’s solver, the
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∆VT for fast transfers is less than that for slow transfers. This observation is
counterintuitive and lends further credibility to the solutions obtained via this
method.

It is important to mention a significant limitation of the Lambert’s solver. Since
the solver uses mathematical formulas for obtaining the solution, it is subject to
singularities that occur when the transfer angle between the initial and final radius
vector is 180°. This is depicted in Figure 4.3. It can be clearly seen that the
singularity causes the results to vary by a large value and has a potential to give
invalid results in the vicinity of 180° or 0° transfer angle.
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Figure 4.3. Results of transfer from GEO to LEO and singularity at θLEO = 180°

4.2 Final Orbit
For the remainder of the thesis, an arbitrary circular orbit with the following
classical orbital elements was selected as the desired LEO to be achieved.
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Table 4.4. Classical Elements for the final LEO

Classical Elements Value
Altitude of Periapse Rp (km) 400
Altitude of Apoapse Ra (km) 400
Eccentricity 0
Argument of periapse ω (deg) 0°
RAAN Ω (deg) 0°

This orbit is similar to that of the International Space Station (ISS) which
on 1 August 2016, 17 : 04 : 351 was at a perigee altitude of Rp = 401 km and
apogee altitude of Ra = 404 km above the Earth’s surface, with an inclination of
iISS = 51.6417°, right ascension of Ω = 190.8898°, eccentricity of e = 0.0001972
and argument of perigee of ω = 85.0276°. It needs to be stated that the objective
here is not to rendezvous with the ISS, but instead to simply attain a similar orbit
as the final LEO orbit.

The primary reason for this selection is to show ∆V requirements to reach an
LEO from the manifold. Selection of an LEO orbit makes sense because for a
sample return mission or for a mission where supplies are brought from an asteroid,
Sending the supplies to a GEO would be counter productive as to retrieve the
payload from a high altitude orbit would effectively negate any cost savings achieved
from using the invariant manifolds in the mission design. The reason for selection
of an orbit at the same altitude as the ISS is due to the fact that there has a been
a constant human presence in the selected orbit and the orbit and its environment
are well understood and modeled and hence will eliminate the need for additional
mission design associated with the parking orbit. Another reason for selecting a
LEO is that it allows for a ballistic descent for example in the case of cargo drop
scenario to the Earth’s surface further opening up the possibility of saving ∆V
costs, which would be almost impossible with a higher orbit within a limited time
frame.

1http://heavens-above.com/orbit.aspx?satid=25544, 08/1/2016 17:04:35 UTC
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4.3 Local PSO
The optimization was performed with 200 particles with a maximum of 30 iterations,
using the inertial, social and cognitive constants as mentioned earlier. A local
version of the particle swarm optimization algorithm was used to ensure that the
algorithm is not stuck in a local minima. Since the local scheme allows each particle
a limited view of the swarm, the particle will only recognize the global optimum
point achieved by another particle within its field of view. Therefore a convergence
criteria of 75% was defined for particles having converged at their global optimum
and simultaneously being within a predefined radius and cost tolerance.

For the local radius conditions, each particle can observe particles within a
’radius’ of 100 nearby trajectories, 50 trajecrtories in either direction. This implies
that for each particle, the global minimum point achieved by any another particle
within 100 trajectories of its current location becomes the global point. The local
radius is defined based on the trajectory number only and is not restricted by
τ , therefore a point located at the beginning of the trajectory near the LPO
can view another point at the end of the trajectory near the Earth. So, in this
sense, it would be unfair to call it a ‘Local’ PSO or even a ’radius’, but since
this is the conventionally accepted terminology [2], the author decided to follow it.
Additionally, unlike in [2], the particle is bounded by the trajectory number only,
hence it would make more sense to call this version of PSO a ‘partial’ local PSO.

The radius for convergence at the globally optimal point in the vicinity of each
particle is arbitrarily defined as being within a physical radius of 0.05 DU which
corresponds to a spacial radius of 19220 km with a maximum allowable ∆V cost
difference of 10−4 km/s. This can be considered as a very strict constraint but the
intention of the author behind such a constraint is to allow time for the algorithm
to find multiple local minima and then selecting the particle with the lowest cost
as the best cost and best location for that iteration. While the algorithm records
the globally lowest cost on the search space, the particles themselves are updated
based only on the locally available best location.
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4.4 Results
Since the objective of this thesis is to find the optimal return trajectories from
a LPO, this section presents results for trajectories from the collinear Lagrange
points. The particle swarm optimization algorithm was run on multiple LPO about
each point. The initial conditions, manifolds and the results are presented in this
section.

It was desired to study the variations in the ∆V requirements based on the
inclination changes, to that end, inclination was varied from 0° to 90° in 10°
increments for transfers from each LPO to observe the ∆V variations. Additionally,
due to the restriction imposed on the final orbit conditions by the Lambert’s solver,
it was decided to present the total ∆V required for multiple true anomaly cases
along the final orbit. The true anomaly was varied from 0° to 360° in 15° increments
to obtain an understanding of the energy change required along an orbit. Finally,
to obtain closest solution to an optimal point on the manifold, each true anomaly
case was solved for five trials and then the best solutions were presented.

Since the solutions using Lambert’s method did not require integration, the
results obtained using this method was very quick. The solutions for a single
true anomaly case usually took about a minute to complete. This value changed
when the number of particles, maximum number of iterations or the convergence
criterion was changed. To obtain the final results, the solutions were run for all the
mentioned true anomaly cases with 5 trials for each case, then the solution with
the lowest ∆V was selected as the final solution for that true anomaly.

4.4.1 L1 Halo Orbit

The initial conditions for this halo orbit were obtained from reference [19] and then
corrected to ensure that the orbit was periodic. The corrected initial conditions in
canonical units are found in Table 4.5 with a period, T = 2.721490 [TU].
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Table 4.5. L1 Halo Orbit Initial Conditions, (µ = 0.01215051)

States Initial Conditions
x (DU) 0.8389
y (DU) 0
z (DU) 0.15437599
ẋ (DU/TU) 0
ẏ (DU/TU) 0.25985324
ż (DU/TU) 0

The orbit is shown in Figure 4.4 and the associated manifold is shown in Figure
4.5 with 800 trajectories.
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Figure 4.5. Manifold of the L1 Halo LPO

Figure 4.6 shows the total ∆V for the selected orbit in 10° increments of the
inclination of the final orbit. The data used to create this plot is presented in
the Appendix A.1. It can be seen in Figure 4.6 that the ∆VT for θLEO = 90° and
θLEO = 270° increases as the inclination is increased. This is easy to understand as
a true anomaly of 90° or 270° corresponds to the point on the final orbit at the
extremum of z-component for the orbit and plane change at these locations are
known to be very expensive. Whereas, θLEO = 0° and θLEO = 180° corresponds
to the point at the intersection of the orbit and the apse line. A plane change at
this location results in least ∆V . In spite of changing the inclination of the final
orbit, the ∆VT requirements for θLEO = 0° and θLEO = 180° remain confined to a
small range suggesting that it is possible to achieve any inclination LEO due to
the natural flow of trajectories on the manifold. Such a case will be helpful in case
it is required to rendezvous with a spacecraft in the final LEO, then the mission
can be planned such that the time of arrival of the spacecraft from the manifold
and the location of in-orbit spacecraft is synchronized. This will reduce the ∆V
requirements for such a maneuver.
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Figure 4.6. Variation of Transfer Costs for L1 Halo LPO with True Anomaly

Additionally, if it is required to descend on to the surface of the Earth in a
particular location (for example to drop cargo) which might exist at inclination with
respect to the equator, it might be possible to reach such location when returning
from a manifold since it is possible to achieve LEOs of different inclinations. Similar
trends were seen for different halo orbits around the L1 Lagrange point.

It remains to be seen whether this trend also holds for trajectories going towards
LPOs using a stable manifold. Since it follows a similar analysis and due to the
symmetry of the manifold in the CR3BP system, it may be possible to launch a
spacecraft from an LEO towards a manifold patch point with any inclination. This
will result in saving ∆V , as the spacecraft need not be brought to a 0° inclination
before launching the spacecraft toward the manifold. This will also relax the
requirement on the location of the launch site. It may also be possible to design
trajectories to and from manifolds with launch site being at different latitudes
without incurring huge ∆V cost. However, since sites at higher latitudes fail to
make full use of the rotational velocity of the Earth, it is hard to say how this will
impact actual mission feasibility while traveling from the Earth to an LPO without
detailed analysis of mission requirements and constraints.
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4.4.2 L1 Lyapunov Orbit

The results for a Lyapunov orbit about the L1 Lagrange point are presented in this
subsection. It is desired to study the changes in the ∆V requirements based on
the changes in the trajectories originating from an initial LPO. These results help
develop reasoning for the selection of the type of initial LPO for a mission designed
to return to the Earth using the invariant manifolds. The initial conditions for the
selected orbit are taken from reference [19] and the same methodology is followed
to first correct the initial conditions, generate the unstable manifolds and finally
generate the results for a two-impulse transfer to a LEO. The corrected conditions
are given in Table 4.6 with a time period of T = 2.794929 TU.

Table 4.6. L1 Lyapunov Orbit Initial Conditions, (µ = 0.01215051)

States Initial Conditions
x (DU) 0.81892874
y (DU) 0
z (DU) 0
ẋ (DU/TU) 0
ẏ (DU/TU) 0.17422664
ż (DU/TU) 0

The orbit and the associated manifold are shown in Figures 4.7 and 4.8, respec-
tively. The number of trajectories generated in the manifold are 800.
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Figure 4.8. Manifold of the L1 Halo LPO

The manifold shown in Figure 4.8 clearly shows trajectories originating close
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to the Moon (represented by a black dot) and terminating at the intersection of
the trajectories with the y-z plane from the negative x-direction. It can be clearly
seen that none of the trajectories approach a LEO and hence, as in the case of a
halo orbit, the objective is to find the best possible location from the best possible
trajectory that minimizes the total ∆V cost to achieve the desired LEO. It is
noted that in this entire analysis, only trajectories flowing towards the Earth were
analyzed. Trajectories that approach the smaller primary (i.e. on the interior
manifold), in this case the Moon, tend to interact with the Moon in complicated
ways, at times even going through the surface of the Moon since the primaries are
modeled as a point mass. Such trajectories further complicate the analysis and have
been excluded from the analysis for convenience. Furthermore, all the transfers
originate outside the SOI of the Moon to reduce deviation in the final result due to
lunar gravitational influence. The results of the Lambert’s solution for a Lyapunov
orbit about the L1 Lagrange point in the Earth-Moon system are summarized in
the tables in the Appendix A.2 and are plotted in Figure 4.9 for convenience.
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Figure 4.9. Variation of Transfer Costs for L1 Lyapunov LPO with True Anomaly

Since the Lyapunov orbit lies entirely in the x-y plane, the manifold as well
remains confined to the plane. The results obtained for a Lyapunov seems to differ
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drastically at the first glance due to the large peaks in the final plot. However,
closer inspection shows that the peaks are due to a singularity experienced at
0 (or 360)° and 180°. Repeating the analysis in the vicinity of the θLEO = 180°
shows that the peak is obtained at exactly 180°. The results for this are presented
in Figure 4.10. Therefore, if the peaks are ignored, then the results seem similar to
the ones obtained for the halo orbit. Here, too, the maximum ∆V is required at
points close to θLEO = 90° and 270°. The is obtained primarily due to the selected
final orbit. It was found that changing the argument of periapse for the final LEO
changes the true anomalies for which the peaks occur irrespective of the type of
LPO orbit.
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Figure 4.10. Variation of Transfer Costs for L1 Lyapunov LPO near θLEO = 180°

In both halo and Lyapunov orbits, the initial ∆V on the manifold departure
point is minimal, but to achieve the desired inclination of the LEO, the final
∆V at the LEO includes the plane change maneuvers as well. This increases
the ∆V requirements as plane change maneuvers are very costly in terms of ∆V
requirements. An important conclusion from the obtained results is that it is more
∆V efficient to aim for LEO insertion points at the intersection of the apse line
with the orbit i.e. points where the spacecraft changes the z-axis sign (ascending or
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descending node). Finally, to ensure least ∆V requirement, it is desired to insert
into a 0° inclination LEO with the insertion points being at various locations around
the orbit. The geometry of the manifold will determine the ∆V trend in this case
since RAAN, Ω, is undefined and hence there is no ascending or descending node
in this case.

Untill now, the analysis was confined to orbits around the L1 Lagrange point.
It is desired to investigate ∆V requirements when the initial LPO is around a
different Lagrange point. The following subsections present transfers from L2 halo
and Lyapunov orbits.

4.4.3 L2 Halo Orbit

To develop a more detailed understanding of the transfers in the CR3BP system,
focus now shifts to the L2 Lagrange point. The analysis now becomes slightly more
complicated as the LPO will now lie further away from Earth. Additionally, care
must be taken in selecting the manifold about which the analysis is performed.
As noted earlier in Section 4.4.2, trajectories traveling directly towards the Earth
will now encounter the Moon first. The trajectories on the interior manifold
are created as a result of complicated interaction with the Moon’s gravitational
field and therefore cannot be relied upon for reasons mentioned earlier. For this
reason, again, we focus on the exterior manifold as initially flow away from the
Earth but eventually circle back and travel towards the Earth albeit after a long
time. As was the case with previous orbits, the initial conditions taken from
reference [19] are first corrected, manifolds are generated for 800 trajectories and
then the analysis is performed and the resulting tables are presented in Appendix
B.1. The corrected initial conditions for this orbit are given in Table 4.7 with a
time period of T = 3.409809 TU.
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Table 4.7. L2 Halo Orbit Initial Conditions, (µ = 0.01215051)

States Initial Conditions
x (DU) 1.1802
y (DU) 0
z (DU) 0.02642143
ẋ (DU/TU) 0
ẏ (DU/TU) -0.15977637
ż (DU/TU) 0

The orbit is shown in Figure 4.11. The exterior manifold is shown in Figure 4.12.
It can be seen that the trajectories initially flow away from the Earth but finally
terminate closer towards the Earth upon intersection with the y-z plane. The
integration times to generate these manifolds were longer to allow the trajectories
to terminate at the y-z plane. It can seen in the Figure 4.12 that the trajectories
are further away from the Earth and they do not approach the Earth or Earth
orbits directly.
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Figure 4.12. Manifold of the L2 Halo LPO

The results of the Lambert’s Solution for a Halo orbit about the L2 Lagrange
point in the Earth-Moon system are summarized in Figure 4.13

Figure 4.13 shows that the trends for ∆V follow the ones obtained for L1 halo
orbit. They are largely a function of the desired final location on the LEO rather
than the inclination. For each inclination, there exists points on the manifold that
allows ∆VT in similar range. Minimum ∆VT can be achieved at θLEO = 0°. Since
the shape of the manifold is such that it flows around the Earth and is not confined
to the x-y plane, there exists points on the manifold that allow least ∆V for any
inclination. Hence when returning to LEO from an Earth-Moon LPO, it is possible
to attain almost any desirable inclination since ∆VT is not a constraint.
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Figure 4.13. Variation of Transfer Costs for L2 Halo LPO with True Anomaly

It is possible that this behavior is common among manifold going towards the
larger primary irrespective of the three-body system under study. Similar studies
can by conducted for different systems where the two-body assumption is valid
such as Jupiter’s system with its natural satellites.

4.4.4 L2 Lyapunov Orbit

This section presents the results of the transfers from the manifold of an L2 Lyapunov
orbit. The analysis is presented to study if the results observed earlier follow a
trend. The initial condition for the selected orbit is taken from reference [19] and
then corrected to obtain a closed orbit. For reasons mentioned earlier in subsection
4.4.3, the exterior manifold is selected. The initial conditions, the orbit and the
manifold are presented in Table 4.8, Figures 4.14 and 4.15.
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Table 4.8. L2 Lyapunov Orbit Initial Conditions, (µ = 0.01215051)

States Initial Conditions
x (DU) 1.17628287
y (DU) 0
z (DU) 0
ẋ (DU/TU) 0
ẏ (DU/TU) -0.12341633
ż (DU/TU) 0

For this orbit, the time period is T = 3.398196 TU. The orbit is shown in the
Figure 4.14 and the corresponding manifold can be seen in Figure 4.15.
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Figure 4.15. Manifold of the L2 Lyapunov LPO

The results of the Lambert’s Solution for the Lyapunov orbit about the L2

Lagrange point in the Earth-Moon system are summarized in Figure 4.16.
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Figure 4.16. Variation of Transfer Costs for L2 Lyapunov LPO with True Anomaly

The peaks at θLEO = 0° and 180° are clearly seen in the Figure 4.16. As was
the case in the previous result with the Lyapunov orbits, here too the peaks are
localized near two specific points. Figure 4.17 provides a closer look at the peaks
near the θLEO = 180°. Similar to the previous case, the values jump considerably
at 180° suggesting an anomaly caused due to the geometries of the position vectors
used by the Lambert’s solver.
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Figure 4.17. Variation of Transfer Costs for L2 Lyapunov LPO near θLEO = 180°

Since these peaks are not observed for halo orbits about either of the two
Lagrange points under consideration, it seems that the geometries of the posi-
tion vectors of the particle and the insertion point on the LEO may be causing
mathematical anomalies. To better understand these, the same analysis was again
conducted on a different final orbit arbitrarily defined.

4.5 Variation with Final Orbit
It was desired to check the variation of the results with a change in the final orbit.
This was done primarily to check if the orbit geometries had a role to play in the
results. An arbitrary elliptical orbit was defined with the parameters given in Table
4.9.
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Table 4.9. Classical Elements for an Arbitrary elliptic LEO

Classical Elements Value
Altitude of Periapse Rp (km) 400
Altitude of Apoapse Ra (km) 500
Eccentricity 0.0073
Argument of periapse ω (deg) 20°
RAAN Ω (deg) 40°

The results for the same Lagrange point orbits as used before are presented
in this section. The results are generated for 15° increments of the true anomaly
and for inclinations of 0° , 20° , 40° , 60° , 80° and 90°. Just as in earlier cases, the
results are summarized in the from of a plot. For convenience, the tables for the
solutions are not included.

Figure 4.18 shows the ∆V costs for the L1 halo LPO using the classical elements
from Table 4.9 for the final LEO orbit.
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Figure 4.18. Transfer Costs for L1 halo LPO for elliptic LEO

The results shown in Figure 4.18 are similar to the ones obtained previously
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however, there is a shift in the location of the peaks corresponding to the maximum
and minimum z-coordinate along the orbit. The troughs are the point corresponding
to the ascending and descending nodes. These seem to occur at approximately
160° and 340°. This result again suggests that there are two locations along the
orbit where it is possible to insert a spacecraft into an orbit of any inclination with
modest increment in ∆V . There is a general increase in the ∆V requirements as
the inclination is increased.

Figure 4.19 shows the ∆V costs for the L1 Lyapunov LPO using the classical
elements from Table 4.9 for the final LEO orbit.

0 45 90 135 180 225 270 315 360

True Anomaly of LEO, θ
LEO

 (deg)

3

4

5

6

7

8

9

∆
 V

T
 (

k
m

/s
)

i = 0
i = 20
i = 40
i = 60
i = 80
i = 90

Figure 4.19. Transfer Costs for L1 Lyapunov LPO for elliptic LPO

The result in Figure 4.19 is slightly different from the one presented in Figure
4.9. The first observation is that unlike the previous case, there are no singularity
peaks in the solution. This lends credibility to the assumption that the peaks are
caused due the geometry of the selected final orbit. The results show two peaks
that correspond to points at the extreme ends with maximum z-component. This
result also shows two troughs what corresponds to the ascending and descending
nodes. The results seem to follow the results of the halo orbit and seem to suggest
that it may be possible to reach final orbits of different inclinations.
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Figure 4.20 shows the ∆V costs for the L2 halo LPO using the classical elements
from Table 4.9 for the final LEO orbit.

0 45 90 135 180 225 270 315 360

True Anomaly of LEO, θ
LEO

 (deg)

2

4

6

8

10

12

14

∆
 V

T
 (

k
m

/s
)

i = 0
i = 20
i = 40
i = 60
i = 80
i = 90

Figure 4.20. Transfer Costs for L2 Halo LPO for elliptic LEO

The results in Figure 4.20 are quite different than the ones shown in Figure
4.13. There seems to be a gradual increase in the ∆V requirements along the orbit.
While the values of ∆V seem to be large, they do not seem to be a result of a
singularity. Also, there seems to be a region along the final orbit where it may be
possible to achieve an LEO of various inclinations. The locations of the minimum
∆V insertion points seem to be highly sensitive to the type of LEO being achieved.

Figure 4.21 shows the ∆V costs for the L2 Lyapunov LPO using the classical
elements from Table 4.9 for the final LEO orbit.
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Figure 4.21. Transfer Costs for L2 Lyapunov LPO for elliptic LEO

The results in Figure 4.21 follow the results in Figure 4.20 closely. Unlike the
case with L1 Lyapunov orbit in Figure 4.16, the variation in ∆V requirements with
inclination follows a very different trend. This suggest that the kind of orbit does
not dictate the cost of transfer. Instead, it seems that Lagrange points and the
direction of their associated manifolds contribute to the final solution along with
the selection of the final LEO.

The results seem very sensitive to the type of manifold being used as well
as the type of orbit to be achieved. It seems reasonable that such dependence
exists, as the energy requirements and the direction of flow of trajectories on the
manifold would intuitively have an influence on the ∆V required for transfers.
Multiple iterations need to be performed to be able to establish with confidence the
least ∆V consumption as that would require the mission designer to check various
combinations of the Lagrange point and the final orbit conditions. Hence while
this method is capable of doing quick analysis of the search space, it needs to be
combined with other techniques to provide complete solutions.

The next chapter will summarize the results and draw conclusions from the
analysis that is performed. Additionally, the future scope of work will be established
that will serve as a natural extension of the current work.
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Chapter 5 |
Summary, Conclusions and
Future Work

This chapter focuses on summarizing the results obtained in Chapter 4, the con-
clusion that can be drawn from them and the ways the current analysis can be
improved to obtain better more accurate results.

5.1 Summary and Conclusions
In Chapter 4, it was shown that the results of the two-body Lambert’s solver
approached the ones obtained from the single shooting method used by Abraham [1].
It was seen that despite the two-body assumption used in the Lambert’s solver, the
results closely matched those obtained by Abraham. The slow and fast transfers
were approximated by limiting the search space. To obtain the minimum ∆V , the
true anomaly, θ, of the final orbit was changed multiple times to finally obtain
θ = 0° for slow transfers and θ = 180° for fast transfers. The inclination was
adjusted manually and was assumed as i = 0° for the ’any inclination’ case as
presented in [1]. The transfer time from the LEO to manifold point (recall that
the analysis is performed backwards in time from manifold point to LEO for stable
manifolds) was assumed as the minimum energy TOF as detailed in Chapter 3.

The results obtained from the Lambert’s solver were very quick. The solutions
for a single true anomaly took in general less than a minute. Compared to the
single shooting algorithm used by Abraham, the computational time is reduced by
a factor of approximately 1400 or by 3 orders of magnitude. The time savings are
primarily due to the fact that unlike in single shooting, there is no requirement
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for integrating the trajectory of the spacecraft from a point on the manifold in
Lambert’s solver. This allows the Particle Swarm Optimization algorithm to scan
the search space very quickly and obtain the transfers with the lowest ∆V . This
allows the mission designer the freedom to plan missions from various Lagrange
point orbits and make adjustments to suit the requirements.

Additionally, it is possible to conduct detailed analysis based on the results
of the Lambert’s solution as the ∆V1 and ∆V2 vectors are obtained from this
method and these can then be used with single shooting methods as the initial
guess. Furthermore, it is possible to obtain the coordinates of the particle with
the minimum ∆VT as obtained from the PSO algorithm. Therefore, it is possible
to run the single shooting algorithm in a reduced search space to find the closest
point to optimum solution. This also results in reduced time as less points need to
be tested to find the solution.

Since it was shown that the Lambert solver provides close approximations for
the stable manifolds, i.e. for missions leaving Earth and going towards an LPO, it
was assumed that the analysis could be reliably extended to missions returning to
Earth from LPOs, i.e. unstable manifold due to the symmetry of the manifolds
as shown in the Chapter 4. The reason for this is because that the transfers take
place in the sphere-of-influence of the Earth. However, the solutions presented in
this thesis would need to be confirmed with other methods to be considered valid.

The objective of this thesis is to provide a method to reduce the computational
requirement associated with mission design in the Earth-Moon system and to
analyze the approximate ∆VT requirements for Earth return missions from different
LPOs and how these vary due to the type and location of the LPOs. The former
has been validated using work from the literature, the latter formed the second
half of Chapter 4. Analysis was conducted from multiple LPOs of two kinds,
three-dimensional halo orbits and two-dimensional Lyapunov orbits. The analysis
was restricted to L1 and L2 Lagrange points due to difficulties in obtaining the
manifolds from the L3 orbits.

To present a more complete analysis, the true anomaly of the location of the final
point on the desired final orbit was varied from θ = 0° to θ = 360° in increments
of 15°. The inclination of the final orbit was also varied from i = 0° to i = 90° in
increments of 10°. It was observed that for halo orbits, the lowest ∆V was obtained
for θ = 0°, θ = 180° and θ = 360° for all inclinations. Additionally, it was observed
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that ∆VT around the final orbit was not sensitive to the inclination of the final orbit.
Generally, the ∆VT increased with inclination however, the ∆VT requirements for
the above mentioned locations for all inclinations remained confined to a small
range. This suggests that if the final point on the desired orbit is selected as either
θ = 0° or θ = 180°, then it is possible to reach an orbit of any inclination from
the unstable manifold without high ∆V costs. It was found that this result is
not specific to the kind of halo orbit. A halo orbit around the L2 Lagrange point
also exhibits similar results. Due to the three-dimensional nature of the LPO, it
becomes possible to reach different inclinations of the final orbit. Conversely, based
on this result, it is reasonable to assume that it is possible to leave an Earth orbit
and approach a manifold point from any inclination therefore, the constraints on
the location of the launch site is relaxed.

The Lyapunov orbit, similar to the halo orbits, did not exhibit sensitivity
to the inclination of the final orbit. The results, however, show large peaks at
0° , 180° and 360° which were not exhibited by the halo orbit transfers. Since the
Lyapunov orbit lies entirely in the x-y plane, the geometry of the initial and final
radius in the ECI system seemed to be the reason for these peaks causing the
solution to approach singularities. The particle swarm algorithm is able to find
the patch point with minimum possible ∆V which results in the solution moving
away from the optimal configuration of a Hohmann transfer which happens at
180° transfer angle. Despite moving away from 180° transfer angle configuration,
the resulting values for ∆V is very high. Further proof of these values being a
result of singularities is provided by the fact that the ∆V at ±0.1° away from
0° (or 360°) and 180° gives much smaller values of ∆V .

The above results were obtained by using a very basic orbit. To establish
trends and further study the solutions, another orbit with arbitrary classical orbital
elements was selected and the analysis was repeated. It was found that while it
was true that it is possible to achieve final LEOs of many inclinations from both
halo and Lyapunov orbits, the point of insertion on the LEO to achieve this was
dependent on the kind of LEO and its classical orbital elements. Specifically, it
seems that argument of periapse, ω, and right ascension of the ascending node, Ω,
have a strong influence on the final results. While the kind of orbit, either halo or
Lyapunov did not affect the result, the Lagrange point under consideration and
the direction of the associated manifold of the LPO had an affect on the final
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solution. Changing the kind of LEO that was being targeted seemed to eliminate
issues related to singularities due the mathematics used in the Lambert solver. It
is assumed that due to ω = 0°, Ω = 0° along with a circular orbit may have caused
mathematical singularities with the position vector of the manifold point and that
of the LEO insertion point.

Finally, this methods allows one to study the kinds of transfers that are possible
and the conditions that are needed for such transfers. This kind insight may prove
to be very computationally expensive with a more involved technique.

5.2 Limitations
While the method used has some advantages like reduced computational require-
ments, algorithmic simplicity, ability to study the variations in ∆V due to different
final orbit conditions, it also suffers from some limitations. The analysis is performed
with a two-body approximation, this results in some fundamental inaccuracies in
the solutions process. Due to the setup of the problem, it is required to provide
the algorithm with a specific location in the final orbit. While it may help the
mission designer to study feasible final orbits, many times it may not be possible to
target a specific point on the final orbit. Care needs to be taken to ensure that the
transfers begin outside the SOI of the Moon. Since perturbations from the other
bodies are neglected, the final solutions will deviate from the reality even if the
manifolds are generated with an ephemeris model since the solver does not require
integration of the trajectory to obtain the solution. While it is possible to repeat
the analysis multiple times, it becomes very hard to select the best LEO as it is not
possible to work through all combinations of the Lagrange point orbits and final
LEO configurations. A technique which doesn’t require one to specify the exact
kind of orbit to be achieved and the location of the point of insertion is versatile
and robust.

5.3 Future Scope
The current analysis can be expanded upon in multiple ways. First, in this
analysis, the manifolds were generated without considering the planetary and solar
perturbations. These can be incorporated using an ephemeris model in the solution
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process to approach a more realistic result. Different kinds of LPOs can be examined
around the collinear Lagrange points. Also, orbits around the equilateral Lagrange
points can be studied to perform a complete study of the Lagrange point orbits
in the Earth-Moon system. The same analysis can be performed in a different
three-body system to quickly study the mission requirements. It is possible to
combine this technique with a gradient based method like the single shooting among
others which may allow a quicker, accurate solutions due to an available initial
guess and by reducing the size of the search space. A study can be performed
documenting the computational time savings obtained from a combined Lambert’s,
gradient based solution and PSO as compared to simple gradient based solution. A
comparision study may be performed using different optimization algorithms and
their performance can be compared. Variations of the particle swarm algorithm
can be implemented and studied for accuracy and computational performance. A
complete mission design study can be performed using this method as a preliminary
analysis and then proceeding to detailed analysis using the results of this method
as the initial guess. Transfers between two or more Lagrange point orbits using this
method can be performed. A different solution method using low-thrust propulsion
to LEO from equilateral Lagrange points, or multiple optimal burn transfer scenario
may be used to explore the three-body systems and possible mission design space.
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Appendix A|
L1 LPO Solutions

The results obtained by solving the Lambert’s problem on the manifold of L1 LPO
are presented. The tables are generated as a result of variations in true anomaly
θLEO and inclination iLEO. Each table includes the ∆V1 for the departure from
manifold, ∆V2 injection into parking orbit, the TOF1 as the time-of-flight for the
transfer trajectory to LEO, TOF2 as the time of flight required for manifold coast
till the optimal patch point, ∆VT as the total coast for the trajectory and TOFT
as the total time of flight taken for the entire transfer.

A.1 L1 Halo Orbit
Results for L1 halo orbit with initial conditions given in Table 4.5 are presented in
Tables A.1 - A.10
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Table A.1. L1 Halo orbit results for i = 0° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.741 3.062 3.515 30.102 3.803 33.618
15 0.775 3.063 3.447 28.707 3.838 32.154
30 0.819 3.072 3.155 27.231 3.890 30.385
45 0.947 3.066 3.147 46.799 4.013 49.946
60 0.887 3.056 3.427 47.859 3.943 51.285
75 0.846 3.071 3.559 47.703 3.917 51.262
90 0.833 3.073 3.596 47.423 3.906 51.019
105 0.825 3.252 3.611 47.188 4.078 50.799
120 0.831 3.800 3.605 47.188 4.631 50.793
135 0.745 4.218 3.713 16.729 4.964 20.442
150 0.742 3.524 3.720 16.719 4.266 20.439
165 0.775 3.122 3.475 17.318 3.896 20.793
180 0.741 3.118 3.714 16.734 3.859 20.448
195 0.824 3.076 3.866 17.226 3.900 21.093
210 0.895 3.063 3.443 19.062 3.958 22.504
225 0.991 3.055 2.910 21.627 4.047 24.537
240 1.096 3.028 2.393 22.265 4.124 24.658
255 1.203 3.002 1.961 22.257 4.205 24.218
270 1.052 3.064 2.598 26.953 4.116 29.551
285 0.926 3.073 3.229 29.630 3.999 32.859
300 0.840 3.096 3.629 30.430 3.936 34.059
315 0.794 3.070 3.783 30.488 3.864 34.271
330 0.749 3.073 3.849 30.352 3.822 34.201
345 0.726 3.068 3.771 30.196 3.794 33.967
360 0.741 3.062 3.515 30.102 3.803 33.618
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Table A.2. L1 Halo orbit results for i = 10° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.745 3.070 3.539 29.958 3.815 33.497
15 0.700 3.065 3.766 29.920 3.766 33.686
30 0.646 3.068 3.701 27.886 3.714 31.587
45 0.661 3.110 3.522 26.558 3.771 30.080
60 0.884 3.064 3.410 45.125 3.949 48.534
75 0.875 3.062 3.399 44.530 3.937 47.929
90 0.863 3.067 3.388 43.841 3.930 47.228
105 0.861 3.244 3.385 43.654 4.105 47.039
120 0.861 3.796 3.420 43.908 4.656 47.328
135 0.713 4.232 3.707 16.858 4.945 20.565
150 0.715 3.529 3.718 16.805 4.243 20.523
165 0.711 3.119 3.722 16.805 3.830 20.526
180 0.711 3.114 3.722 16.805 3.825 20.527
195 0.859 3.067 3.852 16.442 3.926 20.294
210 0.948 3.067 3.258 19.289 4.015 22.547
225 1.092 3.045 2.468 21.162 4.137 23.630
240 1.256 3.011 1.797 21.271 4.267 23.068
255 1.431 2.975 1.297 21.217 4.406 22.514
270 1.654 2.888 0.866 21.228 4.542 22.094
285 1.005 3.208 2.853 29.312 4.212 32.166
300 0.912 3.072 3.334 31.995 3.984 35.329
315 0.849 3.070 3.589 32.462 3.919 36.051
330 0.816 3.065 3.617 31.799 3.881 35.416
345 0.782 3.064 3.600 30.871 3.846 34.471
360 0.745 3.070 3.539 29.958 3.815 33.497
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Table A.3. L1 Halo orbit results for i = 20° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.746 3.077 3.620 29.697 3.823 33.317
15 0.622 3.080 3.865 28.216 3.702 32.081
30 0.561 3.069 3.934 26.729 3.630 30.664
45 0.605 3.184 3.761 29.851 3.789 33.612
60 0.542 3.634 3.907 28.382 4.175 32.289
75 0.963 3.797 3.117 43.052 4.759 46.170
90 0.971 4.140 3.040 42.598 5.111 45.639
105 0.973 4.381 2.974 42.094 5.354 45.067
120 0.973 4.438 2.892 41.386 5.410 44.278
135 0.693 4.237 3.715 16.942 4.930 20.658
150 0.694 3.536 3.714 16.932 4.229 20.645
165 0.692 3.121 3.720 16.912 3.813 20.632
180 0.692 3.113 3.720 16.912 3.805 20.632
195 0.904 3.070 3.749 16.105 3.974 19.854
210 1.008 3.073 3.033 19.716 4.081 22.749
225 1.190 3.079 2.080 20.546 4.268 22.626
240 1.342 3.245 1.577 20.621 4.586 22.198
255 1.455 3.591 1.316 20.734 5.045 22.050
270 1.011 4.358 2.951 30.239 5.369 33.190
285 0.971 3.830 3.108 31.379 4.801 34.487
300 0.964 3.381 3.076 31.113 4.346 34.189
315 0.928 3.106 3.276 34.948 4.034 38.224
330 0.893 3.058 3.369 32.871 3.951 36.240
345 0.830 3.066 3.565 32.280 3.896 35.844
360 0.746 3.077 3.620 29.697 3.823 33.317
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Table A.4. L1 Halo orbit results for i = 30° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.758 3.072 3.797 31.852 3.830 35.649
15 0.641 3.071 3.958 27.182 3.712 31.139
30 0.675 3.137 3.764 26.061 3.813 29.825
45 0.757 3.394 3.492 32.552 4.151 36.044
60 0.741 3.932 3.482 31.666 4.673 35.148
75 0.627 4.650 3.768 29.580 5.277 33.348
90 0.559 5.375 3.922 27.427 5.935 31.350
105 1.000 5.523 3.047 42.710 6.522 45.757
120 0.693 5.101 3.701 17.091 5.794 20.793
135 0.683 4.244 3.712 17.091 4.927 20.804
150 0.687 3.537 3.717 17.024 4.224 20.741
165 0.702 3.122 3.642 17.199 3.824 20.841
180 0.687 3.111 3.713 17.032 3.798 20.745
195 0.938 3.073 3.763 15.336 4.011 19.100
210 1.054 3.100 2.873 19.583 4.154 22.455
225 1.187 3.301 2.167 20.042 4.488 22.209
240 1.259 3.770 1.935 20.212 5.030 22.146
255 1.352 4.311 1.685 20.426 5.663 22.111
270 0.992 5.060 3.155 31.910 6.053 35.066
285 1.034 4.439 2.858 29.922 5.473 32.780
300 0.991 3.909 3.113 35.217 4.900 38.330
315 1.001 3.376 3.011 35.221 4.377 38.232
330 1.000 3.064 2.973 35.246 4.064 38.219
345 0.863 3.065 3.412 31.203 3.929 34.615
360 0.758 3.072 3.797 31.852 3.830 35.649
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Table A.5. L1 Halo orbit results for i = 40° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.768 3.078 3.838 32.127 3.846 35.965
15 0.701 3.068 3.919 26.948 3.769 30.867
30 0.749 3.223 3.678 25.926 3.972 29.604
45 0.835 3.595 3.440 34.093 4.429 37.533
60 0.831 4.216 3.397 33.373 5.048 36.771
75 0.789 4.949 3.446 32.027 5.738 35.473
90 0.658 5.787 3.753 29.614 6.445 33.367
105 0.711 6.039 3.686 17.197 6.751 20.883
120 0.701 5.095 3.700 17.197 5.795 20.897
135 0.694 4.235 3.711 17.180 4.929 20.890
150 0.690 3.539 3.715 17.170 4.229 20.884
165 0.690 3.125 3.715 17.151 3.815 20.866
180 0.709 3.108 3.643 17.304 3.818 20.947
195 0.980 3.066 3.771 14.677 4.046 18.447
210 1.087 3.152 2.804 19.303 4.239 22.107
225 1.146 3.552 2.479 19.582 4.698 22.061
240 1.207 4.147 2.263 19.830 5.354 22.093
255 1.285 4.810 2.016 20.098 6.094 22.114
270 1.064 5.601 2.874 30.037 6.666 32.911
285 1.038 4.936 3.070 35.265 5.975 38.335
300 1.060 4.217 2.920 35.263 5.278 38.184
315 1.069 3.577 2.839 35.267 4.646 38.105
330 1.067 3.137 2.793 35.323 4.204 38.116
345 0.889 3.086 3.348 30.617 3.976 33.965
360 0.768 3.078 3.838 32.127 3.846 35.965
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Table A.6. L1 Halo orbit results for i = 50° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.798 3.072 3.832 32.246 3.870 36.078
15 0.752 3.080 3.924 27.095 3.832 31.019
30 0.803 3.296 3.660 25.977 4.099 29.637
45 0.883 3.756 3.471 35.015 4.639 38.486
60 0.885 4.447 3.423 34.455 5.332 37.878
75 0.870 5.226 3.391 33.490 6.096 36.880
90 0.800 6.082 3.504 31.824 6.881 35.328
105 0.721 6.030 3.694 17.375 6.752 21.069
120 0.715 5.084 3.706 17.312 5.800 21.018
135 0.708 4.229 3.717 17.312 4.937 21.029
150 0.710 3.531 3.716 17.265 4.241 20.981
165 0.710 3.123 3.706 17.291 3.833 20.997
180 0.712 3.113 3.707 17.271 3.825 20.978
195 1.020 3.072 3.724 14.400 4.091 18.124
210 1.088 3.235 2.989 18.789 4.323 21.777
225 1.125 3.735 2.766 19.109 4.860 21.875
240 1.174 4.413 2.571 19.413 5.587 21.984
255 1.236 5.164 2.337 19.734 6.400 22.070
270 1.077 6.046 3.047 35.275 7.123 38.322
285 1.108 5.222 2.892 35.176 6.330 38.068
300 1.127 4.424 2.787 35.248 5.551 38.035
315 1.135 3.712 2.710 35.051 4.848 37.761
330 1.134 3.200 2.682 35.207 4.334 37.889
345 0.911 3.113 3.337 30.359 4.024 33.696
360 0.798 3.072 3.832 32.246 3.870 36.078
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Table A.7. L1 Halo orbit results for i = 60° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.827 3.074 3.848 32.458 3.901 36.306
15 0.810 3.083 3.856 26.782 3.893 30.637
30 0.861 3.339 3.617 25.931 4.199 29.547
45 0.901 3.887 3.432 25.452 4.787 28.884
60 0.937 4.608 3.441 35.361 5.545 38.802
75 0.926 5.444 3.409 34.588 6.370 37.997
90 0.894 6.329 3.406 33.419 7.223 36.825
105 0.747 6.010 3.696 17.439 6.757 21.136
120 0.741 5.068 3.710 17.439 5.809 21.149
135 0.736 4.215 3.721 17.439 4.950 21.160
150 0.734 3.523 3.728 17.381 4.257 21.110
165 0.732 3.120 3.729 17.368 3.852 21.097
180 0.735 3.118 3.719 17.368 3.853 21.087
195 1.060 3.072 3.703 14.136 4.131 17.839
210 1.097 3.302 3.171 18.214 4.399 21.385
225 1.124 3.860 2.990 18.624 4.984 21.614
240 1.157 4.599 2.841 18.929 5.756 21.770
255 1.200 5.420 2.652 19.268 6.620 21.920
270 1.147 6.311 2.871 35.252 7.459 38.123
285 1.178 5.414 2.745 35.177 6.592 37.922
300 1.195 4.558 2.663 35.045 5.754 37.708
315 1.202 3.802 2.617 35.079 5.003 37.696
330 1.200 3.245 2.595 35.156 4.446 37.751
345 0.935 3.137 3.358 30.288 4.072 33.646
360 0.827 3.074 3.848 32.458 3.901 36.306
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Table A.8. L1 Halo orbit results for i = 70° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.851 3.092 3.931 28.563 3.943 32.494
15 0.854 3.094 3.870 26.925 3.948 30.795
30 0.902 3.378 3.637 26.062 4.281 29.698
45 0.942 3.953 3.454 25.579 4.895 29.033
60 0.960 4.728 3.356 25.337 5.688 28.693
75 0.950 5.623 3.350 25.290 6.574 28.640
90 0.960 6.523 3.403 34.733 7.483 38.136
105 0.779 5.982 3.702 17.621 6.760 21.323
120 0.775 5.043 3.715 17.621 5.818 21.336
135 0.771 4.194 3.727 17.557 4.965 21.284
150 0.773 3.510 3.717 17.540 4.283 21.257
165 0.773 3.113 3.719 17.524 3.885 21.243
180 0.773 3.121 3.719 17.513 3.894 21.233
195 1.098 3.072 3.622 14.604 4.170 18.226
210 1.120 3.345 3.232 17.927 4.465 21.159
225 1.130 3.949 3.209 18.003 5.079 21.212
240 1.151 4.729 3.087 18.343 5.880 21.430
255 1.180 5.598 2.930 18.709 6.777 21.639
270 1.221 6.482 2.710 35.071 7.704 37.780
285 1.247 5.537 2.624 35.124 6.784 37.748
300 1.263 4.643 2.567 35.071 5.906 37.638
315 1.269 3.857 2.533 35.061 5.126 37.594
330 1.073 3.466 2.946 28.872 4.538 31.819
345 0.953 3.167 3.429 30.447 4.120 33.877
360 0.851 3.092 3.931 28.563 3.943 32.494
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Table A.9. L1 Halo orbit results for i = 80° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.908 3.068 3.821 32.400 3.977 36.221
15 0.908 3.094 3.829 26.794 4.002 30.624
30 0.945 3.401 3.647 26.158 4.346 29.805
45 0.996 3.977 3.412 25.541 4.974 28.953
60 1.006 4.778 3.350 25.401 5.784 28.751
75 1.005 5.689 3.314 25.314 6.694 28.629
90 0.988 6.664 3.330 25.337 7.652 28.666
105 0.818 5.942 3.717 17.804 6.760 21.520
120 0.816 5.009 3.723 17.765 5.825 21.487
135 0.813 4.167 3.729 17.730 4.981 21.459
150 0.812 3.493 3.730 17.680 4.305 21.410
165 0.810 3.108 3.735 17.646 3.918 21.381
180 0.809 3.129 3.737 17.621 3.938 21.358
195 1.132 3.072 3.503 16.385 4.204 19.888
210 1.134 3.384 3.445 16.916 4.518 20.361
225 1.142 4.010 3.393 17.206 5.152 20.598
240 1.153 4.818 3.310 17.564 5.971 20.874
255 1.168 5.720 3.207 17.924 6.888 21.131
270 1.188 6.665 3.069 18.320 7.852 21.389
285 1.321 5.599 2.502 34.966 6.920 37.468
300 1.331 4.687 2.477 34.995 6.018 37.473
315 1.336 3.885 2.463 34.928 5.222 37.390
330 1.098 3.506 2.990 28.898 4.604 31.888
345 0.996 3.168 3.410 30.305 4.164 33.715
360 0.908 3.068 3.821 32.400 3.977 36.221
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Table A.10. L1 Halo orbit results for i = 90° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.942 3.077 3.863 33.000 4.020 36.863
15 0.932 3.112 3.918 27.339 4.044 31.256
30 0.998 3.399 3.609 26.101 4.397 29.710
45 1.029 3.999 3.454 25.712 5.029 29.165
60 1.051 4.793 3.341 25.468 5.844 28.809
75 1.062 5.700 3.263 25.318 6.763 28.581
90 0.866 6.864 3.721 18.027 7.730 21.748
105 0.867 5.888 3.730 18.017 6.755 21.747
120 0.863 4.965 3.737 17.943 5.827 21.679
135 0.857 4.134 3.743 17.842 4.991 21.585
150 0.856 3.470 3.748 17.804 4.326 21.552
165 0.861 3.099 3.730 17.825 3.959 21.555
180 0.855 3.139 3.742 17.779 3.994 21.521
195 1.154 3.082 3.548 16.253 4.236 19.801
210 1.155 3.408 3.562 16.068 4.563 19.630
225 1.157 4.050 3.556 16.018 5.207 19.574
240 1.156 4.881 3.543 16.069 6.037 19.612
255 1.154 5.811 3.548 15.807 6.966 19.355
270 1.173 6.764 3.375 17.101 7.936 20.476
285 1.399 5.608 2.377 34.839 7.007 37.215
300 1.402 4.694 2.388 34.839 6.096 37.226
315 1.405 3.890 2.396 34.839 5.295 37.235
330 1.131 3.528 3.012 28.871 4.659 31.883
345 1.023 3.183 3.455 30.413 4.207 33.867
360 0.942 3.077 3.863 33.000 4.020 36.863
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A.2 L1 Lyapunov Orbit
Results for L1 halo orbit with initial conditions given in Table 4.6 are presented in
Tables A.11 - A.20.

Table A.11. L1 Lyapunov orbit results for i = 0° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.768 3.068 3.265 19.730 3.836 22.995
15 0.678 3.062 3.445 19.472 3.740 22.917
30 0.601 3.062 3.492 18.860 3.663 22.352
45 0.539 3.059 3.486 18.655 3.598 22.141
60 0.535 3.134 3.481 19.003 3.669 22.484
75 0.542 3.569 3.475 18.972 4.111 22.447
90 1.225 2.983 1.704 28.084 4.209 29.789
105 1.231 3.155 1.694 28.138 4.386 29.831
120 1.240 3.687 1.690 28.144 4.927 29.834
135 0.636 4.403 3.675 8.268 5.040 11.943
150 0.615 3.674 3.684 8.329 4.290 12.013
165 0.590 3.198 3.686 8.464 3.788 12.149
180 0.560 3.061 3.676 8.946 3.621 12.622
195 0.615 3.140 3.706 9.553 3.755 13.259
210 0.920 3.057 2.697 12.439 3.977 15.136
225 1.066 3.020 2.194 13.436 4.086 15.630
240 1.153 3.000 1.918 14.086 4.153 16.004
255 1.204 2.988 1.765 14.595 4.192 16.360
270 1.227 2.982 1.700 15.031 4.210 16.731
285 1.226 2.983 1.705 15.475 4.209 17.180
300 1.200 2.990 1.783 15.936 4.189 17.719
315 1.145 3.003 1.948 16.494 4.148 18.442
330 1.056 3.024 2.239 17.188 4.079 19.427
345 0.920 3.053 2.717 18.288 3.973 21.004
360 0.768 3.068 3.265 19.730 3.836 22.995
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Table A.12. L1 Lyapunov orbit results for i = 10° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.765 3.454 3.275 19.733 4.219 23.008
15 0.782 3.216 3.251 19.685 3.998 22.936
30 0.730 3.517 3.387 19.666 4.247 23.053
45 0.678 3.842 3.460 19.350 4.519 22.810
60 0.625 4.153 3.485 18.878 4.778 22.364
75 0.574 4.431 3.480 18.648 5.004 22.129
90 0.561 4.724 3.468 19.032 5.285 22.500
105 0.570 5.388 3.454 18.946 5.959 22.399
120 0.658 5.285 3.664 8.235 5.944 11.899
135 0.641 4.410 3.675 8.268 5.051 11.943
150 0.621 3.684 3.684 8.329 4.305 12.013
165 0.579 3.231 3.682 8.620 3.810 12.302
180 0.560 3.445 3.676 8.946 4.005 12.622
195 0.578 3.227 3.681 9.263 3.805 12.944
210 0.666 3.559 3.635 9.929 4.225 13.564
225 0.861 3.839 2.971 11.864 4.699 14.836
240 0.992 4.129 2.521 12.773 5.121 15.294
255 1.097 4.387 2.184 13.447 5.484 15.631
270 1.175 4.602 1.946 13.976 5.777 15.922
285 1.177 4.372 1.948 16.525 5.549 18.473
300 1.106 4.107 2.158 17.036 5.213 19.194
315 1.021 3.811 2.427 17.622 4.832 20.049
330 0.926 3.502 2.745 18.352 4.428 21.097
345 0.841 3.212 3.039 19.112 4.053 22.151
360 0.765 3.454 3.275 19.733 4.219 23.008
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Table A.13. L1 Lyapunov orbit results for i = 20° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.754 4.407 3.306 19.799 5.161 23.105
15 0.818 3.244 3.182 19.468 4.062 22.650
30 0.782 3.673 3.319 19.773 4.455 23.092
45 0.741 4.173 3.411 19.635 4.914 23.046
60 0.697 4.681 3.459 19.228 5.378 22.687
75 0.649 5.164 3.477 18.829 5.812 22.306
90 0.599 5.596 3.469 18.644 6.195 22.113
105 0.586 6.007 3.455 19.013 6.594 22.469
120 0.665 5.308 3.663 8.268 5.973 11.931
135 0.656 4.429 3.675 8.268 5.085 11.942
150 0.623 3.723 3.682 8.415 4.346 12.097
165 0.587 3.256 3.674 8.788 3.842 12.462
180 0.560 4.392 3.676 8.946 4.952 12.622
195 0.584 3.256 3.675 9.085 3.840 12.761
210 0.623 3.694 3.692 9.473 4.317 13.165
225 0.750 4.201 3.428 10.681 4.951 14.109
240 0.905 4.679 2.911 11.979 5.584 14.889
255 1.029 5.138 2.497 12.812 6.167 15.309
270 1.131 5.550 2.176 13.436 6.681 15.612
285 1.147 5.114 2.137 17.002 6.260 19.139
300 1.066 4.647 2.380 17.507 5.713 19.887
315 0.978 4.155 2.658 18.162 5.133 20.820
330 0.895 3.668 2.926 18.800 4.563 21.726
345 0.840 3.244 3.100 19.290 4.084 22.390
360 0.754 4.407 3.306 19.799 5.161 23.105
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Table A.14. L1 Lyapunov orbit results for i = 30° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.741 5.625 3.339 19.810 6.367 23.149
15 0.850 3.253 3.159 19.468 4.102 22.628
30 0.827 3.745 3.264 19.736 4.572 23.000
45 0.794 4.355 3.362 19.748 5.149 23.110
60 0.757 4.998 3.425 19.508 5.755 22.933
75 0.714 5.632 3.458 19.134 6.347 22.592
90 0.665 6.230 3.466 18.772 6.895 22.238
105 0.696 6.287 3.649 8.268 6.982 11.917
120 0.685 5.333 3.663 8.268 6.018 11.931
135 0.651 4.484 3.673 8.415 5.135 12.088
150 0.625 3.771 3.677 8.594 4.396 12.271
165 0.605 3.266 3.673 8.878 3.871 12.552
180 0.560 5.605 3.676 8.946 6.165 12.622
195 0.605 3.266 3.674 9.016 3.871 12.690
210 0.627 3.760 3.677 9.317 4.387 12.994
225 0.681 4.394 3.697 9.564 5.075 13.261
240 0.828 5.019 3.258 11.152 5.848 14.410
255 0.965 5.626 2.806 12.180 6.591 14.986
270 1.079 6.201 2.433 12.914 7.280 15.347
285 1.122 5.592 2.316 17.425 6.714 19.741
300 1.039 4.976 2.570 17.981 6.015 20.551
315 0.961 4.345 2.814 18.537 5.306 21.351
330 0.896 3.744 3.012 19.012 4.639 22.024
345 0.857 3.256 3.122 19.368 4.113 22.489
360 0.741 5.625 3.339 19.810 6.367 23.149
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Table A.15. L1 Lyapunov orbit results for i = 40° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.727 6.944 3.370 19.775 7.671 23.145
15 0.884 3.256 3.141 19.403 4.140 22.544
30 0.871 3.781 3.219 19.629 4.653 22.847
45 0.844 4.463 3.319 19.815 5.307 23.134
60 0.812 5.202 3.387 19.664 6.014 23.051
75 0.773 5.952 3.431 19.375 6.725 22.806
90 0.728 6.680 3.451 18.973 7.408 22.424
105 0.706 6.330 3.649 8.329 7.036 11.978
120 0.698 5.376 3.663 8.329 6.075 11.992
135 0.673 4.520 3.671 8.464 5.193 12.135
150 0.649 3.797 3.674 8.666 4.446 12.341
165 0.632 3.271 3.674 8.920 3.903 12.594
180 0.560 6.919 3.676 8.946 7.478 12.622
195 0.633 3.270 3.674 8.984 3.902 12.658
210 0.645 3.797 3.668 9.189 4.443 12.857
225 0.681 4.486 3.683 9.473 5.167 13.156
240 0.739 5.262 3.644 9.796 6.002 13.439
255 0.889 5.976 3.157 11.380 6.864 14.537
270 1.015 6.675 2.737 12.295 7.690 15.032
285 1.099 5.923 2.490 17.812 7.023 20.302
300 1.026 5.188 2.718 18.310 6.214 21.027
315 0.962 4.458 2.918 18.800 5.419 21.718
330 0.913 3.782 3.059 19.194 4.695 22.254
345 0.886 3.259 3.127 19.375 4.145 22.503
360 0.727 6.944 3.370 19.775 7.671 23.145
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Table A.16. L1 Lyapunov orbit results for i = 50° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.709 8.287 3.402 19.662 8.996 23.064
15 0.922 3.258 3.136 19.359 4.180 22.495
30 0.915 3.802 3.187 19.519 4.717 22.706
45 0.894 4.530 3.276 19.792 5.423 23.068
60 0.865 5.338 3.347 19.775 6.203 23.122
75 0.830 6.174 3.395 19.498 7.004 22.893
90 0.788 7.004 3.427 19.224 7.792 22.651
105 0.729 6.368 3.648 8.356 7.098 12.003
120 0.710 5.429 3.659 8.451 6.138 12.111
135 0.690 4.563 3.667 8.594 5.253 12.261
150 0.675 3.818 3.668 8.788 4.493 12.457
165 0.665 3.272 3.674 8.920 3.937 12.594
180 0.560 8.255 3.676 8.946 8.815 12.622
195 0.664 3.273 3.674 8.946 3.937 12.620
210 0.673 3.818 3.670 9.085 4.491 12.755
225 0.691 4.551 3.668 9.317 5.243 12.985
240 0.725 5.378 3.679 9.505 6.103 13.184
255 0.781 6.250 3.600 9.929 7.030 13.529
270 0.929 7.033 3.113 11.454 7.962 14.568
285 1.081 6.156 2.657 18.212 7.237 20.869
300 1.022 5.331 2.844 18.626 6.352 21.470
315 0.973 4.529 2.993 19.006 5.502 21.999
330 0.937 3.807 3.095 19.290 4.744 22.385
345 0.920 3.261 3.130 19.350 4.182 22.480
360 0.709 8.287 3.402 19.662 8.996 23.064
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Table A.17. L1 Lyapunov orbit results for i = 60° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.684 9.614 3.438 19.495 10.298 22.933
15 0.963 3.260 3.130 19.350 4.223 22.480
30 0.959 3.815 3.169 19.505 4.774 22.674
45 0.942 4.572 3.237 19.685 5.514 22.922
60 0.917 5.428 3.306 19.815 6.345 23.121
75 0.886 6.326 3.356 19.674 7.212 23.030
90 0.849 7.232 3.393 19.480 8.081 22.874
105 0.742 6.419 3.645 8.464 7.161 12.108
120 0.732 5.469 3.657 8.530 6.201 12.187
135 0.718 4.591 3.665 8.666 5.309 12.332
150 0.707 3.830 3.669 8.849 4.537 12.518
165 0.700 3.274 3.674 8.946 3.974 12.620
180 0.560 9.573 3.676 8.946 10.133 12.622
195 0.701 3.273 3.674 8.946 3.974 12.620
210 0.706 3.829 3.669 9.043 4.535 12.713
225 0.715 4.591 3.659 9.189 5.306 12.848
240 0.735 5.453 3.658 9.399 6.188 13.057
255 0.758 6.373 3.664 9.505 7.131 13.169
270 0.782 7.327 3.656 9.567 8.109 13.223
285 1.065 6.319 2.816 18.610 7.384 21.426
300 1.023 5.427 2.954 18.936 6.451 21.889
315 0.992 4.574 3.051 19.194 5.566 22.245
330 0.971 3.818 3.108 19.315 4.789 22.423
345 0.961 3.261 3.130 19.350 4.222 22.480
360 0.684 9.614 3.438 19.495 10.298 22.933
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Table A.18. L1 Lyapunov orbit results for i = 70° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.643 10.902 3.473 19.138 11.545 22.612
15 1.007 3.260 3.130 19.350 4.266 22.480
30 1.003 3.822 3.154 19.468 4.825 22.622
45 0.991 4.598 3.201 19.604 5.588 22.806
60 0.970 5.485 3.257 19.742 6.455 22.999
75 0.942 6.426 3.309 19.795 7.368 23.104
90 0.765 7.450 3.627 8.530 8.216 12.157
105 0.758 6.464 3.641 8.594 7.222 12.234
120 0.753 5.506 3.653 8.666 6.259 12.319
135 0.747 4.613 3.659 8.788 5.360 12.447
150 0.742 3.837 3.666 8.907 4.579 12.573
165 0.738 3.274 3.674 8.946 4.013 12.620
180 0.560 10.846 3.676 8.946 11.406 12.622
195 0.739 3.273 3.674 8.946 4.013 12.620
210 0.741 3.837 3.668 8.984 4.578 12.652
225 0.745 4.613 3.660 9.085 5.358 12.746
240 0.755 5.500 3.654 9.263 6.255 12.916
255 0.763 6.450 3.643 9.364 7.213 13.006
270 0.779 7.421 3.640 9.473 8.200 13.112
285 1.052 6.428 2.967 19.019 7.480 21.986
300 1.033 5.488 3.039 19.194 6.521 22.233
315 1.017 4.601 3.091 19.297 5.618 22.388
330 1.005 3.827 3.124 19.350 4.832 22.475
345 1.002 3.263 3.137 19.438 4.265 22.575
360 0.643 10.902 3.473 19.138 11.545 22.612
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Table A.19. L1 Lyapunov orbit results for i = 80° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.573 12.128 3.477 18.638 12.700 22.115
15 1.050 3.260 3.127 19.356 4.311 22.483
30 1.049 3.825 3.136 19.403 4.874 22.539
45 1.039 4.611 3.167 19.519 5.650 22.685
60 1.022 5.517 3.206 19.640 6.538 22.847
75 0.999 6.483 3.249 19.745 7.482 22.993
90 0.781 7.486 3.622 8.666 8.268 12.289
105 0.778 6.496 3.632 8.788 7.274 12.420
120 0.778 5.531 3.647 8.849 6.308 12.496
135 0.779 4.625 3.658 8.878 5.404 12.536
150 0.777 3.841 3.668 8.946 4.618 12.614
165 0.777 3.274 3.674 8.946 4.051 12.620
180 0.560 12.056 3.676 8.946 12.616 12.622
195 0.776 3.275 3.674 8.920 4.051 12.594
210 0.777 3.840 3.668 8.946 4.617 12.614
225 0.778 4.625 3.659 9.016 5.403 12.675
240 0.778 5.528 3.648 9.085 6.306 12.733
255 0.778 6.493 3.634 9.149 7.271 12.783
270 0.776 7.489 3.619 9.149 8.265 12.767
285 1.048 6.487 3.087 19.356 7.535 22.443
300 1.044 5.523 3.114 19.416 6.567 22.531
315 1.044 4.617 3.127 19.403 5.660 22.530
330 1.043 3.831 3.136 19.403 4.874 22.539
345 1.046 3.263 3.137 19.438 4.308 22.575
360 0.573 12.128 3.477 18.638 12.700 22.115
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Table A.20. L1 Lyapunov orbit results for i = 90° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.553 13.184 3.462 18.813 13.737 22.275
15 1.094 3.260 3.127 19.375 4.354 22.503
30 1.093 3.826 3.122 19.356 4.919 22.477
45 1.091 4.612 3.113 19.356 5.703 22.468
60 1.088 5.519 3.101 19.356 6.607 22.457
75 1.084 6.488 3.087 19.356 7.572 22.443
90 0.800 7.503 3.617 8.946 8.304 12.562
105 0.805 6.507 3.632 9.016 7.312 12.648
120 0.808 5.538 3.648 9.043 6.346 12.691
135 0.811 4.630 3.658 9.016 5.441 12.675
150 0.813 3.842 3.668 8.984 4.655 12.652
165 0.816 3.274 3.669 8.973 4.090 12.642
180 0.560 13.188 3.676 8.946 13.748 12.622
195 0.814 3.275 3.674 8.920 4.089 12.594
210 0.813 3.841 3.668 8.920 4.654 12.588
225 0.811 4.629 3.657 8.907 5.440 12.564
240 0.808 5.537 3.647 8.920 6.344 12.567
255 0.804 6.507 3.632 8.920 7.310 12.552
270 0.799 7.504 3.617 8.920 8.303 12.537
285 1.048 6.506 3.188 19.635 7.554 22.823
300 1.059 5.534 3.176 19.570 6.593 22.746
315 1.070 4.622 3.160 19.505 5.693 22.665
330 1.080 3.832 3.146 19.413 4.912 22.559
345 1.087 3.264 3.136 19.359 4.351 22.495
360 0.553 13.184 3.462 18.813 13.737 22.275
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Appendix B|
L2 LPO Solutions

The results obtained by solving the Lambert’s problem on the manifold of L2 LPO
are presented. The tables are generated as a result of variations in true anomaly
θLEO and inclination iLEO. Each table includes the ∆V1 for the departure from
manifold, ∆V2 injection into parking orbit, the TOF1 as the time-of-flight for the
transfer trajectory to LEO, TOF2 as the time of flight required for manifold coast
till the optimal patch point, ∆VT as the total coast for the trajectory and TOFT
as the total time of flight taken for the entire transfer.

B.1 L2 Halo Orbit
Results for L2 halo orbit with initial conditions given in Table 4.7 are presented in
Tables B.1 - B.10.
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Table B.1. L2 Halo orbit results for i = 0° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.481 3.141 20.340 35.879 3.622 56.219
15 0.497 3.141 19.392 34.570 3.637 53.962
30 0.515 3.140 18.396 33.196 3.655 51.592
45 0.537 3.138 17.398 31.781 3.675 49.179
60 0.561 3.136 16.380 30.346 3.698 46.725
75 0.591 3.133 15.282 28.775 3.724 44.056
90 0.622 3.132 14.221 27.301 3.754 41.522
105 0.660 3.129 13.078 25.653 3.789 38.731
120 0.703 3.126 11.875 23.917 3.829 35.792
135 0.754 3.122 10.617 22.035 3.876 32.652
150 0.815 3.120 9.307 19.919 3.935 29.226
165 0.894 3.119 7.883 17.201 4.013 25.085
180 1.026 3.113 7.945 15.171 4.138 23.115
195 1.001 3.225 6.192 1.771 4.226 7.963
210 0.972 3.707 6.265 2.027 4.679 8.292
225 0.428 4.726 29.795 43.048 5.153 72.843
240 0.423 3.924 26.024 43.577 4.347 69.600
255 0.422 3.354 25.885 43.604 3.776 69.488
270 0.422 3.145 25.706 43.549 3.567 69.255
285 0.428 3.148 25.019 42.464 3.576 67.483
300 0.436 3.146 24.093 41.155 3.582 65.248
315 0.445 3.147 23.203 39.900 3.591 63.104
330 0.456 3.142 22.099 38.398 3.598 60.497
345 0.467 3.142 21.260 37.184 3.609 58.443
360 0.481 3.141 20.340 35.879 3.622 56.219
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Table B.2. L2 Halo orbit results for i = 10° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.481 3.143 21.111 35.737 3.624 56.847
15 0.508 3.173 18.972 36.275 3.681 55.247
30 0.516 3.416 18.710 35.734 3.932 54.443
45 0.529 3.723 18.466 34.886 4.252 53.352
60 0.545 4.027 17.828 33.843 4.572 51.670
75 0.566 4.298 17.436 32.681 4.864 50.118
90 0.590 4.520 16.659 31.373 5.110 48.032
105 0.806 4.286 11.638 23.124 5.092 34.763
120 0.861 4.011 10.566 21.508 4.872 32.074
135 0.921 3.708 9.446 19.820 4.629 29.265
150 0.986 3.403 8.439 18.112 4.388 26.551
165 1.044 3.154 7.690 16.564 4.199 24.255
180 0.965 3.114 6.284 2.062 4.079 8.346
195 0.954 3.221 6.315 2.307 4.175 8.621
210 0.962 3.705 6.295 2.181 4.667 8.476
225 0.976 4.442 6.264 1.982 5.417 8.246
240 0.465 4.778 36.423 42.494 5.243 78.917
255 0.472 4.716 34.582 41.197 5.188 75.779
270 0.475 4.565 32.581 40.009 5.040 72.589
285 0.486 4.335 31.725 38.908 4.821 70.633
300 0.491 4.061 30.202 37.879 4.551 68.081
315 0.499 3.751 29.303 36.962 4.250 66.265
330 0.503 3.442 28.213 36.176 3.945 64.389
345 0.498 3.195 26.623 35.679 3.694 62.302
360 0.481 3.142 20.919 35.743 3.623 56.662
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Table B.3. L2 Halo orbit results for i = 20° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.492 3.141 19.076 36.022 3.633 55.098
15 0.507 3.241 18.906 36.688 3.748 55.594
30 0.514 3.621 18.954 36.309 4.135 55.263
45 0.525 4.106 18.900 35.660 4.631 54.560
60 0.537 4.608 18.311 34.839 5.145 53.150
75 0.553 5.086 17.811 33.843 5.640 51.654
90 0.572 5.515 17.316 32.733 6.087 50.049
105 0.872 5.071 10.486 21.485 5.942 31.971
120 0.930 4.590 9.461 19.888 5.520 29.349
135 0.990 4.090 8.568 18.345 5.080 26.913
150 1.051 3.607 7.750 16.722 4.658 24.472
165 0.918 3.382 6.458 4.086 4.301 10.543
180 0.937 3.106 6.387 3.098 4.043 9.484
195 0.937 3.235 6.388 3.072 4.172 9.460
210 0.955 3.723 6.337 2.550 4.678 8.887
225 0.973 4.457 6.292 2.287 5.430 8.579
240 0.988 5.337 6.260 2.192 6.324 8.452
255 0.479 5.906 32.557 40.009 6.385 72.566
270 0.485 5.552 31.025 38.904 6.037 69.929
285 0.493 5.119 29.933 37.913 5.612 67.846
300 0.498 4.638 28.826 37.036 5.136 65.862
315 0.505 4.132 28.124 36.292 4.637 64.416
330 0.505 3.647 26.959 35.714 4.152 62.672
345 0.496 3.267 25.143 35.392 3.763 60.535
360 0.492 3.141 19.076 36.022 3.633 55.098
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Table B.4. L2 Halo orbit results for i = 30° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.490 3.143 20.661 35.705 3.633 56.366
15 0.511 3.273 19.070 36.860 3.784 55.930
30 0.517 3.723 18.991 36.605 4.240 55.596
45 0.525 4.318 18.762 36.124 4.844 54.887
60 0.537 4.955 18.617 35.451 5.492 54.068
75 0.549 5.587 18.187 34.651 6.136 52.837
90 0.564 6.181 17.751 33.687 6.745 51.439
105 0.928 5.569 9.647 20.258 6.497 29.904
120 0.985 4.937 8.756 18.774 5.923 27.530
135 1.044 4.300 8.032 17.335 5.344 25.368
150 1.095 3.709 7.499 15.946 4.804 23.445
165 0.931 3.369 6.460 4.456 4.301 10.916
180 0.936 3.102 6.432 3.680 4.038 10.111
195 0.937 3.250 6.428 3.577 4.187 10.005
210 0.954 3.750 6.380 3.005 4.704 9.386
225 0.976 4.481 6.320 2.494 5.457 8.814
240 0.991 5.359 6.282 2.266 6.350 8.548
255 0.486 6.745 30.942 39.084 7.231 70.026
270 0.495 6.214 29.850 38.077 6.709 67.926
285 0.502 5.617 28.905 37.213 6.119 66.118
300 0.504 4.986 27.663 36.511 5.490 64.174
315 0.508 4.345 27.045 35.890 4.853 62.935
330 0.511 3.745 26.650 35.447 4.257 62.098
345 0.501 3.296 24.861 35.269 3.797 60.130
360 0.490 3.143 20.661 35.705 3.633 56.366
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Table B.5. L2 Halo orbit results for i = 40° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.503 3.147 23.895 35.253 3.649 59.149
15 0.518 3.290 18.956 36.950 3.808 55.906
30 0.523 3.780 18.906 36.758 4.303 55.664
45 0.530 4.447 18.830 36.420 4.976 55.250
60 0.539 5.181 18.665 35.918 5.720 54.583
75 0.549 5.927 18.477 35.235 6.477 53.712
90 0.561 6.652 18.111 34.464 7.213 52.575
105 0.980 5.909 9.055 19.299 6.889 28.354
120 1.038 5.160 8.319 17.926 6.198 26.245
135 1.090 4.429 7.749 16.639 5.519 24.388
150 0.954 3.917 6.496 7.497 4.871 13.993
165 0.947 3.361 6.462 4.251 4.308 10.713
180 0.947 3.101 6.452 4.076 4.048 10.528
195 0.949 3.261 6.448 3.879 4.210 10.327
210 0.961 3.774 6.414 3.439 4.736 9.853
225 0.980 4.512 6.359 2.892 5.492 9.251
240 0.996 5.389 6.313 2.688 6.385 9.001
255 1.008 6.344 6.283 2.437 7.352 8.720
270 0.504 6.683 28.859 37.414 7.187 66.273
285 0.508 5.958 27.821 36.710 6.465 64.531
300 0.513 5.208 27.227 36.111 5.721 63.339
315 0.516 4.470 26.742 35.631 4.987 62.373
330 0.514 3.803 25.987 35.321 4.317 61.309
345 0.504 3.315 24.091 35.281 3.818 59.371
360 0.506 3.150 24.684 35.194 3.656 59.878

114



Table B.6. L2 Halo orbit results for i = 50° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.519 3.140 18.691 36.298 3.659 54.990
15 0.526 3.302 19.770 37.028 3.828 56.798
30 0.531 3.814 19.384 36.905 4.345 56.289
45 0.536 4.529 19.155 36.671 5.064 55.827
60 0.543 5.332 18.932 36.275 5.875 55.207
75 0.551 6.164 18.690 35.745 6.715 54.436
90 0.560 6.991 18.469 35.114 7.551 53.583
105 1.033 6.143 8.547 18.412 7.176 26.960
120 1.086 5.311 7.986 17.226 6.397 25.213
135 1.128 4.513 7.637 16.135 5.641 23.772
150 0.972 3.930 6.467 5.167 4.902 11.634
165 0.967 3.355 6.466 4.439 4.323 10.904
180 0.966 3.100 6.464 4.390 4.066 10.853
195 0.967 3.268 6.460 4.160 4.235 10.620
210 0.975 3.794 6.438 3.822 4.769 10.259
225 0.989 4.543 6.393 3.290 5.532 9.683
240 1.003 5.424 6.350 3.074 6.427 9.424
255 1.014 6.379 6.317 2.807 7.393 9.124
270 0.513 7.020 28.082 36.882 7.533 64.964
285 0.517 6.192 27.304 36.294 6.709 63.598
300 0.523 5.355 27.071 35.809 5.878 62.880
315 0.523 4.551 26.376 35.433 5.074 61.810
330 0.520 3.837 25.593 35.217 4.357 60.810
345 0.516 3.318 24.944 35.149 3.834 60.093
360 0.519 3.140 18.691 36.298 3.659 54.990
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Table B.7. L2 Halo orbit results for i = 60° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.516 3.147 21.975 35.439 3.663 57.415
15 0.537 3.307 19.381 37.068 3.844 56.449
30 0.540 3.835 19.270 36.988 4.375 56.257
45 0.544 4.580 19.076 36.807 5.124 55.883
60 0.549 5.432 19.127 36.538 5.981 55.665
75 0.555 6.327 18.995 36.154 6.882 55.149
90 0.561 7.230 18.678 35.667 7.792 54.346
105 1.085 6.307 8.200 17.681 7.392 25.881
120 1.129 5.414 7.839 16.692 6.543 24.530
135 0.996 4.714 6.800 11.346 5.710 18.146
150 0.994 3.936 6.467 4.886 4.930 11.353
165 0.990 3.352 6.468 4.442 4.342 10.910
180 0.988 3.100 6.468 4.313 4.088 10.782
195 0.989 3.273 6.467 4.451 4.263 10.918
210 0.995 3.807 6.451 4.103 4.802 10.555
225 1.003 4.568 6.421 3.746 5.571 10.167
240 1.013 5.456 6.384 3.376 6.469 9.760
255 1.022 6.414 6.353 3.176 7.436 9.529
270 0.522 7.259 27.207 36.366 7.781 63.573
285 0.527 6.354 26.835 35.924 6.880 62.759
300 0.528 5.458 26.164 35.565 5.986 61.730
315 0.530 4.604 25.970 35.321 5.133 61.291
330 0.531 3.854 25.990 35.122 4.385 61.111
345 0.524 3.323 24.856 35.115 3.847 59.971
360 0.516 3.147 21.975 35.439 3.663 57.415
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Table B.8. L2 Halo orbit results for i = 70° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.531 3.139 20.022 35.844 3.670 55.865
15 0.548 3.311 19.492 37.096 3.859 56.588
30 0.549 3.848 19.601 37.064 4.398 56.665
45 0.552 4.613 19.431 36.964 5.165 56.395
60 0.556 5.496 19.145 36.753 6.052 55.897
75 0.559 6.434 19.192 36.530 6.994 55.722
90 0.563 7.391 19.053 36.197 7.954 55.250
105 1.135 6.418 7.942 17.006 7.553 24.948
120 1.013 5.637 7.040 12.629 6.650 19.670
135 1.021 4.734 6.607 9.677 5.754 16.284
150 1.018 3.940 6.466 4.768 4.958 11.234
165 1.015 3.350 6.472 4.822 4.365 11.294
180 1.014 3.100 6.473 4.574 4.113 11.046
195 1.015 3.276 6.472 4.616 4.291 11.088
210 1.017 3.817 6.461 4.385 4.834 10.846
225 1.022 4.586 6.440 4.103 5.608 10.544
240 1.027 5.482 6.413 3.801 6.510 10.214
255 1.031 6.446 6.388 3.691 7.477 10.079
270 0.532 7.418 26.663 35.910 7.950 62.573
285 0.537 6.459 26.607 35.608 6.996 62.215
300 0.536 5.522 25.881 35.385 6.058 61.265
315 0.537 4.636 25.675 35.193 5.173 60.868
330 0.539 3.866 25.770 35.077 4.405 60.847
345 0.530 3.329 24.228 35.150 3.859 59.378
360 0.531 3.139 20.022 35.844 3.670 55.865
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Table B.9. L2 Halo orbit results for i = 80° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.546 3.148 25.436 35.020 3.694 60.455
15 0.560 3.313 19.478 37.132 3.873 56.610
30 0.559 3.856 19.960 37.113 4.415 57.072
45 0.561 4.631 19.585 37.064 5.192 56.649
60 0.562 5.533 19.672 36.998 6.095 56.670
75 0.564 6.496 19.409 36.881 7.059 56.291
90 0.566 7.483 19.263 36.718 8.049 55.981
105 1.179 6.490 7.794 16.307 7.669 24.101
120 1.043 5.660 6.644 10.219 6.703 16.864
135 1.044 4.744 6.455 4.949 5.788 11.404
150 1.043 3.941 6.466 4.723 4.984 11.189
165 1.042 3.349 6.472 4.611 4.390 11.082
180 1.041 3.099 6.479 5.203 4.141 11.682
195 1.042 3.278 6.473 4.667 4.319 11.140
210 1.042 3.821 6.466 4.611 4.864 11.077
225 1.044 4.597 6.453 4.561 5.641 11.014
240 1.045 5.499 6.434 4.320 6.544 10.754
255 1.046 6.467 6.414 4.199 7.513 10.613
270 0.545 7.507 26.294 35.433 8.052 61.727
285 0.547 6.518 26.229 35.262 7.065 61.491
300 0.546 5.556 25.759 35.177 6.102 60.936
315 0.547 4.652 25.753 35.077 5.199 60.830
330 0.544 3.876 25.172 35.077 4.420 60.249
345 0.539 3.332 24.146 35.119 3.871 59.265
360 0.546 3.148 25.436 35.020 3.694 60.455
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Table B.10. L2 Halo orbit results for i = 90° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.573 3.142 18.785 37.108 3.715 55.893
15 0.569 3.316 20.709 37.120 3.885 57.829
30 0.570 3.858 20.022 37.154 4.428 57.176
45 0.571 4.637 19.355 37.188 5.207 56.543
60 0.570 5.544 19.522 37.180 6.114 56.702
75 0.569 6.516 19.783 37.183 7.085 56.966
90 0.568 7.514 19.660 37.209 8.082 56.869
105 1.065 6.641 6.424 5.073 7.707 11.497
120 1.066 5.666 6.438 4.643 6.732 11.081
135 1.067 4.747 6.453 4.643 5.814 11.096
150 1.068 3.942 6.466 4.768 5.010 11.233
165 1.069 3.348 6.474 4.822 4.417 11.296
180 1.069 3.100 6.497 6.625 4.168 13.122
195 1.068 3.278 6.530 7.890 4.346 14.420
210 1.067 3.824 6.567 8.772 4.891 15.340
225 1.066 4.601 6.602 9.424 5.667 16.026
240 1.064 5.507 6.652 10.130 6.570 16.781
255 1.061 6.476 6.721 10.847 7.538 17.568
270 0.558 7.535 26.049 34.968 8.093 61.017
285 0.558 6.537 25.880 34.943 7.095 60.823
300 0.556 5.566 25.698 34.973 6.122 60.671
315 0.557 4.657 25.721 34.973 5.213 60.694
330 0.554 3.877 25.175 35.009 4.431 60.184
345 0.552 3.330 24.685 35.051 3.881 59.736
360 0.545 3.160 22.658 35.301 3.705 57.960
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B.2 L2 Lyapunov Orbit
Results for L2 Lyapunov orbit with initial conditions given in Table 4.8 are presented
in Tables B.11 - B.20.

Table B.11. L2 Lyapunov orbit results for i = 0° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.488 3.141 21.109 35.653 3.629 56.763
15 0.505 3.140 20.330 34.206 3.645 54.536
30 0.537 3.125 19.346 33.497 3.661 52.843
45 0.545 3.138 18.455 31.392 3.683 49.847
60 0.570 3.136 17.488 29.886 3.706 47.374
75 0.598 3.135 16.566 28.356 3.733 44.922
90 0.629 3.133 15.571 26.753 3.762 42.324
105 0.664 3.132 14.324 25.191 3.796 39.515
120 0.704 3.129 13.164 23.401 3.833 36.565
135 0.749 3.126 11.884 21.543 3.875 33.427
150 0.801 3.122 10.473 19.456 3.923 29.929
165 0.862 3.117 8.913 16.886 3.979 25.799
180 0.932 3.097 6.440 4.223 4.028 10.664
195 0.956 3.252 6.367 2.170 4.208 8.537
210 0.980 3.749 6.307 1.472 4.729 7.779
225 0.429 4.719 26.396 43.491 5.148 69.886
240 0.427 3.924 26.413 43.491 4.351 69.904
255 0.425 3.355 26.518 43.471 3.780 69.989
270 0.425 3.146 26.665 43.441 3.571 70.106
285 0.433 3.145 25.414 42.258 3.578 67.673
300 0.441 3.144 24.787 40.905 3.585 65.693
315 0.451 3.143 23.564 39.716 3.594 63.280
330 0.462 3.143 22.929 38.316 3.604 61.244
345 0.474 3.142 21.960 37.008 3.616 58.969
360 0.489 3.141 20.955 35.693 3.629 56.648
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Table B.12. L2 Lyapunov orbit results for i = 10° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.488 3.519 21.109 35.653 4.007 56.763
15 0.494 3.305 20.842 35.329 3.799 56.171
30 0.504 3.604 20.490 34.565 4.108 55.055
45 0.517 3.927 19.979 33.645 4.444 53.624
60 0.533 4.237 19.266 32.620 4.769 51.886
75 0.551 4.514 18.665 31.399 5.065 50.064
90 0.572 4.743 17.891 30.105 5.315 47.996
105 0.765 4.500 11.756 21.248 5.266 33.004
120 0.809 4.217 10.528 19.516 5.026 30.044
135 0.852 3.902 9.386 17.700 4.754 27.085
150 0.896 3.573 8.212 15.571 4.469 23.782
165 0.930 3.265 7.027 12.324 4.195 19.352
180 0.932 3.478 6.439 4.069 4.410 10.509
195 0.949 3.273 6.397 2.659 4.222 9.056
210 0.981 3.757 6.312 1.757 4.738 8.069
225 0.997 4.502 6.277 1.259 5.499 7.535
240 0.431 4.988 26.493 43.125 5.420 69.618
255 0.440 4.913 25.466 41.846 5.353 67.311
270 0.449 4.751 24.777 40.590 5.199 65.367
285 0.458 4.520 23.536 39.557 4.978 63.093
300 0.466 4.241 22.903 38.477 4.707 61.380
315 0.474 3.929 22.129 37.540 4.403 59.669
330 0.481 3.606 21.827 36.574 4.087 58.401
345 0.488 3.305 21.323 35.887 3.793 57.210
360 0.488 3.519 21.109 35.653 4.007 56.763
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Table B.13. L2 Lyapunov orbit results for i = 20° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.488 4.457 21.233 35.634 4.945 56.867
15 0.496 3.337 21.394 35.369 3.833 56.763
30 0.504 3.764 20.895 34.938 4.268 55.833
45 0.514 4.265 20.403 34.310 4.779 54.713
60 0.527 4.772 19.979 33.422 5.299 53.400
75 0.541 5.254 19.331 32.487 5.796 51.817
90 0.559 5.687 18.605 31.372 6.246 49.977
105 0.815 5.234 10.683 19.703 6.050 30.386
120 0.857 4.747 9.609 18.042 5.604 27.651
135 0.895 4.234 8.578 16.267 5.129 24.845
150 0.929 3.727 7.555 14.056 4.656 21.611
165 0.945 3.294 6.661 10.176 4.238 16.837
180 0.932 4.421 6.440 4.112 5.353 10.552
195 0.949 3.294 6.424 3.351 4.243 9.774
210 0.981 3.782 6.337 1.913 4.763 8.250
225 1.001 4.519 6.288 1.481 5.521 7.769
240 1.014 5.405 6.260 1.191 6.420 7.451
255 0.454 6.053 24.737 40.639 6.507 65.376
270 0.463 5.693 23.931 39.501 6.157 63.432
285 0.471 5.259 23.555 38.386 5.731 61.941
300 0.479 4.775 22.353 37.655 5.254 60.008
315 0.486 4.266 21.831 36.856 4.752 58.687
330 0.490 3.765 21.506 36.170 4.255 57.677
345 0.493 3.337 21.358 35.659 3.830 57.017
360 0.488 4.457 21.233 35.634 4.945 56.867
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Table B.14. L2 Lyapunov orbit results for i = 30° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.488 5.664 21.296 35.645 6.152 56.941
15 0.501 3.347 21.105 35.514 3.848 56.619
30 0.506 3.840 21.285 35.102 4.347 56.387
45 0.515 4.451 20.886 34.615 4.967 55.501
60 0.526 5.095 20.234 34.016 5.621 54.251
75 0.538 5.730 19.990 33.131 6.268 53.121
90 0.552 6.327 19.327 32.204 6.879 51.531
105 0.858 5.705 9.925 18.535 6.563 28.460
120 0.897 5.065 8.934 16.931 5.961 25.865
135 0.930 4.415 8.028 15.169 5.345 23.197
150 0.954 3.799 7.165 12.866 4.753 20.031
165 0.959 3.303 6.521 8.361 4.262 14.881
180 0.932 5.631 6.439 4.004 6.563 10.443
195 0.960 3.303 6.432 3.583 4.263 10.015
210 0.983 3.814 6.371 2.485 4.797 8.855
225 1.008 4.545 6.306 1.816 5.553 8.122
240 1.022 5.428 6.272 1.352 6.450 7.623
255 0.467 6.865 24.242 39.672 7.332 63.914
270 0.476 6.333 23.737 38.607 6.809 62.344
285 0.485 5.734 22.683 37.828 6.218 60.511
300 0.491 5.098 22.308 37.025 5.589 59.333
315 0.496 4.452 21.774 36.404 4.948 58.178
330 0.499 3.840 21.149 36.012 4.339 57.162
345 0.499 3.347 21.230 35.634 3.846 56.863
360 0.488 5.664 21.296 35.645 6.152 56.941
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Table B.15. L2 Lyapunov orbit results for i = 40° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.487 6.976 21.361 35.659 7.463 57.020
15 0.507 3.353 21.633 35.399 3.859 57.032
30 0.512 3.881 22.162 35.038 4.393 57.201
45 0.519 4.564 21.146 34.848 5.083 55.994
60 0.528 5.305 20.686 34.365 5.833 55.052
75 0.538 6.055 20.292 33.711 6.593 54.002
90 0.550 6.782 19.664 32.951 7.332 52.615
105 0.898 6.025 9.310 17.541 6.923 26.850
120 0.933 5.270 8.431 15.991 6.203 24.422
135 0.961 4.524 7.643 14.271 5.484 21.915
150 0.977 3.836 6.916 11.832 4.813 18.748
165 0.977 3.307 6.461 6.438 4.284 12.898
180 0.917 6.959 7.374 13.529 7.875 20.903
195 0.977 3.307 6.434 3.746 4.284 10.180
210 0.992 3.840 6.398 2.871 4.832 9.269
225 1.015 4.578 6.332 1.977 5.593 8.309
240 1.031 5.458 6.291 1.572 6.489 7.862
255 1.043 6.414 6.259 1.412 7.458 7.671
270 0.489 6.787 23.103 37.995 7.276 61.098
285 0.496 6.058 22.547 37.247 6.555 59.794
300 0.502 5.307 22.125 36.608 5.809 58.734
315 0.505 4.565 21.790 36.121 5.070 57.911
330 0.506 3.881 21.847 35.655 4.387 57.502
345 0.506 3.352 21.453 35.518 3.858 56.972
360 0.487 6.976 21.361 35.659 7.463 57.020
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Table B.16. L2 Lyapunov orbit results for i = 50° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.487 8.313 21.321 35.736 8.799 57.056
15 0.515 3.354 21.633 35.399 3.870 57.032
30 0.519 3.903 21.518 35.281 4.422 56.799
45 0.525 4.634 21.257 35.033 5.159 56.290
60 0.532 5.446 21.053 34.630 5.977 55.683
75 0.540 6.282 20.763 34.102 6.822 54.864
90 0.549 7.111 20.129 33.538 7.659 53.667
105 0.936 6.247 8.752 16.593 7.184 25.345
120 0.967 5.406 8.029 15.159 6.373 23.188
135 0.990 4.591 7.330 13.409 5.580 20.739
150 1.000 3.857 6.760 10.943 4.857 17.703
165 0.998 3.309 6.443 4.939 4.307 11.382
180 0.903 8.305 7.825 14.719 9.207 22.545
195 0.998 3.309 6.436 3.981 4.307 10.418
210 1.007 3.858 6.414 3.237 4.865 9.651
225 1.026 4.610 6.360 2.333 5.636 8.693
240 1.041 5.492 6.314 1.894 6.534 8.208
255 1.053 6.448 6.280 1.779 7.501 8.058
270 0.502 7.115 22.941 37.352 7.616 60.293
285 0.508 6.285 22.555 36.733 6.793 59.288
300 0.513 5.447 21.840 36.347 5.960 58.188
315 0.515 4.635 22.032 35.815 5.150 57.848
330 0.515 3.903 21.737 35.585 4.419 57.322
345 0.515 3.355 21.715 35.426 3.869 57.141
360 0.487 8.313 21.321 35.736 8.799 57.056
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Table B.17. L2 Lyapunov orbit results for i = 60° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.486 9.632 21.351 35.836 10.118 57.186
15 0.524 3.357 21.972 35.345 3.881 57.317
30 0.528 3.917 21.341 35.399 4.444 56.740
45 0.532 4.679 21.559 35.109 5.211 56.668
60 0.536 5.540 21.576 34.796 6.076 56.371
75 0.542 6.439 21.231 34.450 6.981 55.681
90 0.548 7.344 20.873 33.979 7.892 54.852
105 0.975 6.399 8.265 15.664 7.374 23.930
120 1.001 5.495 7.631 14.263 6.496 21.893
135 1.018 4.632 7.077 12.542 5.650 19.620
150 1.024 3.870 6.630 9.906 4.894 16.536
165 1.022 3.310 6.437 4.069 4.332 10.507
180 0.882 9.635 8.414 15.960 10.517 24.374
195 1.022 3.310 6.436 3.909 4.332 10.345
210 1.027 3.870 6.422 3.530 4.897 9.952
225 1.038 4.639 6.387 2.822 5.677 9.209
240 1.051 5.528 6.345 2.333 6.579 8.678
255 1.061 6.486 6.310 2.101 7.547 8.411
270 0.515 7.346 22.436 36.882 7.861 59.318
285 0.520 6.441 22.326 36.366 6.960 58.692
300 0.523 5.540 21.987 35.999 6.063 57.986
315 0.525 4.679 21.719 35.742 5.205 57.462
330 0.526 3.917 21.435 35.607 4.442 57.043
345 0.524 3.356 21.715 35.426 3.880 57.141
360 0.486 9.632 21.351 35.836 10.118 57.186
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Table B.18. L2 Lyapunov orbit results for i = 70° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.484 10.909 21.531 36.000 11.393 57.531
15 0.534 3.357 21.972 35.345 3.891 57.317
30 0.536 3.926 22.185 35.244 4.462 57.429
45 0.539 4.707 21.785 35.203 5.246 56.988
60 0.542 5.599 21.647 35.018 6.142 56.665
75 0.546 6.542 21.439 34.782 7.088 56.221
90 0.550 7.500 21.243 34.464 8.049 55.707
105 1.013 6.498 7.789 14.664 7.511 22.452
120 1.034 5.551 7.279 13.281 6.585 20.560
135 1.046 4.657 6.863 11.584 5.703 18.447
150 1.049 3.877 6.552 8.961 4.926 15.513
165 1.048 3.311 6.438 4.248 4.359 10.686
180 0.851 10.925 9.270 17.493 11.776 26.763
195 1.047 3.311 6.440 4.524 4.359 10.963
210 1.051 3.877 6.427 3.725 4.927 10.152
225 1.056 4.658 6.405 3.468 5.714 9.873
240 1.063 5.559 6.375 2.876 6.622 9.251
255 1.069 6.522 6.345 2.691 7.591 9.036
270 0.527 7.501 22.406 36.311 8.029 58.716
285 0.531 6.543 22.383 35.937 7.074 58.320
300 0.534 5.600 22.155 35.711 6.133 57.867
315 0.535 4.707 22.061 35.528 5.242 57.589
330 0.535 3.925 22.093 35.384 4.460 57.477
345 0.535 3.356 21.567 35.448 3.891 57.015
360 0.484 10.909 21.531 36.000 11.393 57.531
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Table B.19. L2 Lyapunov orbit results for i = 80° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.480 12.123 21.698 36.442 12.603 58.140
15 0.545 3.357 21.972 35.345 3.902 57.317
30 0.547 3.929 21.622 35.399 4.475 57.022
45 0.547 4.722 21.778 35.302 5.269 57.080
60 0.548 5.633 21.795 35.200 6.181 56.995
75 0.549 6.601 21.972 35.017 7.150 56.989
90 0.551 7.590 21.757 34.896 8.141 56.653
105 1.053 6.550 7.276 13.315 7.604 20.591
120 1.067 5.580 6.922 11.942 6.647 18.864
135 1.074 4.670 6.643 10.110 5.744 16.753
150 1.075 3.880 6.480 7.467 4.956 13.947
165 1.075 3.311 6.444 5.073 4.386 11.517
180 0.441 12.462 27.158 43.322 12.903 70.479
195 1.074 3.312 6.465 6.616 4.386 13.081
210 1.076 3.880 6.430 4.035 4.956 10.464
225 1.077 4.670 6.416 3.803 5.747 10.218
240 1.079 5.578 6.396 3.530 6.657 9.926
255 1.081 6.548 6.374 3.385 7.629 9.759
270 0.540 7.591 22.318 35.824 8.130 58.142
285 0.542 6.601 22.145 35.680 7.143 57.825
300 0.544 5.633 22.038 35.528 6.177 57.567
315 0.545 4.723 22.159 35.401 5.267 57.560
330 0.545 3.929 22.045 35.366 4.475 57.411
345 0.545 3.357 21.972 35.345 3.902 57.317
360 0.480 12.123 21.698 36.442 12.603 58.140
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Table B.20. L2 Lyapunov orbit results for i = 90° inclination of the LEO

θ ∆V1 ∆V2 TOF1 TOF2 ∆VT TOFT

(deg) (km/s) (km/s) (days) (days) (km/s) (days)
0 0.441 13.258 27.209 43.312 13.698 70.521
15 0.555 3.358 23.066 35.137 3.913 58.203
30 0.555 3.931 22.558 35.234 4.486 57.791
45 0.554 4.728 22.649 35.220 5.282 57.869
60 0.554 5.644 22.006 35.366 6.198 57.372
75 0.553 6.620 22.432 35.260 7.174 57.692
90 0.553 7.619 21.952 35.366 8.173 57.318
105 1.098 6.557 6.396 5.366 7.655 11.763
120 1.100 5.585 6.408 4.754 6.684 11.163
135 1.101 4.673 6.419 4.144 5.773 10.563
150 1.101 3.881 6.430 4.066 4.983 10.496
165 1.102 3.311 6.449 5.627 4.413 12.077
180 0.441 13.258 27.210 43.312 13.698 70.522
195 1.101 3.312 6.485 7.408 4.413 13.893
210 1.100 3.882 6.505 8.109 4.982 14.614
225 1.098 4.675 6.527 8.740 5.773 15.268
240 1.096 5.588 6.565 9.465 6.684 16.030
255 1.094 6.561 6.610 10.110 7.655 16.720
270 0.553 7.619 21.952 35.366 8.172 57.318
285 0.554 6.620 22.245 35.265 7.174 57.510
300 0.555 5.643 21.922 35.345 6.198 57.267
315 0.556 4.727 21.605 35.399 5.283 57.005
330 0.556 3.931 21.961 35.345 4.486 57.306
345 0.555 3.357 22.321 35.265 3.913 57.586
360 0.441 13.258 27.209 43.312 13.698 70.521
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