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Abstract

Understanding the evolution of satellite orbits in the long-term is of great

importance in astrodynamics. In order to achieve this, accurate propagation of the

orbital dynamics of the satellite is required. This thesis attempts to implement and

evaluate a class of numerical integration methods known as symplectic algorithms.

This class of algorithms is highly regarded in scientific applications, especially

in long-term studies. The objective of this thesis is to demonstrate the superior

accuracy and efficient speed of several algorithms of this class and obtain long-term

state of satellites under the several influencing forces. Within each application,

several cases with different values for parameters such as the time step and duration

are executed. In addition, long-term orbital evolution of a satellite in various orbital

regimes is conducted. The results indicate that the symplectic algorithms are more

accurate for orbit propagation at various time increments tested. In addition, the

symplectic algorithms are more computationally efficient in all but a few cases.
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Chapter 1 |
Introduction and Background

In many fields of science and engineering, analytical solutions to dynamical

systems are generally not possible without making one or more assumptions to

simplify the model. This is true in astrodynamics with the only exception of the

two-body problem. While it is useful in many ways, it assumes only one force

affecting the motion of an object: the gravitational force of the central body. While

this may not be an erroneous assumption in the short-term, it is not valid for long-

term orbital dynamics studies. Therefore, we must account for other perturbing

forces such as the gravity of other celestial bodies, geopotential, atmospheric drag,

solar radiation pressure among others. However, the governing equations describing

the motion of a satellite subject to the aforementioned forces can only be solved

through numerical integration, as no analytic solution can be determined. With

any integration algorithm, there are numerical errors that are arise due to the finite

difference update scheme used. The work presented in this thesis aims to apply

several symplectic numerical integration algorithms that have been widely regarded

for their long-term accuracy to determine the orbital evolution of a satellite in

various regimes. The term “symplectic” is derived form the latin root “symp-”

which is equivalent to the word complex. Evaluating the accuracy and effectiveness

of the chosen algorithms is a primary objective of this work. Another objective is
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to study the long-term orbital behavior of a satellite in various orbits in the vicinity

the Earth.

Previously, long-term orbital study in references [1] and [2] explored averaged

equations for the perturbing accelerations. In reference [4], Kaufman used a

semi-analytic theory in which equations are developed for Earth and lunar orbiters

subject to third-body perturbations. While these averaged formulations are sufficient

valid in the short-term, numerical integration of the dynamics is warranted for

long-term studies. Previous implementations of symplectic algorithms include

reference [3], where the leapfrog algorithm was used to simulate n-body problems.

A comprehensive test of various algorithms was performed for an unperturbed

two-body problem while focusing on the speed and accuracy of these algorithms

in reference [5]. The work presented in this thesis implements previously explored

algorithms such as Verlet and some Runge-Kutta methods but also includes two

other symplectic algorithms that have yet to be applied to orbit propagation

studies: Forest-Ruth and PEFRL. This study also attempts to directly integrate the

equations of motion with various perturbations (e.g. third-body and geopotential)

to evaluate the long-term orbital behavior of satellites. In addition, the efficient

implementation of the numerical integration algorithms is of importance in this

thesis. The orbits are propagated for one, five, and ten year time spans and each

case was performed thrice with 10, 100, and 1000 second time increments.

In addition to long-term orbit modeling, the work presented in this thesis is also

important to other areas in astrodynamics such as space tracking and predicting

the orbits of space debris. In space tracking, accurate determination of the state of

an orbiting object is limited by the quality of the tracking data as well as errors

in numerical integration of the dynamics. The algorithms used in this thesis can

alleviate the latter of these issues. In the analysis of space-debris dynamics, these

2



algorithms can also be useful in prediction the long-term orbits of a debris cloud

resulting from a collision.

The structure of this thesis is as follows. Chapter 2 outlines the dynamics used

in this thesis. Chapter 3 introduces the several numerical integration algorithms of

interest. Chapter 4 is a summary, observations and discussion of the results, and

finally Chapter 5 ends with a concluding discussion of the work presented in the

thesis and suggesting ideas for future work in this area.
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Chapter 2 |
Dynamics

2.1 Simple Two-Body Problem

Consider two objects in motion around their common center of mass (barycenter)

affected by the mutual gravitational force. This is known as the two-body problem.

Usually, the absolute motion of both bodies is not of interest in the field of

astrodynamics but rather the motion of one object relative to the other. Equation

(2.1) describes that motion, where r is the relative position vector of the satellite

to the primary body, and r̈ is the acceleration,

r̈ + µ

r3 r = 0 (2.1)

where

µ = G(m1 +m2) (2.2)

which is known as the Gravitational Parameter. When m2 << m1,

µ ≈ Gm1 (2.3)

In astrodynamics, we rarely consider the mass of the satellite (m2) to be

significant (compared to the mass of the central body (m1)) and hence equation

(2.3) is more appropriate for the purposes of modeling satellite motion around

4



a celestial object and will be used to formulate the gravitational parameter. As

described earlier, the two-body problem has an analytical solution known as the

orbit equation which is given in equation (2.4). This equation relates θ (which is the

angle between the periapse point and P1) to the distance from the occupied focus

F to the point P1 (r). The graphical representation of this is given in Figure 2.1 in

which the central body is located at F .

a

FF ∗

p

P1

r

êr

ê?

v P2

θ

Figure 2.1. Orbital Geometry

r = a(1− e2)
1 + e cos θ (2.4)

Since gravity is a conservative force, the energy of a satellite orbit does not

change over time. This implies that integration of equation (2.1) should conserve

the total energy of the system. With numerical integration of the differential

equation (described in equation (2.1)), this energy (specific energy) can be used as

a measure of the numerical accuracy for the orbit. The vis-viva equation defines

the specific orbital energy in terms of the position (r) and velocity (v) at a given

5



time (or equivalently at a given θ in its orbit),

ε = v2

2 −
µ

r
= − µ

2a (2.5)

Therefore, the accuracy of a numerical integration algorithm can be determined

by monitoring deviations of ε from its initial (reference) value.

While the energy of an orbit is an invariant, there is no physical intuition of this

quantity. Therefore, it could be considered as an indirect measure of the integration

error. A geometric quantity would be better suited to present a physical measure

of the accuracy. The first of these quantities in the semi-major axis of an orbit

which is shown in Figure 2.1 and it can defined in terms of ε in equation (2.6) by

rearranging terms in equation (2.5).

a = − µ

2ε (2.6)

The eccentricity, which is a measure of the deviation of an orbit from a circle,

is also an invariant (for a given orbit) which implies it can be useful in assessing

the accuracy of a orbit propagation scheme. The eccentricity of an orbit can be

expressed in terms of p and a (shown in Figure 2.1),

e =
√

1− p

a
(2.7)

where p = h2

µ
is the semi-latus rectum of the orbit. The specific angular momentum,

h, of the orbit can be expressed in terms of the state vector,

h = |r× v| (2.8)

Both the semi-major axis and the eccentricity are more geometrically intuitive

6



ways to measure the accuracy of an integration algorithm. Despite this, all three

measures (energy, semi-major axis, and eccentricity), are used here to display the

accuracy of the various algorithms used. An example of the use of the semi-major

axis as a measure of error is given in reference [6]. The use of orbital energy as a

measure of accuracyis seen in reference [7]. The following section of this chapter

outlines the formulation some of the other perturbing forces that affect the orbital

motion of a satellite.

2.2 Perturbed Two-Body Problem

Although the model present in previous section can be very useful for problems

astrodynamics, any long-term orbital study must account for other sources of

gravitational and non-gravitational forces that can influence the motion of a satellite.

These can include third-body effects (gravitational influences from the sun, moon,

and other planets), geopotential perturbations, atmospheric drag, solar radiation

pressure among others. A general formulation for modeling orbital perturbations is

shown in reference [10] as

r̈ = aGR + +a3rd + ageo + aSRP + aD (2.9)

where aGR was previously defined as the gravity of the primary body:

aGR = − µ
r3 r

Some of the remaining terms of equation (2.9) are discussed in the subsequent

sections.

7



2.2.1 Third-Body Effects

A formulation for third body effects (a3rd) in the following derivation through

the computation of a disturbing acceleration (p. 387-389 of [8]). This can be useful

in modeling the perturbing forces of additional bodies aside from the primary. For

a satellite orbiting the Earth perturbations from the Sun, moon, and other planets

can be modeled using the formulation. A physical depiction of this formulation

is given in Figure 2.2 where P1 is the primary body (Earth) around which P2 (a

satellite) orbits and Pj is a third body (Sun, Moon etc.) that influences the motion

of P2. The unit vectors Î , Ĵ , K̂ denote the orientation of the Cartesian coordinate

system.

P2

Pj

P1

αj

dj

ρj

r

Ĵ

Î

K̂

Barycenter

Figure 2.2. Three-Body Problem Geometry

a3rd = −
N∑
j=3

µj

(
1
d3
j

dj + 1
ρ3
j

ρj

)
(2.10)
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where

ρj = rj − r and dj = r− ρj (2.11)

and drop the indices for convenience
1
d3 d + 1

ρ3ρ = 1
d3 (r− ρ) + 1

ρ3ρ

= 1
d3 r− 1

d3ρ+ 1
ρ3ρ

= 1
d3

[
r +

(
d3

ρ3 − 1
)
ρ

]
(2.12)

The formulation in either equation (2.10) or (2.12) requires the computation

of dj and ρj. It would be convenient to have the perturbing acceleration only

as a function of ρj and ρj. Equations (2.13a)-(2.13f) shows the derivation of that

formulation of the perturbing acceleration.

(
d3

ρ3 − 1
)

=

√
d · d
ρ · ρ

(
d · d
ρ · ρ

)
− 1 (2.13a)

=
(

d · d
ρ · ρ

) 3
2

− 1 (2.13b)

Then, using definitions in (2.11),

=
(

(r− ρ) · (r− ρ)
ρ · ρ

) 3
2

− 1 (2.13c)

=
(

r · r− 2ρ · r + ρ · ρ
ρ · ρ

) 3
2

− 1 (2.13d)

=
(

r · (r− 2ρ) + ρ · ρ
ρ · ρ

) 3
2

− 1 (2.13e)

=
(

r · (r− 2ρ)
ρ · ρ

+ 1
) 3

2

− 1 (2.13f)
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Therefore, with the following definition for q,

q = r · (r− 2ρ)
ρ · ρ

(2.14)

the term in equation (2.13f) can be expressed(
d3

ρ3 − 1
)

= (1 + q) 3
2 − 1 = f(q) (2.15)

While f(q) can be expanded in a series, the following closed form solution also

exists

f(q) = q
3 + 3q + q2

(1 + q) 3
2 + 1

(2.16)

Hence, dj is no longer requried to calculate the acceleration. To conclude this

derivation, a summary of the perturbing acceleration of a third-body in terms of

q, r, and ρj is given below.

a3rd =
N∑
j=3

µj
d3
j

[r + f(qj)ρj] (2.17)

with

qj = r · (r− 2ρj)
ρj · ρj

= r · r− 2ρj
ρj · ρj

= r2 − 2rρj cosαj
ρ2
j

= r

ρj

(
r

ρj
− 2 cosαj

)
(2.18)

and αj is the angle between the vectors r and ρj as shown in Figure 2.2. Thus,

the perturbing acceleration from a third-body can be calculated only requiring the

knowledge of the position of the third-body (the sun or moon for example) relative

to the Earth. The relative positions of these third bodies relative to the Earth

are given in Chapter 5 of reference [9]. There, approximations to the ECI (Earth

Centered Inertial) reference frame positions of the Sun and Moon are derived and
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an algorithm is outlined to calculate them.

2.2.2 Geopotential Perturbation

In developing the equations for a satellite in orbit around the Earth in the

previous section of this chapter, an assumption was made that the Earth is a

perfectly homogeneous sphere. This assumption greatly simplifies the gravitational

potential of the Earth and is not an accurate representation. A derivation for the

perturbing acceleration due to a non-spherical gravity field is given in pp. 508-521

of [9]. The resulting geopotential equation is

U = µ

r

{
1−

∞∑
l=2

Jl

(
R⊕
r

)l
Pl[sin(φsat)]

+
∞∑
l=2

l∑
m=1

(
R⊕
r

)l
Pl,m[sin(φsat)] [Cl,m cos(mλsat) + Sl,m sin(mλsat)]} (2.19)

where

Pl[γ] = 1
2ll!

dl(γ2 − 1)l
dγl

(2.20)

Pl,m[γ] = 1
2ll! (1− γ

2)m/2d
l+m(γ2 − 1)l
dγl+m

= (1− γ2)m/2d
mPl[γ]
dγm

(2.21)

Jl = −Cl,0 (zonal harmonics)

and γ = sin(φsat)

(2.22)

Pl and Pl,m are Legendre polynomials and associated Legendre functions respectively,

R⊕ is the mean radius of the planet, and Cl,m and Sl,m are coefficients for sectorial

and tesseral harmonics of the planet. These values for Earth are given in Appendix

D of [9]. The zonal harmonics are only a function of the latitude (φsat) while the

sectorial harmonics are only dependent on longitude (λsat). The tesseral harmonics
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describe the pertubation from a particular region of the planet. A graphical

description of these three harmonics for the Earth are given in Figure 2.1 on p. 9

of reference [10] as well as Figures 8.5 and 8.6 on p. 519-520 of reference [9]. These

figures are very insightful and allow for an intuitive understanding of the gravity

model. The perturbing acceleration as a result of the geopotential can be calculated

using the gradient of the potential, U , as (shown in reference [12]),

ageo = ∇U = ∂U

∂r
= ∂U

∂x
î + ∂U

∂y
ĵ + ∂U

∂z
k̂ (2.23)

where î, ĵ, k̂ are the Cartesian unit vectors.

With equation (2.23), the perturbing geopotential acceleration can be calcu-

lated. However, the geopotential is given in terms of the geocentric latitude and

longitude which are in ECF (Earth Centered Fixed) reference frame while the orbit

propagation is performed in ECI frame. Therefore, a coordinate transformation of

the acceleration in equation (2.23) into ECI needs to be done. This can be achieved

by the following transformation matrix [13].

aECIgeo = TXY Zxyz T xyzrφλageo (2.24)

where

T xyzrφλ =


cosφ cosλ − sinφ cosλ − sin λ

cosφ sin λ − sinφ sin λ cosλ

sinφ cosφ 0


and

TXY Zxyz =


cosα − sinα 0

sinα cosα 0

0 0 1
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While equation (2.19) can be used to model the geopotential field of the Earth

to any degree, with increasing order of l and m, the terms affect on the spacecraft

decreases. With this in mind, a 5× 5 gravity field is sufficiently complex model to

accurately model the geopotential perturbation on a satellite.

This chapter outlined the dynamics used in the orbit propagation performed

in this study and to their usefulness. The next chapter outlines the integration

algorithms that are of interest in this thesis and explains their properties in detail.
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Chapter 3 |
An Overview of the Algorithms

The numerical integration methods presented here are categorized into a group

of algorithms known as symplectic algorithms. They are used to integrate equations

of motion for Hamiltonian systems. The dynamics presented in Chapter 2 are

an example of a Hamiltonian system. They form a subset of a class of geometric

numerical integration algorithms. All algorithms of this class preserve the geometric

properties in the differential equations. An interesting and important property

of these algorithms is that they conserve the Hamiltonian quantity of the dyan-

mical system. This conservation property makes them very useful for long-term

propagation of chaotic systems as this can be helpful in acheiving accuracy. They

widely used in molecular dynamics, quantum physics and celestial mechanics. An

example of the effectiveness of a symplectic integrator can be seen in Section I.2.3

of reference [11] where the motion of outer planets in the solar-system is simulated

through the symplectic Euler and the Störmer-Verlet with the implicit and explicit

Euler method. The results (in Figure 2.4 on p. 14 in reference [11]) show that

through the explicit and implicit Euler methods, Jupiter and Saturn are ejected

out of the Solar System while the symplectic algorithms (even with a larger time

step) maintain the periodic orbits of the planets. Also, these results demonstrate

the stability of the first two (symplectic) algorithms compared than the implicit
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and explicit Euler. These results show the effectiveness of symplectic algorithms to

dynamical system in astrodynamics where similar equations are used to propagate

satellite orbits. The algorithms outlined in this chapter are symplectic methods of

increasing accuracy which are described in detail with emphasis on their speed and

efficiency including the basis for choosing them.

3.1 Verlet

The Verlet algorithm is credited to Verlet who, in the 1960s, used it in molecular

dynamics for simulating the motion of particles [14]. Other early uses of this

algorithm include the works of Cowell and Crommelin in determining the Halley’s

Comet in 1909 and Størmer in 1907 for determining trajectories of electric particles

within magnetic field. One of the formulations, among many, of the Verlet Algorithm

is called Störmer-Verlet Method and it is described in equation (3.1).

rn+1 = 2rn − rn−1 + r̈nδt2 +O(δt4) (3.1)

for n = 1, 2, . . . and where δt is the time step.

The basic Störmer-Verlet Method does not involve the explicit calculation of

the velocity. A common formula used to calculate the velocity in the is given in

equation (3.2) where a simple averaging formula is used,

vn = rn+1 − rn−1

δt
+O(δt2) (3.2)

Few observations can be drawn from the above equations. First, the position

error is of order 4 but the Verlet algorithm overall is of order 2 since the velocity is

of order 2. As the update scheme in equation (3.1) is not dependent on velocity,
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equation (3.2) can be ignored. However, the velocity is necessary in calculating

many conservation quantities such as kinetic energy and momentum. Secondly,

the algorithm requires the position at the (n− 1)th time step in order to calculate

the position and velocity at the nth time step. Algorithms of this kind are not

considered to be "self-starting" implying that the first value for position has to

be calculated some other way using the initial conditions. This is the challenge

for performing a numerical integration routine. A solution to this problem is to

initialize the first position vector (r1) using a Taylor series approximation of any

order greater than 2 (since that the the order of the Verlet position update scheme).

This might result in an overall increase in the error however over a long period of

time, this initial error in the update scheme can be ignored. The following is the

initialization formula used in this thesis,

r1 = r0 + v0δt (3.3)

where r0 and v0 are the initial conditions.

With this initialization, the Verlet algorithm can be used. However, there are

a couple of problems with the Verlet algorithm. The acceleration (r̈) can only be

dependent on the position. This presents a problem when used in astrodynamics,

since some perturbing accelerations can be a function of both position and velocity.

However, there are a lot of applications in which this algorithm can be used for

orbit propagation.
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3.2 Velocity Verlet/Leapfrog

The Velocity Verlet algorithm is a slight modification of the Verlet algorithm.

Unlike Verlet, the Velocity Verlet does not require that the acceleration be only

dependent on position, which makes it more useful in applications in astrodynamics.

The Leapfrog algorithm is mathematically identical to the Velocity Verlet but with

staggered position and velocity updates. The update scheme∗ is given as:

Leapfrog:

rn = rn−1 + vn−1/2δt (3.4a)

vn+1/2 = vn−1/2 + r̈nδt (3.4b)

Velocity-Verlet:

rn+1 = rn + vnδt+ r̈nδt2/2 (3.4c)

vn+1 = vn + (r̈n + r̈n+1)δt/2 (3.4d)

It is apparent from observing equation (3.4a) that in order to use the Leapfrog

update method, v1/2 must be computed in order to initialize the algorithm. While

it can be calculated using similar method described for initializing Verlet, the

alternate formulation of the Velocity Verlet outlined by equations (3.4c)-(3.4d).

The latter formulation is also advantageous for calculations of conserved quantities

of dynamical systems such as energy and angular momentum since the position

and velocity are defined at the nth time step instead of being one-half step away

from one another. Another interesting property of these two algorithms, besides

their symplecticity is time reversiblility. This guarantees that one can integrate
∗“The Leapfrog Integrator” Leapfrog Integrator.Available: http://einstein.drexel.edu/courses/
Comp_Phys/Integrators/leapfrog/, Accessed: March 28, 2016
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a system n steps forward in time, then integrate n steps backward and achieve

the initial conditions exactly (within floating point precision). This property of

this algorithm is among the reasons for its use in numerical integration of various

dynamical systems and is therefore chosen here due to this prolific use.

3.3 Forest-Ruth

While the previous algorithms are of order 2, higher-order algorithms do exist.

Some software applications such as MATLAB come with higher-order Runge-Kutta

methods. However, the following were chosen since since they are higher-order

symplectic algorithms. The intention for choosing these algorithms is to investigate

the trade-off of between the accuracy obtained due to the higher-order update

method and the increase in computational time due to the number of function

evaluations for various orbtial dynamics. The first of the algorithms is known

as the Forest-Ruth algorithm (reference [15]) which is outlined in the recursive

relationships shown in equations (3.5a)-(3.5f).

Forest-Ruth:

r1 = rn−1 + θvn−1δt/2 (3.5a)

v1 = vn−1 + θr̈1δt (3.5b)

r2 = r1 + (1− θ)v1δt/2 (3.5c)

v2 = v1 + (1− 2θ)r̈2δt (3.5d)

rn = r2 + θv2δt/2 (3.5e)

vn = v2 + θr̈3δt (3.5f)
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where

θ = 1
2− 3
√

2
(3.5g)

As the update scheme suggests, the Forest-Ruth algorithm requires three function

evaluations for each update. While this results in an increase in the required

computational time, there is an improvement in accuracy. Whether the higher

accuracy justifies the decrease in computational efficiency is something that is

discussed in Chapter 4 and is the main reason for implementing this algorithm in

this thesis. Another observation regarding the Forest-Ruth algorithm is that the

value of θ (defined in equation (3.5g)) is greater than 1 (≈ 1.351207192) which

implies that in equations (3.5c) and (3.5d), the algorithm performs a reverse time

step before computing the next intermediate time step. (Note that this reverse

time step updates the positions that are before r1)†. This is one of the ways that

the algorithm achieves the improvements in accuracy. To conclude to observations

regarding this algorithm, it should be noted that the Forest-Ruth Algorithm is of

order 4 and is considered to be symplectic as well as time reversible. Hence, it is

very applicable to dynamical systems in astrodynamics.

3.4 PEFRL

Omelyan et al. [16] explored methods to improve the accuracy of the Forest-Ruth

algorithm while maintaining the time reversable update scheme and achieving similar

computational efficiency. One of the optimized algorithms containted in that paper

is known as the Position Extented Forest-Ruth Like (PEFRL) algorithm. Due to

the optimization, it is an improvement over Forest-Ruth in terms of accuracy. Also,
†Peter Young, https://physics.ucsd.edu/students/courses/winter2016/physics141/Assignments/
leapfrog.pdf, Accessed: March 28, 2016
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since it is still a 4th order integrator, the computational expense is not immediately

noticable. However, it does require an additional function evaluation over Forest-

Ruth which, as the results in Chapter 4 demonstrate, still costs additional time.

However, this algorithm is still of interest in this work due to the intriguing trade-

offs between the improved accuracy and computational cost. The recursive update

scheme for PEFRL algorithm is given as follows in equations (3.6a) - (3.6i):

PEFRL:

r1 = rn−1 + vn−1ξδt (3.6a)

v1 = vn−1 + r̈1(1− 2λ)δt/2 (3.6b)

r2 = r1 + v1χδt (3.6c)

v2 = v1 + r̈2λδt (3.6d)

r3 = r2 + v2(1− 2(χ+ ξ))δt (3.6e)

v3 = v2 + r̈3λδt (3.6f)

r4 = r3 + ξδt (3.6g)

vn = v3 + r̈4(1− 2λ)δt/2 (3.6h)

rn = r4 + vnξδt (3.6i)

where

ξ = 0.1786178958448091

λ = −0.2123418310626054

χ = −0.06626458266981849
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3.5 Other Algorithms and Considerations

3.5.1 Other Algorithms

These symplectic algorithms need to be validated against other widely used

algorithms such as Runge-Kutta methods. In this thesis, the software program

MATLAB was used which includes various integration algorithms based on Runge-

Kutta methods. Among these, ODE45 is a popular choice which is based on the

Dormand-Prince method‡. This method [17] delivers fourth-order accuracy with a

fifth-order error control. This algorithm was chosen since it is of the same order of

accuracy as the Forest-Ruth and PEFRL algorithms. In addition, the interesting

question of whether a lower order symplectic algorithm such as Verlet or Leapfrog

can be more accurate than the higher order Runge-Kutta.

These algorithms were chosen for various reasons. The Verlet and Velocity

Verlet have been previously explored for orbit propagation but Forest-Ruth and

PEFRL have not. Therefore, all of these algorithms are to be tested to compare

them to each other and analyze their performance and applicability to problems in

orbit propagation. Also, given their varying order of accuracy, it is an interesting

test to compare their accuracy to Runge-Kutta methods to see whether even the

second order symplectic algorithms such as Verlet and Velocity Verlet perform

better due to their energy preserving properties.
‡“Solve nonstiff differential equations” Available: http://www.mathworks.com/help/matlab/
ref/ode45.html, Accessed: March 28, 2016
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3.5.2 Other Considerations

In the process of completing the objectives of this thesis, some difficulties were

encountered concerning the limits of the computer programming including choice

of programming environment. The limitations of MATLAB in the way it utilized

memory on a computer was a limiting factor in evaluating the performance of

the algorithms. Eventually, several solutions were applied to this problem. One

possible solution was to implement the algorithms in C++ instead of MATLAB.

Its lower-level programming environment granted more computational power over

MATLAB. However, due to the more convenient graphing utilities available in

MATLAB and for the included Runge-Kutta suite of integration algorithms, it was

still the choice in this work.

This chapter gave a detailed overview of the algorithms used in this thesis

and discussed their advantages, shortcomings, accuracy and efficiency. The next

chapter, Chapter 4, gives the results obtained from the orbit propagation tests

performed in this thesis and discusses the performance of these algorithms.
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Chapter 4 |
Summary and Analysis of the
Results

In this chapter, the results obtained from performing various orbit propagation

tests are outlined along with explanations and discussion of these results. The

ultimate objective of this chapter is to perform accurate long-term orbit propagation

using these symplectic algorithms. Before these results are shown, the numerical

accuracy, computational efficiency of these algorithms must be explored. In order

to accomplish this, the first section of this chapter outlines the results obtained

by propagating the dynamics of the two-body problem described in Chapter 2.

The analytical solution to the two-body problem (known as the orbit equation) is

propagated to measure the accuracy of the algorithms. Along with these results,

performance characteristics of these algorithms are given. The next section presents

results from orbit propagation using various perturbations as were described in

Chapter 2. The objective of this section is to analyze and study, using these

algorithms, the orbit evolution of a satellite in various orbits around the Earth.

As with the first section, the computational efficiency of these algorithms is also

presented.
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4.1 Evaluation of the Algorithms

The first test shown in the following series of figures lists the orbit propagation of

a GEO orbit using the Velocity Verlet, Forest-Ruth, PEFRL and ODE45 algorithms

for a time-span of 1 year in 1000 second increments. A GEO orbit is circular orbit

of radius 42157 km and velocity 3.0749 km/s and the gravitational parameter of

the Earth is 398600 km3/s2. The orbits using the aforementioned algorithms are

shown in Figure 4.1.
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Figure 4.1. GEO Orbit (δt = 1000s and time span of 1 year)
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(Note: x, y, z are the three directions of a right handed Cartesian coordinate system.)

The graphs in Figure 4.1 shows large deviations in the position. However, this

can be attributed to the fact that MATLAB connects two plot points by a straight

line which means that a two points on the circumference of a circle would be

connected by the chord between them and not an arc. This can be seen with greater

detail by observing the plot in Figure 4.2 where a GEO orbit is plotted for two days

(which is the period of the orbit) using the ODE45 algorithm. (NOTE: the time

step used here is 10000s). The diamond points are the results from the integration.

As the figure shows, the there is some deviation between nearby points. Ideally,

these two points would overlap since this is an integration of the simple two-body

problem. However, as previously described, MATLAB connects the points with

straight lines which when coupled with the integration errors, results in the large

deviations. Therefore, the two points that should overlap do not and it results in

the bands that are visible, especially for larger time steps of 1000s and 100s.
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Figure 4.2. GEO Orbit (δt = 10000s) for two days

To measure the accuracy, the orbital energy (using equation (2.5)) is used. Using

the reference radius and velocity for a Geostationary Orbit, the reference orbital

energy is calculated as −4.7275 km2/s2. Since the orbital energy is an invariant of

the two-body problem, accuracy can be measured by measuring deviations from

this reference value. The plots in Figure 4.3 display this error for the algorithms.

Since the time span of the orbit propagation is only a year, the second-order

Velocity Verlet and the fourth-order Forest-Ruth and PEFRL algorithms do not

differ significantly. The latter two are only one order of magnitude more accurate
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at preserving the energy for this time span. The other contributing factor is the

time step. The formula for the percent error is given in equation 4.1.

%E = |E − E0|
E0

× 100 (4.1)

In the subsequent figures that show the percent orbital energy and percent

semi-major axis error, the red lines represent the mean values of the respective

quantities.
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Figure 4.3. Energy Error for a GEO Orbit (δt = 1000s and time span of 1 year)
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In Figure 4.3, the Velocity Verlet and ODE45 have the same order of accuracy

(10−4) while the Forest-Ruth and PEFRL algorithms maintain the orbital energy to

a higher order. The similarity between the Velocity Verlet and ODE45 ends there

as closer observation shows that there is an increase in the orbital energy error

for the ODE45 over time while the other algorithms, including Velocity Verlet, do

not exhibit the same behavior. The difference between Forest-Ruth and PEFRL

algorithms seems to be minimal which might be due to the short time span or the

large time step. In order to observe the effect of changing the time step (δt) on

the behavior of the algorithms, the same orbit was propagated with time steps of

100 and 10 seconds. The following graphs in (Figure 4.4-Figure 4.10) show the

resulting orbits and the percent error in the two invariant quantities.
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Figure 4.4. GEO Orbit (δt = 100s and time span of 1 year)
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Figure 4.5. Energy Error for a GEO Orbit (δt = 100s and time span of 1 year)
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Figure 4.6. GEO Orbit (δt = 10s and time span of 1 year)

The immediate and obvious accuracy gain by changing the time step is evident.

However, more insight of the accuracy can be gained by the observing the following

figure (Figure 4.7) where the percent error in the orbital energy is plotted over the

time span of the orbit propagation as well as the graphs in Figure 4.22-Figure 4.10)

where the percent error in the semi-major axis of the orbit is shown. The lattter is

another measure of the accuracy, as described in Chapter 2.
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Figure 4.7. Energy Error for a GEO Orbit (δt = 10s and time span of 1 year)

The following series of figures shows the percent error in the semi-major axis

for 1000, 100 and 10 second time steps.
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Figure 4.8. Error in Semi-major Axis for a GEO Orbit (δt = 1000s and time span of 1

year)
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Figure 4.9. Error in Semi-major Axis for a GEO Orbit (δt = 100s and time span of 1

year)
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Figure 4.10. Error in Semi-major Axis for a GEO Orbit (δt = 10s and time span of 1

year)

While the first three symplectic algorithms seem to oscillate around a nominal

value, the ODE45 algorithm shows a steady rise in the energy error over time for

even the smallest time step. One can conclude from the energy error figures shown

above that the symplectic algorithms are more accurate than ODE45. However,

the graph in figure Figure 4.9 indicates that with a time step of 1000s, the ODE45

algorithm is more accurate than the Velocity Verlet with the semi-major axis of the

orbit. Decreasing the time step to even 100s seems to shift the advantage in favor

of the symplectic algorithms. The ODE45 algorithm seems to be imperceptible
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to changes in the time step as the order of accuracy in the semi-major axis is

settled around 10−4 at all three time steps while the symplectic algorithms get

more accurate when the time step is reduces by a factor of 10.

The next step in evaluating the algorithms is to test them for longer time spans.

In Figure 4.11-Figure 4.19, the orbits, the energy error, and semi-major axis error

are shown for a time span of 5 years and three different time steps of 1000s,100s,

and 10s.
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Figure 4.11. GEO Orbit (δt = 1000s and time span of 5 years)

36



0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-6
-4
-2

×10-4 Velocity Verlet

0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-4

-2

×10-5 Forest-Ruth

0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-4

-2

×10-5 PEFRL

0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-10
-8
-6
-4
-2

×10-4 ODE45

E
rr
or

in
O
rb
it
al

E
n
er
gy

Figure 4.12. Energy Error for a GEO Orbit (δt = 1000s and time span of 5 years)
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Figure 4.13. Error in Semi-major Axis for a GEO Orbit (δt = 1000s and time span of

5 year)

38



-4 -2 0 2 4
x (km)

×104

-4

-2

0

2

4
y
(k
m
)

×104 Velocity Verlet

Earth

GEO Orbit

-4 -2 0 2 4
x (km)

×104

-4

-2

0

2

4

y
(k
m
)

×104 Forest-Ruth

Earth

GEO Orbit

-4 -2 0 2 4
x (km)

×104

-4

-2

0

2

4

y
(k
m
)

×104 PEFRL

Earth

GEO Orbit

-4 -2 0 2 4
x (km)

×104

-4

-2

0

2

4

y
(k
m
)

×104 ODE45

Earth

GEO Orbit

Figure 4.14. GEO Orbit (δt = 100s and time span of 5 years)
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Figure 4.15. Energy Error for a GEO Orbit (δt = 100s and time span of 5 years)
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Figure 4.16. Error in Semi-major Axis for a GEO Orbit (δt = 100s and time span of 5

year)
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Figure 4.17. GEO Orbit (δt = 10s and time span of 5 years)

42



0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-4

-2

×10-5 Velocity Verlet

0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-4

-2

×10-5 Forest-Ruth

0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-4

-2

×10-5 PEFRL

0 200 400 600 800 1000 1200 1400 1600 1800

Time (days)

-10
-8
-6
-4
-2

×10-4 ODE45

E
rr
or

in
O
rb
it
al

E
n
er
gy

Figure 4.18. Energy Error for a GEO Orbit (δt = 10s and time span of 5 years)
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Figure 4.19. Error in Semi-major Axis for a GEO Orbit (δt = 10s and time span of 5

year)

For this time span, the symplectic algorithms perform much better than the

Runge-Kutta Method of ODE45. The energy error, especially at a time step of 10

seconds as shown in Figure 4.18, is an order of magnitude better for the symplectic

algorithms. For the most part, the figures showing the percent error in the semi-

major axis (Figure 4.13, Figure 4.16, and Figure 4.19) show similar results. The

only exception can be seen in Figure 4.13 where error for Velocity Verlet is higher

than that of ODE45. This advantage was also seen for the same time step in the

Figure 4.8 and is not present in the for the figures corresponding to the 100s and 10s
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time steps for both time spans. The next series of graphs in Figure 4.20-Figure 4.28

show the plots for the orbit, percent error in the orbital energy, and percent error

in for a time span of 10 years) at three time steps (10s,100s, and 1000s).
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Figure 4.20. GEO Orbit (δt = 1000s and time span of 10 years)
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Figure 4.21. Energy Error for a GEO Orbit (δt = 1000s and time span of 10 years)
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Figure 4.22. Error in Semi-major Axis for a GEO Orbit (δt = 1000s and time span of

10 year)
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Figure 4.23. GEO Orbit (δt = 100s and time span of 10 years)
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Figure 4.24. Energy Error for a GEO Orbit (δt = 100s and time span of 10 years)
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Figure 4.25. Error in Semi-major Axis for a GEO Orbit (δt = 100s and time span of

10 year)
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Figure 4.26. GEO Orbit (δt = 10s and time span of 10 years)

x
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Figure 4.27. Energy Error for a GEO Orbit (δt = 10s and time span of 10 years)
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Figure 4.28. Error in Semi-major Axis for a GEO Orbit (δt = 10s and time span of 10

year)

The difference between in the semi-major axis accuracy of the ODE45 algorithm

compared to that Velocity Verlet that was persistent in the previous series of figures

(at a time step of 1000s) is not present for this time span. The energy error and

the semi-major axis errors for the ODE45 have increased an order of magnitude to

10−3% while the symplectic algorithms exhibit the same accuracy as they did for

the previous time spans.

At all three time spans and for the three time steps, one persistent problem

with ODE45 algorithm is present: the secular error growth. This is evidenced by
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the linear growth in the orbital energy error and semi-major axis error. This is

evidence to the fact that the Runge-Kutta methods. while accurate in the short

term, will result in secular energy growth while the symplectic algorithms maintain

accuracy over time because of their energy preserving properties that are depicted

in the graphs shown above. This shows the viability of these algorithms for orbit

propagation.

The specifications of the system used is shown in below in Table 4.1.

Computer System Specifications

Model ASUS-Q550LF

CPU
Intelr CoreTM i7-4500U @ 1.80 GHz

(Turbo Boost to 2.8GHz)

RAM 8.0 GB

System Type x86-64 Processor and 64-bit OS

Operating System Microsoft Windows 10 Home

Matlab Version R2015b (Academic License)

Table 4.1. Computer Specifications

The next part of this chapter will be a discussion of the efficiency of the

algorithms. While the symplectic algorithms have been demonstrated to be more

accurate, their efficiency is yet to be explained. The following tables (Table 4.2-

Table 4.4) shows the execution time the various time spans at various time steps

for all of the algorithms of study in this thesis. The following three tables show the

computational time for each of the algorithms at the three times steps and time

spans. (Note: To generate the data shown below, each case was performed five

times and the execution times were recorded using MATLAB’s timing feature. The
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data shown are the average of those five tests). Tables 4.2 - 4.4 clearly demonstrate

the advantages of the symplectic algorithms over the Runge-Kutta method in terms

of computational efficiency. This can be attributed to the error control features

that are fund in ODE45 which can increase the number of function evaluations if

the error is detected to be above accepted tolerance levels.

Algorithm Time Step (seconds)
Execution

Time (seconds)

Velocity Verlet 1000 0.465

Forest-Ruth 1000 0.242

PEFRL 1000 0.287

ODE45 1000 3.123

Velocity Verlet 100 4.871

Forest-Ruth 100 2.456

PEFRL 100 2.879

ODE45 100 6.271

Velocity Verlet 10 49.701

Forest-Ruth 10 26.127

PEFRL 10 31.635

ODE45 10 39.396

Table 4.2. Execution Time of the Algorithms for Propagation of 1 year
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Algorithm Time Step (seconds)
Execution

Time (seconds)

Velocity Verlet 1000 2.268

Forest-Ruth 1000 1.332

PEFRL 1000 1.348

ODE45 1000 15.252

Velocity Verlet 100 22.319

Forest-Ruth 100 13.623

PEFRL 100 13.617

ODE45 100 30.357

Velocity Verlet 10 277.154

Forest-Ruth 10 155.782

PEFRL 10 169.865

ODE45 10 211.407

Table 4.3. Execution Time of the Algorithms for Propagation of 5 years
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Algorithm Time Step (seconds)
Execution

Time (seconds)

Velocity Verlet 1000 5.864

Forest-Ruth 1000 3.120

PEFRL 1000 3.277

ODE45 1000 37.619

Velocity Verlet 100 51.253

Forest-Ruth 100 29.881

PEFRL 100 32.124

ODE45 100 73.566

Velocity Verlet 10 480.379

Forest-Ruth 10 246.646

PEFRL 10 319.581

ODE45 10 448.127

Table 4.4. Execution Time of the Algorithms for Propagation of 10 years

The following graph in Figure 4.29 show the data represented in the Tables 4.2

- 4.4 above on a semi-log plot.
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Figure 4.29. Semi-log Plot of the Execution Times

The graphs in Figure 4.29 ndicates that the all of the algorithms shown above

behave similarly to change in the step size. However, as the previous tables indicate,

the symplectic algorithms are more efficient at all three time steps. Although, there

seems to be a diminishing returns on decreasing the step size as the scaling of the

execution times is not close to being linear.

The next section of this chapter outlines the results performed for the perturbed

problem which was described in Chapter 2.
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4.2 Orbit Propagation Results

In the following series of graphs, the orbit propagation results using the perturbed

two-body dynamics outlined in Chapter 2. The third-body perturbations from the

Sun and Moon as well as geopotential perturbations (a field of 5× 5) are used.
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Figure 4.30. Perturbed GEO Orbit (δt = 1000s and time span of 1 year)
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Figure 4.31. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 1000s and time

span of 1 year)
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Figure 4.32. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 1000s

and time span of 1 year)

The graphs in Figures 4.30 - 4.32 demonstrate the difference between the

symplectic and the Runge-Kutta method. While the symplectic algorithms deviate

(energy and semi-major) around 10−3%, ODE45 deviates around 10−4%. The

symplectic algorithms are more accurate to the deviations that are induced due to

the included perturbations. The next three graphs in Figures 4.33 - 4.35 display

the orbit, error in the orbital energy, and semi-major axis respectively for a time

span of 1 year and time step of 100 seconds.
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Figure 4.33. Perturbed GEO Orbit (δt = 100s and time span of 1 year)
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Figure 4.34. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 100s and time

span of 1 year)
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Figure 4.35. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 100s

and time span of 1 year)

In the graphs in Figures 4.36 - 4.38 in the following figures, the time span is 1

year and time step is 10 seconds.
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Figure 4.36. Perturbed GEO Orbit (δt = 10s and time span of 1 year)
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Figure 4.37. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 10s and time span

of 1 year)
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Figure 4.38. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 10s and

time span of 1 year)

With a smaller time step, more oscillatory modes in the energy and semi-major

axis deviations are visible. These features are more apparent for the symplectic

algorithms than the ODE45 algorithm. Another source of evidence that the

symplectic algorithms perform more accurately than the Runge-Kutta methods.

With the perturbations from non-spherical potential and third body forces, the

invariant measures are expected to change. However, over a span of a year, the

change is expected to minimal. While the three symplectic and ODE45 algorithms

show some change, there is a difference in the growth of the energy and semi-major
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axis between them. As presented in the previous section of this chapter, the next

series of figures present the orbits, orbital energy, and semi-major axis for a time

span of 5 and 10 years (all three time increments are shown).
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Figure 4.39. Perturbed GEO Orbit (δt = 1000s and time span of 5 year)
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Figure 4.40. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 1000s and time

span of 5 year)
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Figure 4.41. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 1000s

and time span of 5 year)
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Figure 4.42. Perturbed GEO Orbit (δt = 100s and time span of 5 year)
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Figure 4.43. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 100s and time

span of 5 year)
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Figure 4.44. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 100s

and time span of 5 year)
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Figure 4.45. Perturbed GEO Orbit (δt = 10s and time span of 5 year)
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Figure 4.46. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 10s and time span

of 5 year)
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Figure 4.47. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 10s and

time span of 5 year)

Just like the last series of figures for a time span of 1 year, the results for this

time span (5 years) seems to show that the step size of integration has relatively

little affect on the performance of the algorithms. Also, the oscillatory changes in

the invariant quantities are much more apparent for smaller time steps. In addition,

the three symplectic algorithms seem to evolve in the same manner which indicates

that the higher order accuracy of Forest-Ruth and PEFRL algorithms are not

significant. Perhaps, over a 10 year span, some differences can arise.
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Figure 4.48. Perturbed GEO Orbit (δt = 1000s and time span of 10 year)
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Figure 4.49. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 1000s and time

span of 10 year)
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Figure 4.50. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 1000s

and time span of 10 year)
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Figure 4.51. Perturbed GEO Orbit (δt = 100s and time span of 10 year)
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Figure 4.52. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 100s and time

span of 10 year)
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Figure 4.53. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 100s

and time span of 10 year)
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Figure 4.54. Perturbed GEO Orbit (δt = 10s and time span of 10 year)
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Figure 4.55. Energy Deviation(%) for a Perturbed GEO Orbit (δt = 10s and time span

of 10 year)
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Figure 4.56. Semi-Major Axis Deviation(%) for a Perturbed GEO Orbit (δt = 10s and

time span of 10 year)

The previous figures that show the similar differences between exist the three

symplectic algorithms and ODE45 in regards to the energy and semi-major axis

deviations. The step size seems to have little effect on the overall evolution of the

quantities for all three time spans, even for the symplectic algorithms. Moreover,

the differences between the three symplectic algorithms seems to be minimal, even

for a time span of 10 years. The efficiency of the algorithms is given in the following

tables and subsequent graph in Figure 4.57.
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Algorithm Time Step (seconds)
Execution

Time (seconds)

Velocity Verlet 1000 10.757

Forest-Ruth 1000 19.974

PEFRL 1000 23.162

ODE45 1000 56.078

Velocity Verlet 100 89.732

Forest-Ruth 100 141.820

PEFRL 100 169.364

ODE45 100 42.465

Velocity Verlet 10 823.866

Forest-Ruth 10 1306.034

PEFRL 10 1628.470

ODE45 10 91.601

Table 4.5. Execution Time of the Algorithms for Propagation of Perturbed Orbit for 1

year
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Algorithm Time Step (seconds)
Execution

Time (seconds)

Velocity Verlet 1000 48.033

Forest-Ruth 1000 77.876

PEFRL 1000 108.597

ODE45 1000 242.055

Velocity Verlet 100 575.411

Forest-Ruth 100 811.240

PEFRL 100 1118.901

ODE45 100 247.033

Velocity Verlet 10 4595.529

Forest-Ruth 10 7166.326

PEFRL 10 18486.329

ODE45 10 556.030

Table 4.6. Execution Time of the Algorithms for Propagation of Perturbed Orbit for 5

years
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Algorithm Time Step (seconds)
Execution

Time (seconds)

Velocity Verlet 1000 95.333

Forest-Ruth 1000 174.951

PEFRL 1000 224.363

ODE45 1000 472.424

Velocity Verlet 100 571.227

Forest-Ruth 100 948.047

PEFRL 100 1223.966

ODE45 100 387.156

Velocity Verlet 10 6928.301508

Forest-Ruth 10 8683.73481

PEFRL 10 42155.55148

ODE45 10 902.869694

Table 4.7. Execution Time of the Algorithms for Propagation of Perturbed Orbit for 10

years

The following graph in Figure 4.57 shows the data in the Tables 4.5 - 4.7 on a

semi-log plot.
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Figure 4.57. Semi-log Plot of the Execution Times

Tables 4.5 - 4.7 as well as Figure 4.57 indicate that with a more complex force

model, the symplectic algorithms do not always maintain an advantage in efficiency

over the Runge-Kutta algorithm. There seems to be no difference in execution time

between 1000 second and 100 second time steps for the ODE45 algorithm. The

accuracy of the algorithms is more difficult to evaluate since in this case, unlike the

two-body problem, there is no invariant energy measure. However, as the previous

section of this chapter indicates, the symplectic algorithms maintain their accuracy

advantage even with a time step of 1000 seconds and are more efficient. This

indicates that even while ODE45 algorithm is more efficient with a smaller time

step, this might not be necessary since the symplectic algorithms allow for a larger

time step without a significant loss in accuracy. Therefore, one can use a larger time
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step to propagate the orbits using the symplectic algorithms and thereby achieve

significant accuracy over ODE45. The advantages in computational efficiency for

ODE45 can be attributed to its variable step size and error control implementations

which can be useful in speeding up the integration process. However, as the

results in this chapter demonstrate, there is a distinct accuracy advantage for the

symplectic algorithms.

In this chapter, the results obtained through simple and perturbed two-body

orbit propagation using the various algorithms were outlined. In the next chapter,

a few conclusions regarding the results, algorithms among others will be made. In

addition, suggestions of future work relating to this thesis will also be mentioned.
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Chapter 5 |
Conclusions and Future Work

5.1 Conclusions

The accuracy of the symplectic algorithms seem to saturate (settle around a

value). This holds true for all three symplectic algorithms even though they are

of differing order. This is evidenced by observing the percent error graphs (both

orbital energy and semi-major axis) seem to settle around a value of 10−5%. While

this may seem to be a limitation, further analysis reveals that since there is no

secular growth in the error (unlike ODE45), the symplectic algorithms still maintain

accuracy in the long term.

Comparing the execution times of the algorithms for the two-body problems

reveals that the symplectic methods are superior at this than ODE45. However,

this is reversed in the case of the perturbed problem where ODE45 is shown to be

more efficient for certain time spans and time increments. The perturbed problem

requires the evaluation of many functions for the equations of motion. As ODE45

is a pre-installed code in MATLAB, it could have been optimized such that that

these function become the bottleneck of the code while the symplectic algorithms

have other bottlenecks such as writing the data to a file. In addition, the error

control features of the ODE45 algorithm could be contributing to ODE45’s efficiency
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advantage in this case. Since the symplectic algorithms are used in conservative

system (energy is constant), the addition of perturbations should seem to violate

this rule. However, the perturbations used here are mainly from gravitational

sources and hence are energy conserving forces.

5.2 Future Work

This section will provide some thoughts on related topics that could be of interest

in future work in the area of orbit propagation. In the process of completing the work,

implementations of these algorithms in C++ was being considered. A few test cases

of the two-body problem showed significant performance improvements over the

algorithms written in MATLAB. In the end, MATLAB remained the software that

was used due to the pre-installed suite of Runge-Kutta methods and the graphical

capabilities that allow for the figures of the data to be generated with relative ease.

However, it is recommended for future work to be done in C++ or other lower-level

programming languages due to the aforementioned performance improvements as

well as stability (MATLAB often crashed while attempting integration for longer

time spans due to memory overflow).

The applications for these algorithms has been briefly mentioned in the first

chapter of this thesis. One of the ancillary applications for this thesis were con-

centrated in the area of conjunction analysis. This, along with other area of space

debris studies such as debris cloud evolution are interesting applications for these

symplectic algorithms where the long-term accuracy of these symplectic integration

algorithms can be very advantageous.

The algorithms presented here do not encompass the range of symplectic

integration methods found in literature. One interesting paper [18], explores the
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idea of variable time step symplectic integration. This could vastly improve the

efficiency of these algorithms. Likewise, comparisons with higer order Runge-Kutta

methods such as RK78 can be another interesting opportunity to assess the accuracy

of symplectic algorithms. In addition, more comprehensive perturbations especially

non-conservative forces such as drag and solar radiation pressure would be another

interesting addition to the dynamics that would test the algorithms.
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