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ABSTRACT 

From remote sensing to navigation and communication, satellite constellations 

have become an indispensible component of our society’s infrastructure.  Recent events, 

including China’s intercept of their Feng Yun-1C weather satellite and the United States’ 

intercept of a non-functioning satellite, have dramatically increased the amount of space 

debris, which poses an increased risk for on-orbit collisions.  When the loss or 

degradation of a satellite in a constellation is experienced – be it from a collision with 

space debris, on-orbit malfunctions, or natural causes – the constellation may no longer 

be capable of fulfilling its mission requirements.  Instead of simply accepting the 

degraded performance, stakeholders may consider reconfiguration of the remaining 

spacecraft.  In this research, a general framework for the reconfiguration of satellite 

constellations is developed. 

The key characteristic that separates this research from others that have come 

before it is that the future state of the reconfigured constellation is not assumed a priori; 

rather, it is this state that is found.  In other words, the reconfigured geometry can occupy 

any feasible region (this is mission dependent) of the design space in an attempt to 

provide optimal performance with respect to multiple-criterion.  These include the 

propellant expended, time of transfer, reduction in mission life, coverage performance, 

and risk due to maneuvering.  When modeled as mathematical functions, some of these 

concerns exhibit continuous behavior; however, most have nonlinear, discrete, 

discontinuous, and/or multimodal characteristics. 
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The framework adapts a best-in-class parallel Multi-Objective Evolutionary 

Algorithm to approximate the optimal hypervolumes for this complex tradeoff-space.  

Several loss scenarios for the Global Positioning System constellation are presented to 

demonstrate the framework.  An a posteriori procedure for decision support is introduced 

that enables down-selection to a final design from thousands of non-dominated 

reconfiguration alternatives. 

Among the significant results to emerge from this research are the lessons learned 

as a result of the application of stochastic optimization to the constellation design 

problem domain.  One such lesson indicates that objective functions related to coverage 

have the greatest influence on the multi-modality of the design space.  Other results 

demonstrate that increasing the number of design variables and/or the application of 

operational constraints (such as fuel budgets) do not necessarily make the reconfiguration 

problem more difficult to solve; in some cases it becomes easier.  The method itself is 

successful in providing a global context to decision makers that allows for defendable 

design selection in what was previously a computationally intractable optimization 

problem. 
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Chapter 1 
 

Introduction 

In 1945, science fiction author and futurist, Arthur C. Clark wrote an article [1] 

for Wireless World magazine where he notes: 

“It will be observed that one orbit, with a radius of 42,000 km, has a 
period of exactly 24 hours. A body in such an orbit, if its plane coincided 
with that of the earth’s equator, would revolve with the earth and would 
thus be stationary above the same spot on the planet. It would remain fixed 
in the sky of a whole hemisphere and unlike all other heavenly bodies 
would neither rise nor set… A single station could only provide coverage 
to half the globe, and for a world service three would be required, though 
more could be readily utilized.” 

Twelve years before the Soviet Union’s launch of Sputnik 1, the world’s first artificial 

satellite, Clark predicted the future.  While some of the technical details in his article are 

not precise, Clark basically got it right.  The geostationary orbit he described and 

subsequent suggestion of three “stations” distributed equally around the globe would 

indeed “be invaluable, not to say indispensable, in a world society.” 

The first satellite constellations, also referred to in literature as satellite arrays [2], 

consisted of single spacecraft typically with unique and independent missions.  As 

performance requirements grew and technology evolved, multiple-spacecraft 

constellations (hereafter referred to as constellations) emerged.  Though the applications 

vary widely from remote sensing, to navigation and communications, both entrepreneurs 

and governments alike spend billions of dollars annually to develop, build, test, and 

launch these complex systems.  The considerable initial investment does not generate 
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returns for the stakeholders until the spacecraft are inserted into their operational orbits 

and begin performing their mission(s). 

The operational lifetime of a constellation is threatened by a variety of 

phenomena, both man-made and natural, that will reduce the capacity and jeopardize its 

ability to perform its mission.  The space debris environment is one such phenomenon 

and has produced several recorded collisions since the dawn of the space age [3].  In 

1991 a defunct Russian navigation satellite (Cosmos 1934) collided with a fragment from 

another Cosmos.  The next collision occurred in 1996 when an Ariane rocket stage hit 

one of their military satellites (Cerise).  The final documented event, occurring in 2005 

between a fragment from a Chinese rocket and United States rocket stage, produced three 

pieces of debris.  Of these collisions, the only one affecting an operational satellite was 

the 1996 Ariane/Cerise and in every case, only several pieces of new debris were created.  

While these events are rare, the debris environment continues to grow.  On January 11, 

2007, China launched a ground-based medium-range ballistic missile and destroyed their 

Feng Yun-1C weather satellite orbiting 535 miles above the Earth.  Just one year later, the 

United Sates intercepted a non-functioning satellite at an altitude of approximately 150 

miles [4] adding to the over 12,000 pieces of currently tracked debris.  The Chinese 

intercept resulted in the worst debris-producing collision in history [5] because the 

resulting pieces stay aloft much longer than those created by the low-altitude United 

States’ mission.  In fact, the U.S. mission was conducted to minimize the impact on the 

debris environment with most of the tracked fragments reentering within forty days.1  

                                                 

1 http://www.space.com/news/080221-sat-shoot-spot.html, cited on October 7, 2008 
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Other phenomena that result in the loss of spacecraft include on-orbit malfunctions [6] 

and natural causes [7].  When a loss in capacity has occurred, for whatever reason, and 

mission performance must be restored quickly, it is typically not practical to build and/or 

launch spares.  Rather, Decision Makers (DMs) can choose to reconfigure the remaining 

satellites such that the new constellation restores up to full satisfaction of mission 

requirements. 

Previous work [8] [9] dealing with the reconfiguration problem has principally 

focused on minimizing the cost to transfer an initial configuration, constellation A, to a 

final configuration constellation B, both known a priori.  Other work [10] presented a 

methodology for determining the optimal initial constellation that would allow for the 

lowest reconfiguration cost to a discrete set of future higher-capacity constellations.  Both 

Scialom [8] and Siddiqi [10] dealt with global-communications constellations, so their 

use of well established Walker [11] or Streets-Of-Coverage (SOC) [12] design analysis 

techniques, to constrain the geometries for constellation B, was reasonable.  However, 

when a constellation suffers a loss, the global coverage requirement may no longer be 

achievable with any reconfiguration of the remaining satellites.  In this case, or when 

regional coverage is desired, these traditional constellation design methods are no longer 

appropriate.  Another potential limitation observed in the literature [9] is the tendency to 

combine multiple objectives of the reconfiguration problem into a single cost function.  

Reducing a multiple-objective optimization problem to a single function requires the 

introduction of preference information prior to performing the optimization.  The 

preference information has the potential to bias or constrain search such that an implicit 
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understanding of the design space tradeoffs are not easily obtained.  These observed 

limitations with previous work motivate the goals of this thesis. 

The primary goal of this research is to provide a general framework for the 

reconfiguration of satellite constellations.  It will expand on the previous efforts by 

addressing the operational scenario where an existing constellation A has lost capacity for 

whatever reason, resulting in the need to optimally reconfigure to an undetermined 

constellation B.  This fundamental departure from previous work, where constellation B 

is not known a priori or constrained to the discrete options offered by Walker or SOC 

constellations, requires the reconfiguration problem to be cast in a more general manner.  

In this work, the problem is posed using a multi-objective formulation wherein 

constellation B is designed such that performance is maximized at minimal 

reconfiguration cost and risk.  Recent work [13] [14] [15] has demonstrated that parallel 

Multi-Objective Evolutionary Algorithms (pMOEAs) provide an efficient and effective 

means for solving constellation design optimization problems where traditional analysis 

methods fail.  In this work, a pMOEA is used to solve the reconfiguration problem in a 

holistic manner wherein performance, cost, and risk objectives are optimized 

simultaneously during a single simulation.  No individual optimal solution exists.  Rather, 

a set that approximates the Pareto-optimal designs are found that represent the tradeoffs 

implicit to the reconfiguration problem. 

Two secondary goals of this work are to demonstrate a procedure for decision 

support when choices must be made among high-dimensional tradeoffs; and to develop 

the lessons learned as a result of the application of stochastic optimization to the 

constellation design problem domain.  The mathematical definition of optimization, taken 
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quite literally, means finding the best solution.  While this conventional view of 

optimization has its place, the one-dimensional all-or-nothing approach is not adopted in 

this work.  Rather a philosophy is embraced where the emphasis is to find new and 

innovative design principles by means of optimization techniques [16].  The resulting 

deeper understanding of the problem that emerges promotes innovation and discovery 

through visualization-based decision support. 

The remainder of this thesis is organized as follows.  Chapter 2 provides the 

background necessary to understand the satellite reconfiguration problem.  Topics in this 

chapter include astrodynamic fundamentals, satellite constellation design, and satellite 

maneuvering.  In Chapter 3, the confluence of multi-objective optimization, evolutionary 

algorithms, and parallel computing provide the underlying tools exploited by the general 

framework used in this thesis.  Several reconfiguration case studies for the Global 

Positioning System (GPS) are detailed in Chapter 4.  There, the mission-specific 

objective function formulations, constraints, evolutionary algorithm parameters, and 

parallel computing cluster configuration are described.  In Chapter 5, the resulting 

tradeoff hypervolumes are presented and used to demonstrate the decision support 

procedure. For each case-study, the process of explicitly understanding the design space 

tradeoffs is shown and down-selection to the final configuration for constellation B, 

among the non-dominated hypervolume alternatives, is presented.  The conclusions in the 

final chapter provide philosophical reflections on innovation and suggestions for future 

contributions made possible by adapting the general reconfiguration framework. 



 

 

Chapter 2 
 

Satellite Reconfiguration Background 

In this chapter the fundamentals of Astrodynamics are provided with the key 

assumptions made to derive the Equations Of Motion (EOM) that give a satellite’s 

position in its orbit at any time.  Multiple satellites working together form a constellation.  

This chapter also provides a discussion of how a constellation’s coverage is evaluated 

followed by other principal concerns of satellite reconfiguration including maneuvering, 

transfer time, life expectancy, and risk. 

2.1 Astrodynamics Fundamentals 

Astrodynamics refers to the study of the motion of objects in space subject to both 

natural and artificially induced forces.  Vallado [17] notes that “true” astrodynamics has 

only existed since the 1950s and is the result of centuries of previous work in astronomy, 

ancient astrology, and celestial and orbital mechanics.  Several of the most notable of 

early contributors are the duo of Johannes Kepler and Tycho Brahe. 

2.1.1 On the Shoulders of Giants 

Tycho Brahe (1546–1601), a Danish aristocrat, was fascinated by astronomy but 

frustrated with the accuracy of the tables of planetary motion.  He dedicated his life and 

significant resources to building large astronomical instruments that enabled him to take 
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the most accurate observations of heavenly bodies of his time.  Tycho believed the model 

of orbital motion of the planets was a hybrid between the Ptolemaic and Copernican 

systems [27].  In his view, the Earth was at rest while the remainder of the planets orbited 

the sun that was orbiting the Earth.  Kepler, on the other hand, believed in the Copernican 

system wherein all planets orbited the sun while the sun remained “fixed”.  Kepler, 

aspiring to be a theologian, strongly believed that God must have had a geometric reason 

for placing the six planets (referring to the Moon, Mercury, Venus, Mars, Jupiter, and 

Saturn) at particular distances from the sun.  Kepler became fixated on the idea that the 

planets were carried around by being embedded in rotating spheres.  Given the 

uncertainties in the observations of the time, Kepler reasoned that his view might be the 

right one, but it wasn’t until he used Brahe’s observations, after Brahe’s death in 1601, 

that Kepler was forced to abandon his geometric scheme to develop his three laws of 

planetary motion. 

While Kepler’s second law is referenced in subsequent discussions of orbital 

motion, all three [18] are noted here because of their importance. 

1.  The orbit of each planet is an ellipse with the Sun at one focus. 

2.  The line joining the planet to the Sun sweeps out equal areas in equal 
times. 

3.  The square of the period of a planet is proportional to the cube of its 
mean distance to the Sun. 

These laws captured the kinematics of planetary motion, but the keys to modeling the 

dynamics were not uncovered until the late seventeenth century when Isaac Newton 

introduced his laws of motion and gravitation in Book I of Principia [19].  His second 
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law and his universal law of gravitation form the starting points for the derivation of the 

two-body EOM. 

Newton’s second law of motion: The change of motion is proportional to 
the motive force impressed and is made in the direction of the right line in 
which that force is impressed. 

Newton’s universal law of gravitation:  Any two point masses attract each 
other with a force proportional to the product of their masses and inversely 
proportional to the square of the distance between them. 

 

2.1.2 The Two-Body Problem 

A satellite orbiting the Earth represents a two-body system with EOM that are 

found starting with Newton’s second law.  The proceeding derivation follows Vallado 

[17].  Newton’s original language for his second law can be restated as, 

 

 

where to the force acting on a body, F
v

, is equal to the mass, m, times the inertial 

acceleration, r&&v , of that body.  The geometry for the Earth–satellite system is shown in 

Fig. 2-1 to aid with the remainder of the derivation.  The position vector, rv , locates the 

satellite relative to the KJI ˆˆˆ  coordinate system, which neither rotates nor accelerates 

relative to the inertial ZYX ˆˆˆ  system.  The K̂ĴÎ  system is a geocentric inertial reference 

frame hereafter referred to as Earth Centered Inertial (ECI) where Î  points towards the 

( )rm
dt
dF &v

v
∑ = , (2.1)
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vernal equinox; the Ĵ  axis is 90º to the East in the equatorial plane; and K̂  extends 

through the North pole.  Both the mass of the Earth, me, and satellite, msat are represented 

by points located er
v and satrv  relative to the ZYX ˆˆˆ  frame. 

 

Newton’s law of gravitation is defined as, 

 

 

where the force of gravity of the Earth, gF
v

, acting on the satellite is equal to the product 

of their masses, the universal gravitational constant, G, and the inverse of the square of 

 

 
Figure 2-1: Two-body, Earth–satellite system in an inertial reference frame, adapted from 

Vallado [17] 
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the distance between them.  The force of gravity acting on the Earth due to the satellite is 

identical but in the opposite direction.  Substituting Eq. 2.1 into Eq. 2.2, 

 

and 

 

where satsatrm &&v  and eerm &&v  are the inertial forces acting on the satellite and the Earth 

respectively.  The position vector of the satellite is equal to the sum of er
v  and satrv , which 

is conveniently written with respect to the inertial coordinate system allowing for direct 

differentiation, 

 

 

to obtain the expression for the acceleration of the satellite.  By solving Eqs. 2.3 and 2.4 

for acceleration and substituting into Eq. 2.5, 
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the second-order, nonlinear, vector differential equation for the two-body problem is 

found.  Assuming the mass of the satellite is small relative to the Earth, Eq. 2.6 is 

rewritten, 

 

 

where the gravitational parameter, μ, is the product of G and me.  When integrated, Eq. 

2.7 allows for modeling of satellite position and velocity as a function of time, which will 

be important to any discussion of satellite constellations, maneuvering, and ultimately 

reconfiguration.  While Eq. 2.7 provides a convenient analytic approximation of the true 

orbit, its usefulness is limited due to the assumptions made during the derivation. 

There is a variety of other forces that perturb the path of a spacecraft away from 

the idealized assumptions made in Keplerian motion.  These include non-gravitational 

forces like the drag induced by the atmosphere, or solar radiation pressure.  Third body 

effects of the sun and moon can also play a significant role at Geostationary Earth Orbit 

(GEO) altitude (~35788 km).  However, the dominant perturbing force from GEO to 

LEO arises because the Earth is not a perfect sphere [20]. 

2.1.3 Modeling Perturbations 

The rotation of the Earth causes its mass to bulge at the equator and flatten at the 

poles, resulting in an oblate spheroid [20].  By excluding this reality, the point mass 
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assumption used in the derivation of the Keplerian equations can result in significant 

modeling errors when predicting the position and velocity.  Further development of the 

EOM to include the primary perturbing effect of the oblate spheroid is presented in what 

follows. 

Previously, Eq. 2.7 was developed to allow modeling of the position, velocity, 

and acceleration of a satellite orbiting a perfect sphere with evenly distributed mass.  In 

order to incorporate the effects of a non-spherical mass distribution, Eq. 2.7 can be recast 

using a potential function.  A potential function is one way to mathematically 

characterize conservative forces.  The proceeding derivation follows Vallado [17]. 

The gravitational scalar potential function for a spherical body, 

 

 

serves as the starting point for the derivation of the EOM.  The acceleration from the 

spherical body’s potential is found by taking the gradient of the potential function.  Using 

the gradient of Eq. 2.8 and writing the satellite position vector in the ECI frame using 

variables x, y, z  in 3ℜ  for the individual position components, 
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the two-body acceleration for the satellite is found, which precisely matches Eq. 2.7 

arrived at earlier.  Given the existence of a spherical potential, it is also possible to derive 

an aspherical potential function, U, whose gradient subtracted from that of a perfect 

sphere, 

 

 

mathematically captures the perturbing accelerations due to the aspherical body.  By 

expanding this disturbing potential function, R, about the point (x, y, z) in an infinite 

series [20], it is possible to isolate mathematical representations of the largest perturbing 

effects due to the oblate Earth.  These zonal harmonics (spheroid of revolution about the 

Earth’s spin axis), and most specifically the part of the expansion associated with the J2 

coefficient, can cause the orbital plane of a satellite to rotate at rates of several degrees 

per day and cause deviations from the idealized Kepler orbits on the order of 3 km per 

day.  Further, the value of the J2 coefficient is about 400 times larger than the next-largest 

coefficient in the series [25].  As such, R for this research is limited to the first zonal 

harmonic term in its series expansion, 

 

 

where P2 is the Legendre polynomial, 
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and φ  is the argument of latitude (measured from the North Pole).  Expanding Eq. 2.10 

using Eqs. 2.11 and 2.12, the exact EOM, 

 

 

are found.  Noting the trigonometric relationships, 

 

and 

 

the final set of second-order, coupled, nonlinear, component-wise differential EOM, 
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can be integrated numerically to precisely model the first-order secular effects of J2 on 

the propagation of satellites.  Propagation simply refers to predicting the satellite’s state 

at any future (or past) time enabling one to evaluate its ability to perform its mission(s).  

In this work, the optimization method can require millions of propagation operations, so 

in the interest of increasing efficiency an alternative representation of the dynamics 

shown in Eq. 2.16 is necessary. 

2.1.4 Kozai’s Analytical Method 

The goal of developing alternative EOM to the dynamics shown in Eq. 2.16 is to 

reduce the computational cost involved in propagating satellite locations.  Kozai’s 

method [26] achieves this end by isolating the secular perturbing effects of a central body 

in several algebraic EOM.  Development of this method relies on a more intuitive 

representation of the orbit known as classical elements [23]. 

To fully specify the position of a satellite at any moment in time, six orbital 

elements are required.  These include four angular measures and two variables that 

describe the geometry of the ellipse.  Following from Fig. 2-2, the inclination, i, measures 
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the tilt of the orbit plane relative to the equatorial plane.  The right ascension of the 

ascending node, Ω, is the angle between the inertial Î axis, which is fixed in space in the 

same direction as the vernal equinox and the point where the orbital path intersects the 

equatorial plane (with the satellite moving from the Southern to Northern hemisphere).  

The argument of perigee, ω, measured from the line of nodes to the orbit perigee, locates 

the point of closest approach.  The satellite is located within the orbit by the true 

anomaly, ν, measured from the perigee direction.  The last two elements, semimajor axis, 

a, and eccentricity, e, are half the major axis of the ellipse and a measure of how much 

the conic section deviates from being circular, respectively.  For eccentric orbits, the 

angular velocity of a spacecraft is continuously varying, which results in an extremely 

unwieldy expression for ν vs. time.  A direct consequence of Kepler’s second law, first 

introduced in Section 2.1.1, relates time to position in eccentric orbits more directly. 
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Kepler’s equation, 

 

 

uses two auxiliary angles known as the mean anomaly, M, and eccentric anomaly, E, 

(shown in Fig. 2-3) to relate the time-of-flight from epoch, t, and semimajor axis (where 

t0 is the epoch time).  Note that E is shown in the perifocal coordinate system, WQP ˆˆˆ , 

 

 
Figure 2-2: Classical orbital elements 
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where P̂  points towards perigee, Ŵ  is perpendicular to the orbit plane, and Q̂  completes 

the right-hand system.  The mean anomaly physically represents the angular displacement 

of a fictitious satellite that travels at the mean angular rate as opposed to the true rate, ν&  

[23].  In order to make Eq. 2.17 useful, a variety of geometric manipulations exist where 

the E is related to ν [24].  The proceeding EOM derivation makes use of two such 

expressions, 
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that relate the differential changes in the auxiliary angles to the classical elements and 

position magnitude, r. 
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Using this set of elements (a, e, i, Ω, ω, M) and the disturbing potential of Eq. 2.11, it is 

possible to develop Kozai’s analytic propagation equations that are much less 

computationally taxing than numerical integration of Eq. 2.16. 

The EOM derivation follows Roy [22] and begins by writing a version of 

Lagrange’s planetary equations, 

 

 
Figure 2-3: Illustration of the eccentric anomaly 
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where he uses variation-of-parameters [17] to give a set of first-order differential 

equations that relates the perturbing potential function, orbital elements, and time.  Using 

the relationship between argument of latitude and the classical elements, 

 

 

and a trigonometric identity, 
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R is rewritten. 

Recall the goal in the development of these EOM is to reduce computation cost 

while capturing the main perturbing variations in the elements.  Those terms in R 

involving short- and long-periodic effects can be segregated and omitted so that only 

those that contribute to secular variations in the elements remain.  Secular effects 

generally cause linear increases or decreases to a particular element over time and hence 

are the most significant.  The long-period effects oscillate about the secular trend line and 

are due to trigonometric functions in ω, while short-period variations oscillate about the 

long-period curves and are due to trigonometric functions of linear combinations of ω 

and ν.  In this research, only the secular effects are modeled because they capture the 

primary variations in the orbital elements.  Using the definition of the satellite’s mean 

motion, 

 

the first-order secular disturbing function (due to J2 only), 

 

 

is written with the short-periodic term omitted (that dependent on the cosine of  ω + ν). 
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The inclination does not experience any secular variation since the partials of R~  

with respect to ω and Ω both equal zero.  A periodic term, r, still appears in Eq. 2.23.  In 

the interest of capturing the non-periodic variations in the elements due to the 

perturbations, R~ , may be averaged over a given orbit revolution.  To do this, the part of 

R~  containing r is integrated with respect to M using Eq. 2.24. 

 

 

Using the transformation of variables (the result of multiplying the differential 

expressions of Eq. 2.18), 

 

 

and assuming e constant over the interval of integration, dM is substituted into the 

averaging integral, 

 

 

and solved.  By substituting Eq. 2.26 into the ratio of (a/r)3 in Eq. 2.23, 
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the average disturbing potential over one revolution, Ravg, is found.  Accepting Ravg as the 

perturbing function and substituting it into Lagrange’s planetary equations and taking the 

partials with respect to each of the orbital elements, the set of six first-order differential 

equations, 

 

represent the averaged (indicated by the over-bar) rates of change of the classical 

elements due to the first-order secular effects of J2 in the two-body problem.  Integrating 
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each of the first three equations of Eq. 2.28 with respect to time and assuming the satellite 

state mean values at epoch are ( )000000 ,,,,, Miea ωΩ , the first three EOM used in this 

research, 

 

 

reveal that in first-order secular theory the averaged orbital elements, a , e , and i  

experience no variations.  Next, the mean anomaly rate, n , is integrated with respect to 

time, 

 

 

indicating that the unperturbed mean motion (n) is increased or decreased by the 

coefficient of J2 according to the inclination of the orbit.  The rates in node and perigee, 
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are calculated similarly from the remaining two planetary equations of Eq. 2.28.  Note 

that these average rates of Eqs. 2.30 and 2.31  are a function of n , which is a direct result 

of using the relationship, 

 

 

during the integration.  The EOM, of Eq. 2.29, 2.30 and 2.31 indicate secular motion in 

three orbital elements Ω , ω , and M  that are linear functions in time because a , e , and 

i  are constant and equal to their mean value at epoch.  In this research, a satellite’s future 

state is determined by solving Eqs. 2.29, 2.30 and 2.31 for some t (greater than zero) 

from epoch.  For the propagation duration of the satellites used to demonstrate the 

general reconfiguration framework, the algebraic EOM provide sufficient representations 

of reality at a smaller computational cost than numerically integrating Eq. 2.16. 

The precise EOM required for any reconfiguration simulation depend on the 

mission’s orbital regime where the propagation will occur and how far into the future the 

desired state of the satellite is sought.  For example, a LEO mission such as those flown 

by the space shuttle must simulate the perturbing effects of atmospheric drag while a 
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GEO satellite must be concerned with the gravitational potentials of the Sun and Moon.  

Over long-duration simulations, solar-radiation pressure, tidal forces, plate tectonic 

motion, geomagnetism, and others may become important.  For further details regarding 

applied perturbation theory, a comprehensive presentation is given by Chao [21]. 

2.1.5 Specialized Orbits 

The perturbations experienced by orbiting satellites produce opportunities to 

design specialized orbits that have unique characteristics of interest to many missions.  

One particular type, used in the case study for this research to demonstrate the general 

framework, is a repeating ground track orbit. 

Satellites in repeating ground track orbits return to the same location with respect 

to the Earth’s surface after some period of time such that the path of the spacecraft 

repeats itself [20].  Satellites that fly in repeating ground track orbits have the primary 

advantage of viewing the surfaces of the Earth from the same geometry on a periodic 

basis.  This characteristic is important when interpretation of changes in remotely sensed 

images is required or when the relative geometry between multiple satellites working 

together must remain periodically constant. 

In order for a ground track to repeat, an integral number of orbit periods, p, must 

occur in an integral number of sidereal days, d (a sidereal day is approximately 

86164.10035 seconds).  The dimensionless ratio, 

d
pq = , (2.33)



27 

 

 

is often [20] used to identify the repeat cycle characteristics for a given orbit.  For the 

orbits detailed later in this research, the satellites traverse exactly 2 orbits per day and 

repeat their ground track once per day resulting in q = 2.  To model this, the secular 

perturbations due to the oblate Earth (Eq. 2.28), must be taken into account. 

Recall, the aspherical potential causes the node, argument of perigee, and mean 

anomaly to drift.  To estimate the mean angular motion required for the ground track to 

repeat, 

 

 

the orbit’s q is multiplied by the difference between the Earth’s rotation rate, ωe, and the 

nodal drift.  From this quantity, angular rates of change in argument of perigee and mean 

anomaly due to oblateness are subtracted resulting in the required mean motion.  It is 

important to note that dtMd /  from Eq. 2.34 does not include the two-body mean 

motion, n, of the satellite, rather only the part of the expression that causes a perturbation 

in the element (the J2 term from Eq. 2.28).  Recalling the definition of mean motion from 

Eq. 2.22, it is simple to derive Eq. 2.35 for the semimajor axis, 
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of a satellite required to produce the associated nrep for any given orbit.  Since the oblate 

perturbing effects are buried in nrep, solving for arep is an iterative process.  For example, 

the orbit with q = 2, i = 55º, e = 0.0, Eq. 2.35 produces a semimajor axis of approximately 

14341 km.  This value for a will appear again later when the specific case study is 

introduced to demonstrate the general reconfiguration framework. 

In the previous section, Newton’s second law was used to develop the two-body 

EOM for a satellite of negligible mass orbiting a point mass.  The significant departure of 

the predicted motion resulting from those EOM led to a derivation that approximated the 

secular perturbing effects of an oblate central body on the classical orbital elements.  The 

result gave a set of algebraic EOM that allow for rapid computation of a satellite’s state 

relative to the alternative of numerically integrating the exact equations.  A specialized 

orbit was introduced where the satellite periodically moves across the sky in the same 

apparent path as seen by a ground observer.  Now that it has been shown how the 

satellite’s motion is modeled and how it is possible to use perturbing effects to produce 

specialized orbits, the next task is to demonstrate how multiple satellites may be 

combined together in a constellation to best perform their mission. 

2.2 Satellite Constellation Design 

This research provides a general framework for reconfiguration to an 

undetermined configuration B and, as such, it is necessary to outline the basics of satellite 

constellation design.  Multiple satellites distributed in orbit(s) working together to 
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achieve common objectives form a constellation.  The types of satellite constellations are 

as varied as the missions they serve and, after decades of research, the one truism that 

emerges is that no absolute rules exist for designing satellite constellations [20].  The 

reason why there has been no universal constellation design methodology or a one-size-

fits-all constellation is because of the generally limitless potential tradeoffs.   

For example, consider a LEO communications constellation.  At lower altitudes, 

the lifetime of the mission is potentially shortened due to drag and spacecraft will likely 

cost less since components do not need to be radiation hardened to the same extent as 

would be required for a higher altitude.  Alternatively, towards the upper range of the 

LEO regime drag is significantly reduced and fewer spacecraft are required to perform 

the mission but the harsh space environment becomes a concern.  While no single 

parameter dictates the final design of a constellation, there is one that is generally the 

principle performance determinant and, as such, has received a great deal of study: 

coverage. 

2.2.1 Coverage 

Coverage of a particular location on the Earth, hereafter referred to as a receiver, 

is defined when a line of sight exists to any satellite in the constellation.  Figure 2-4 

defines the angular relationships between the satellite, receiver, and Earth-center 

necessary to develop an algorithm for determining when a satellite covers a receiver. 
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The receiver vector, R
v

, is measured from the center of the Earth (assumed spherical) to 

its location on the surface.  The observation vector, 

 

 

is measured from the satellite to the receiver.  The angular measure in Fig. 2-4 is the 

spacecraft elevation angle (also referred to as the grazing angle in some literature), ξ . 

Equations 2.29—2.31 gives the satellite’s position in orbital elements at any time 

from epoch and is easily converted to the position vector in the inertial frame, rv , using 

the algorithm in Appendix C provided by Vallado [17].  The receiver vector in an inertial 

reference frame at any time, t, is also provided by Vallado [17] and given in Appendix D.  

A satellite’s elevation angle, 

 

 
 

Figure 2-4: Vector relationships between satellite, receiver, and Earth’s center, adapted 
from Wertz [20] 

rRO vvv
−= , (2.36)
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is found by subtracting 90º from the inverse cosine of the dot product between the unit 

receiver, R̂ , and unit observation, Ô , vectors.  When ξ  is positive and assuming a 

spherical Earth with no mountains or other obscurations, a line-of-sight from the satellite 

to the receiver exists and coverage is achieved.  In practice, however, it is common to 

specify a minimum elevation angle, minξ , at any given receiver below which coverage 

does not exist.  This constraint is incorporated into the oscillatory function, 

 

 

by subtracting minξ  from the expression provided by Eq. 2.37.  Consider, for example, a 

LEO satellite with classical elements shown in Table 2-1 at a t0 = February 27, 2008 and 

a receiver located in Los Angeles, California (34.05º North latitude, 118.23º West 

longitude) with a minξ  of 5º. 

 

 

°−⋅= − 90)ˆˆ(cos 1 ORξ , (2.37)

min
1

oscil 90 ξ−°−⋅= − )ÔR̂(cosf , (2.38)

Table 2-1: Classical orbital elements for a single LEO satellite 

0a (km) 0e  0i  0Ω  0ω  0M  
8000.0 0.0 45° 0° 0° 0°  
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The EOM defined previously are used to generate receiver and satellite position vectors 

during a 24-hour period and substituted into Eq. 2.38 to generate the plot of foscil vs. time 

in Fig. 2-5.  The roots of the function allow for the determination of the times when the 

satellite rises above minξ  and sets below minξ . 

 

 

The amount of time that passes between the rise and set is known as the access interval.  

During this time interval, coverage is defined and the satellite has the opportunity (from a 

purely geometric perspective) to perform its mission.  The general approach of writing 

oscillatory functions to determine access intervals allows for the addition of complex 

 

 
Figure 2-5: Minimum elevation oscillatory access function 

Rise

Set
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constraints, which is important for development of the case study undertaken later in this 

work. 

Given an oscillatory access function like that of Eq. 2.38, the rise, 
h

trise , and set 

time 
h

tset , for access interval h, is determined by seeking the time associated with each 

root of the function.  When at least the first derivative of the access function is available, 

then Newton’s method, because of its rapid convergence, is used to determine the zero 

crossing for each rise and set.  However, Newton’s method may diverge, and when this is 

the case, bisection is used to determine the root.  While bisection is computationally slow 

compared to Newton’s method, its convergence is guaranteed when the appropriate step 

size (in time) is chosen.  Using these root finding methods (detailed in Appendix E) on 

Eq. 2.38, the access interval array, shown in Table 2-2 and illustrated in Fig. 2-6, is 

determined. 

 

 

Table 2-2: Single-satellite minimum elevation rise/set intervals 

h 1 2 3 4 5 6 7 

riset  (hrs) 0.0971 2.2135 4.3389 6.4435 8.5545 21.751 23.808

sett  (hrs) 0.4759 2.5810 4.7068 6.8221 8.8770 22.077 24.000 
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These intervals are arrived at by calculating access function values at time steps that are 

one-tenth of the orbital period of the satellites.  This step size is a rule-of-thumb and 

should be decreased if the oscillatory nature of the function creates sharp, short lived 

peaks and valleys (otherwise these accesses might be missed).  When the sign or slope of 

the access function changes, the root finding mechanisms are invoked to determine the 

specific rise or set time.  The set of access intervals shown in Table 2-2 serve as the 

starting point to quantify coverage performance of a satellite to a receiver. 

With a constellation, where multiple satellites are working together, the access 

intervals are combined by the union of the individual access arrays.  Consider the 

addition of two satellites to the previous example to form a constellation totaling three 

spacecraft shown in Table 2-3.  The corresponding access interval plots for each satellite 

and the union of all three are shown in Fig. 2-7. 

 

 

 
Figure 2-6: Single-satellite minimum elevation access interval plot 

(hrs from epoch) 
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The constellation access intervals, from the union of all satellite’s accesses, are presented 

in Table 2-4.  This array of rise and set times provides the data needed to quantify 

coverage performance of the constellation to a single receiver. 

 

Table 2-3: Classical orbital elements for a three satellite LEO constellation 

Satellite 0a (km) 0e  0i  0Ω  0ω  0M  
1 8000.0 0.0 45° 0° 0° 0° 
2 8000.0 0.0 46° 0° 0° 15° 
3 8000.0 0.0 41° 0° 0° 25°  

 

 

 
Figure 2-7: Constellation minimum elevation access interval plot 

Table 2-4: Constellation minimum elevation rise/set intervals 

h 1 2 3 4 5 6 7 

riset  (hrs) 0.0000 2.0617 4.1849 6.2962 8.4165 21.6076 23.6582

sett  (hrs) 0.4758 2.5793 4.7060 6.8228 8.8780 22.0819 24.0000 
 

(hrs from epoch) 
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Some missions, and in particular the case study outlined in Chapter 4, require F-

fold coverage, which is defined when F satellites are simultaneously in view of the same 

receiver.  The access interval array for F-fold coverage is determined by performing a 

Boolean ‘and’ analysis on the individual satellite access arrays.  For the previous three-

satellite example, two-fold coverage is obtained when simultaneous access is found for 

the pairs of satellites 1 and 2, 1 and 3, or 2 and 3.  The rise/set intervals for two-fold 

coverage for this example are shown in Table 2-5 and plotted in Fig. 2-8.  Note that only 

the first three hours from epoch are shown in Fig. 2-8 for clarity.  The algorithm for 

calculating the rise and set intervals for multi-fold access is provided in Appendix F. 

 

 

Table 2-5: Two-fold constellation minimum elevation rise/set intervals 

h 1 2 3 4 5 6 7 

riset  (hrs) 0.0099 2.1248 4.2507 6.3560 8.4655 21.6683 23.7215

sett  (hrs) 0.3884 2.4928 4.6180 6.7348 8.7933 21.988 24.0000 
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Now that the building-blocks of constellation visibility to a given receiver have been 

defined, next it is necessary to assemble them in some manner to quantify, with a single 

number, coverage performance. 

2.2.2 Coverage Figures of Merit 

When continuous coverage is achieved, 
1riset  is equal to the epoch start time and 

1sett  is equal to the propagation duration over which the satellites coverage performance is 

modeled.  So the access interval in the continuous coverage case is simply equal in length 

to the propagation duration.  When a constellation experiences a loss, even if it was 

originally intended to provide continuous coverage, that requirement may no longer be 

attainable with any possible reconfiguration of the remaining satellites.  In this situation, 

there will be gaps in coverage for which the statistics are important.  The gaps are simply 

 

 
Figure 2-8: Constellation two-fold minimum elevation access interval plot 

(hrs from epoch) 
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the inverse of the accesses, or the durations during the simulation where no access exists.  

Earth coverage is not an easily characterized statistically distributed parameter [20] (e.g., 

not Gaussian) and as such it is necessary to accumulate the accesses or gaps into figures 

of merit, or metrics that allow for the evaluation of the quality of coverage. 

There are multitudes of coverage metrics, some of which are tailored for specific 

missions, while others are applied more generally.  Several of the most common metrics 

are maximum coverage gap, mean coverage gap, percent coverage, Daily Visibility Time 

(DVT) [20], and mean response time [42].  For the purposes of discussion, the 

mathematical formulations of these metrics are replaced by short descriptions and the 

advantages and disadvantages are highlighted.  Specific equations used to evaluate 

coverage performance for the case study in this research are presented in Chapter 4. 

The maximum coverage gap, also known in literature as the maximum revisit 

time [28], is the longest coverage gap encountered for an individual receiver.  It is 

uncommon for a mission to require a constellation to provide access to a single receiver; 

rather, coverage is sought over single or multiple regions, latitude bands, or the whole 

Earth, which are all represented by a set of many receivers.  Statistics, like the maximum 

coverage gap are reported as maximum, average, or minimum to the entire receiver set.  

While this statistic conveys worst-case information, it is rarely used in isolation because 

of the propensity for a single large outlier gap to misrepresent what might be, on average, 

a design with much better coverage performance. 

The average coverage gap, or average revisit time, is the average length of breaks 

in coverage for a given receiver on the simulation grid.  As with maximum revisit time, 

the statistics from each point may be combined to report the worst, average, or best case 
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across all receivers.  If the goal is to minimize the maximum revisit time, resources used 

to revisit any receiver more frequently than any other are wasted [33].  This conflict 

between the average coverage gap and maximum coverage gap requires a choice to be 

made between increasing performance in one metric at a cost of a decreased performance 

in the other.  As such, the process of evaluating coverage performance should take into 

account more than one figure of merit. 

The percent coverage for any point in the receiver grid is the percentage of the 

propagation duration for which access exists.  A related metric that captures similar 

information is the DVT that reports the total duration, during a given solar day, that a 

constellation has access to a receiver.  This metric is particularly useful when a 

constellation’s geometry repeats once per day allowing for a short 24-hour propagation to 

fully characterize coverage.  Both the percentage coverage and DVT do not provide any 

information about the distribution of gaps but the response time metric does. 

The mean response time is the average time from when a random request to 

observe a point is received until the time when that point is observed [42].  The 

advantage of using this metric is that it takes into account both the coverage and gap 

statistics and is generally good at evaluating the responsiveness of a given constellation 

to its receiver set.  For the design of discontinuous coverage satellite constellations, 

geometries are sought that maximize or minimize one or any number of these figures of 

merit. 
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2.2.3 Constellation Design Approaches 

Constellation design methodologies can be classified into two groups: the first 

solves continuous coverage problems, the second provides solutions for the discontinuous 

coverage problem.  In previous work, the reconfiguration problem has dealt primarily 

with communications constellations that have a one-fold continuous global coverage 

requirement.  Towards this end, both Scialom [8] and Siddiqi et al. [10] restricted 

constellation B to geometries described by Lüders [31] and/or Walker [11] continuous 

coverage design methods. 

SOC constellations were first used by Lüders [31] in 1961 and built upon by 

Adams and Rider [12] in the mid-1980s where they provide a method for calculating the 

minimum circular polar orbit altitude for continuous global coverage given the number of 

satellites making up the constellation.  The SOC constellation pattern contains SOCT 

satellites in each of SOCP orbit planes such that a continuous ‘street’ of coverage is 

formed in each orbit plane.  The ideal nodal separation between planes may or may not 

be symmetric depending on the common inclination of the constellation and at any given 

time half of the satellites are ascending north while those on the other side of the Earth 

are traveling south.  While SOC patterns are generally a reasonable solution to providing 

global coverage, the polar patterns result in an intersection of the orbit planes that 

concentrates resources over regions where few people or facilities exist.  Coverage 

inefficiencies can be reduced by considering patterns that decrease the inclination but still 

maintain continuous coverage. 
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One of the major contributions of Walker’s work [11] was his systematic 

approach to producing symmetric constellation patterns that assure continuous coverage 

to any point on the Earth above a specified elevation angle.  These Delta patterns contain 

satellites that occupy circular orbits and share common inclinations and altitudes.  They 

are fully defined through the specification of three parameters: the total number of 

satellites, WT ; the number of planes, WP ; and the relative spacing between satellites in 

adjacent planes, WF [2].  Determining which patterns provide the best coverage for a 

given number of satellites is an iterative process usually involving a computer.  In 1970, 

using the Delta pattern recipe, Walker was able to demonstrate that a circular-orbit five-

satellite constellation at geosynchronous altitude could provide continuous coverage at or 

above a minimum elevation angle of 12.3° to every location on Earth.  His minimum 

number of satellite continuous coverage constellation was only improved upon when 

Draim [30] widened up the design space to include elliptical orbits (he solved the 

continuous coverage problem with four satellites and received a U.S. patent for the 

work). 

Both Scialom [8] and Siddiqi et al. [10] considered how constellation designs 

might change to support a future higher capacity so their choice to limit the designs for 

constellation B to those attainable via Walker or SOC patterns is reasonable.  However, 

they did not deal with the discontinuous coverage problem that might arise due to loss in 

capacity.  When this occurs, or if the mission changes to emphasize specific regions, the 

use of classical continuous coverage design methods are no longer appropriate.  In order 

for the reconfiguration framework to be general, the solution to the coverage problem 
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must be able to provide optimal, or near optimal designs for both the continuous and 

discontinuous scenarios. 

It was mentioned previously that the coverage figures-of-merit are non-Gaussian, 

but more specifically, they can exhibit multimodal, discontinuous, and highly-nonlinear 

characteristics [13],[28],[32].  Therefore attempting to optimize or find the best 

discontinuous coverage design for any given mission is not easily solved for using 

analytical, calculus-based methods.  This observation is highlighted by Smith [32] where 

he compares deterministic (localized) methods that rely heavily on derivatives or 

gradients (Powell’s Method, Steepest Ascent [44]) to non-localized (stochastic) methods 

(Genetic Algorithm (GA) [43]).  Smith found that the deterministic methods converged to 

incorrect solutions and were sensitive to the initial conditions.  On the other hand, he 

demonstrated that GA was able to avoid pre-convergence to incorrect solutions and also 

find non-intuitive designs that were “more optimal” than originally thought.  Others [13], 

[33–37] have demonstrated similar success using GA to design both continuous and 

discontinuous coverage satellite constellations for missions ranging from 

communications to reconnaissance.  However, several recurring drawbacks noted by 

these authors include the need for extensive parameter experimentation, reliability, and 

expense both in computational cost and time to convergence. 

In 2004 Draim [2] stated that “in [his] opinion, GA hold great promise in 

designing new constellations.”  Recently, through the use of parallel processing and 

advances in the Evolutionary Computing (EC) research community, Ferringer et al. [14] 

and Reed et al. [15] have made significant strides towards eliminating the 

aforementioned drawbacks.  These efforts demonstrate that general solutions to the 
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coverage problem must include stochastic methods.  Coverage, however, is not the only 

reconfiguration concern.  In what follows, satellite maneuvering is discussed in order to 

identify the other principlal objective functions of the reconfiguration problem. 

2.3 Satellite Maneuvering: Energy and Time 

The costs involved in reconfiguring to constellation B form a multi-objective 

orbital maneuvering problem wherein the goal, as Vallado [17] states, is efficiency.  

Efficiency can mean using a minimum amount of energy (propellant) on any particular 

satellite and performing the maneuver in as short a period of time as possible.  Two-body 

analysis of orbital changes typically involves solving Lambert’s problem [23] between 

the position vectors of satellites in constellation A and B. 

Many solutions to Lambert’s problem have been provided since Lambert’s 

original geometric formulation where he demonstrated how to find the minimum energy 

orbit between two known endpoints.  The transfer is fully specified by the semimajor axis 

and eccentricity of the transfer ellipse, the initial velocity vector, and the time-of-flight to 

travel from the position vector in constellation A to its associated vector in B.  In Gauss’s 

solution [38] to Lambert’s problem, the cost, measured in the energy, ΔV, to perform the 

transfer in a given amount of time, ttran, is found.  Gauss’s solution is limited by the type 

of orbit transfer (elliptical only) and the spread between position vectors (the solution 

fails when the vectors are far apart).  Bate et al. [39] detail a universal variable approach 

that allows for any type of transfer orbit but their method fails on many difficult 

hyperbolic orbits due the Newtonian iteration used to find the variables.  Battin’s [40] 
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solution is not subject to the divergence pitfalls of the previous method and gives the 

most general procedure valid for any orbit transfer. 

While Battin’s general solution provides the necessary ΔV, given a time-of-flight, 

to transfer between any two position vectors, several less computationally expensive 

approximations can be used when mission requirements allow for simplification.  When 

only changes to a, e, and/or ω, are required, then either tangential or non-tangential 

coplanar maneuvers should be considered.  If the mission requires out-of-plane 

maneuvering, i and Ω can be changed simultaneously or independently.  For example, an 

impulsive burn performed at the nodal crossing will only change i whereas the same burn 

applied at a specific location in the orbit will only change Ω.  In some cases, no change to 

any of the aforementioned orbital elements is required or permitted leaving rephasing of 

the mean anomaly, M, within the existing orbits as the only option for reconfiguration. 

In what follows, the most common simplifications to Lambert’s general solution, 

classified into coplanar and non-coplanar maneuvers, are presented.  The specific 

maneuvering solutions employed in the framework are a function of the mission under 

study but should quantify the cost in terms of ΔV and ttran for a given maneuver.  The 

intent of Sections 2.3.1 and 2.3.2 is not to give the mathematical algorithms for 

calculating ΔV and ttran (given by Vallado [17]) for each maneuver, but rather to provide a 

roadmap for understanding their advantages and disadvantages.  These subsections can be 

used to select the type of simplified solution (if such a simplification is appropriate) for 

inclusion in the general framework. 
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2.3.1 Coplanar Maneuvers 

A coplanar maneuver begins and ends with the satellite occupying an orbit of the 

same plane and has potential to produce changes in a, e, ω, ν, and M.  During coplanar 

maneuvering, engine burns are performed that are either tangent or non-tangent to the 

flight path of the satellite.  The type of burn, how many to use, and where in the orbit to 

perform the burn require trading off ΔV for ttran.  Two maneuvers that use tangent burns 

only are the Hohmann and bi-elliptic transfer. 

The Hohmann transfer is a two-impulse minimum change in velocity solution for 

circular to circular coplanar orbits.  Figure 2-9 illustrates the geometry of a Hohmann 

transfer, where the total energy cost to perform the transfer is the sum of ΔV1 and ΔV2.  

For coplanar transfer between coaxially aligned elliptical obits, maximum efficiency of 

the burn is achieved by performing the first tangent burn at either the periapsis or the 

apoapsis of the initial orbit and the second at apoapsis or periapsis of the final orbit for 

increasing or decreasing the semimajor axis respectively.  When the ratio of final to 

initial semimajor axis for a circular to circular transfer is less than 11.94, the two-

maneuver solution provided by Hohmann is superior in terms of a minimum change in 

velocity solution [17].  In some cases when the ratio is greater than 11.94, a three-

maneuver bi-elliptic transfer may use less energy. 
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Bi-elliptic transfers combine the first burn of a Hohmann transfer and an 

additional complete two-maneuver Hohmann solution via three impulsive burns.  The 

penalty paid for adopting a bi-elliptic maneuver is a longer ttran relative to a Hohmann 

maneuver that achieves the same final orbit.  A bi-elliptic transfer is shown in Fig 2-10 

where ΔV2 now occurs at the apogee of an extended first transfer ellipse and the third 

burn, ΔV3, at the perigee of a second transfer trajectory.  If the minimum change in 

velocity coplanar transfer is sought and the semimajor axis ratio is above 11.94, Escobal 

[45] describes and provides equations to determine if either a Hohmann or bi-elliptic 

trajectory should be used. 

  

 

 
Figure 2-9: Hohmann transfer 
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There is a third, more general solution that will cost more change in velocity but 

arrive at the final orbit in a shorter period of time.  The one-tangent burn maneuver 

actually consists of one tangent burn at the apoapsis or periapsis of the transfer orbit and 

one non-tangent burn at a location in the trajectory that is a function of either a required 

transfer time or desired propellant expenditure.  One-tangent solutions often make use of 

any of the conic sections for the transfer trajectory.  Figure 2-11 provides one such 

example for an elliptical conic.  As ttran approaches zero, the ΔV required goes to infinity 

so a decision must be made that provides an acceptable compromise between energy 

expended and time.  The one-tangent burn transfer was the type used during the Apollo 

 

 
Figure 2-10: Bi-elliptic transfer 
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program to place crews at the moon in ~3 days instead of the ~5 days required by a 

Hohmann transfer.2 

 

The final and most general type of transfer consists of two non-tangent burns.  

Finding the required energy and transfer time in this case requires a solution to Lambert’s 

problem discussed earlier.  While the aforementioned maneuvers produce changes in a, e, 

and ω, it may also be desirable to change the location of the satellite within the same 

orbit. 

Phasing produces changes in M (or ν) and is particularly necessary when 

considering real-world operations placing satellites into a constellation.  Changing the 

                                                 

2 http://en.wikipedia.org/wiki/Apollo_8, cited October 8, 2008. 

 

 
 

Figure 2-11: One-tangent burn transfer 
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position of a satellite within its orbit may be accomplished by either in-plane or out-of-

plane maneuvering.  Due to its relevance to the case study presented in this research, only 

circular coplanar phasing will be discussed here. 

Coplanar phasing, where the goal is to move from one position to another in the 

same circular orbit, is an interceptor-target rendezvous problem.  The target is the desired 

end point of a satellite in constellation B, which is transferred from the starting point, or 

the interceptor, of constellation A.  Two basic scenarios exist wherein the interceptor is 

either trailing the target, Fig. 2-12a, or leading the target, Fig. 2-12b. 

 

 

In each case, the maneuver changes the satellites position by a phase angle, α, relative to 

the starting position.  This is accomplished by applying half of the total maneuver ΔV at 

the interceptor location to send the satellite into a transfer orbit residing inside or outside 

 

                         (a)                                                                          (b)                                  

Figure 2-12: Circular coplanar rendezvous (a) interceptor trailing target, (b) interceptor 
leading target, adapted from Vallado [17] 
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of the nominal circular orbit.  The total ΔV required to change M by α is a function of 

number of integer revolutions, K, which the satellite completes after the initial burn 

before rendezvousing with the desired interceptor position.  In Fig. 2-12a, K can be zero, 

while with the rendezvous illustrated in Fig 2-12b, K must be greater than or equal to one.  

With K less than one, the ΔV required to achieve rendezvous can be excessively large.  

The phase angle is calculated from the change in M from the interceptor to the target and 

always takes a value between −360° and 360° (negative if trailing, Fig 2-12a, and 

positive if leading, Fig. 2-12b).  The satellite must speed up (Fig 2-12a) or slow down 

(Fig 2-12b) to enter its final position so the remaining half of the total ΔV is applied in the 

opposite direction at the location of the target after some specific amount of transfer time 

(a function of K, α, and a of the target orbit) has passed.  The specific mathematical 

relationships to determine energy expenditure and transfer time for circular coplanar 

phasing will be detailed in Chapter 4.  The remaining orbital elements, Ω and i, may be 

changed by executing a non-coplanar maneuver. 

2.3.2 Non-coplanar Maneuvers 

Non-coplanar maneuvers are those that apply a ΔV out of the orbit plane and, 

since they only involve changes in Ω and i, there are three possibilities.  The first changes 

i only through the application of an out-of-plane ΔV at one of the two nodal/equatorial 

crossings while the second involves an out-of-plane ΔV at a particular point in the orbit 

which only changes Ω.  Such a ΔV applied at any other point in the orbit will result in 

changes to both Ω and i.  Previously, coplanar maneuvers were described with regard to 
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their energy expenditure and time costs to complete transfer.  For the proceeding single-

impulse maneuvers that change Ω and/or i, only energy expenditure is calculated because 

the change is assumed instantaneous (although in reality all burns are finite). 

For both, elliptical and circular orbits, the ΔV cost to change inclination is 

typically much more expensive than a coplanar transfer.  The ΔV required to change 

inclination by a particular amount is a function of the velocity at the node where the burn 

is performed, and if the orbit is elliptical, its flight path angle.  Analyses for changes to Ω, 

while also potentially expensive in ΔV, are not as straightforward.  A simplified analysis 

exists [17] for circular orbits that involves applying the impulse at one of the two 

common points of intersection that occur between the orbit planes before and after 

rotation through a particular ΔΩ.  With elliptical orbits (with the exception of polar 

inclinations) multiple burns are required to affect changes in node without altering the 

other elements like the argument of perigee.  Finding energy costs of node changes for 

elliptical orbits are best handled by solving Lambert’s problem.  Using spherical 

trigonometry, it is possible to arrive at simple expressions for combined changes to 

inclination and node for circular orbits [17].  As before, due to the requirement to correct 

the argument of perigee for elliptical orbits, it is better to apply one of the solutions to 

Lambert’s problem. 

To this point, only impulsive maneuvering has been discussed.  Although not 

relevant to the case study presented in this thesis, another possible transfer becomes 

important for interplanetary missions or for extended duration maneuvers.  These 

continuous-thrust solutions require the use of optimal-control theory [46] applied to 
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orbital maneuvering and are beyond the scope of the current discussion.  The key point, 

however, is that, if propellant is limited or if low-thrust engines are available on the 

satellite undergoing the maneuver, significant energy can be saved by considering a 

continuous-thrust transfer at the cost of a much longer wait time to achieve the final 

position. 

Any of the aforementioned maneuvering solutions for finding time-of-flight and 

energy required to perform a maneuver can be incorporated into the general 

reconfiguration framework.  If several simplified maneuvers are needed, they may be 

performed in sequence or a savings in energy cost could result by combining the 

sequence into a single transfer.  In this case Battin’s [40] general solution to Lambert’s 

problem should be used.  All of these options were presented so that, when appropriate, 

the least computationally complex choice for finding the time and energy required for a 

given maneuver could be selected for inclusion as objective functions in the framework. 

To review, three principal concerns that make up the reconfiguration tradeoff-

space were identified: coverage performance, energy expended by each satellite during 

transfer, and time for each satellite to achieve their new position in constellation B.  In 

the next section, several other concerns will be introduced that must be taken into account 

during any search for an optimal reconfiguration. 

2.4 Satellite Maneuvering: Life Expectancy and Risk 

When making a decision regarding how to reconfigure a satellite constellation, 

stakeholders must evaluate the impact on the reduction in life expectancy and risk 
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undertaken due to maneuvering.  A constellation’s lifetime can be shortened if one 

satellite uses most of its remaining propellant relative to the other spacecraft.  Previously, 

Siddiqi [10] attempted to find reconfiguration designs that minimized the sum of the ΔV 

used by all maneuvered satellites but noted significant operational drawbacks to defining 

the objective function in this manner.  He suggested that future study should consider 

minimizing the sum of the energy usage variance among all maneuvered satellites.3  

Using this definition, the best reconfigurations would be those where the maneuvered 

satellites expended similar amounts of energy.  In an ideal sense, where all satellites in a 

given constellation have the same amount of propellant, engine, and dry mass at the time 

of reconfiguration, the use of energy is appropriate.  Operationally, however, it is more 

likely that, when a constellation experiences a loss, the remaining satellites will have 

varying amounts of propellant remaining, and potentially different engines and dry 

masses.  In this research, the life expectancy objective function takes both the idealized 

form from Siddiqi’s suggestion, and is modified to account for the more likely 

operational situation so that the impact on the resulting reconfigurations may be assessed. 

Risk for reconfiguration can take many definitions.  If only a single satellite is 

maneuvered to achieve constellation B, the operational requirements for support systems, 

system downtime, etc. are far less than if every satellite must undergo a transfer.  From 

this observation, a pragmatic definition for risk can be defined as the quantity of satellites 

                                                 

3 Several years before Siddiqi’s suggestion, Ahn and Spencer [9] constructed an objective function that 
minimized the distribution of propellant among the spacecraft for reconfiguration of a formation flying 
constellation. 
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that undergo maneuvering.  This definition introduces an integer-valued discrete 

objective function into the framework. 

The discrete risk function joins the nonlinear and discontinuous coverage 

performance metrics and the multimodal maneuvering time and energy functions to 

create a complex tradeoff landscape where deterministic optimization techniques fail.  

The constellation design community has demonstrated that EC provides the potential to 

find or approximate optima for similar landscapes.  Building off of their contributions 

[13], [33–37], the reconfiguration problem is posed as a tradeoff between minimizing 

risk, energy/propellant usage, and time of transfer, while maximizing life expectancy and 

coverage performance, wherein the optimum set of solutions is sought via multi-objective 

EC methods. 



 

 

Chapter 3 
 

Methodology 

In this chapter, Multi-Objective Optimization (MOO) is formally defined 

providing the background of classical MOO techniques necessary to motivate a 

subsequent discussion of EC methods.  In the previous chapter, a considerable emphasis 

was placed on driving down function evaluation time via techniques to reduce the 

complexity of the EOM or with simplified maneuvering solutions.  Despite these efforts, 

the process of optimizing satellite constellations is extremely computationally expensive 

and steps must be taken to mitigate this issue so that decisions can be made in a 

reasonable period of time with the resources available.  Chapter 3 will also delve into the 

issues associated with parallelizing and using Multi-Objective Evolutionary Algorithms 

(MOEA) in practice and detail the specific implementation used in this research. 

3.1 Multi-objective Optimization 

In contrast to single-objective optimization, multi-objective optimization 

problems (MOPs) arise when an optimal decision is sought for two or more conflicting 

objectives.  Formally, multi-objective optimization is the process of simultaneously 

maximizing and/or minimizing k objective functions, 
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subject to B inequality, 

 

 

and w equality constraints, 

 

 

In Eq. 3.1, the decision vector, xv , is a D-dimensional combination of variables 

that define the design space, Ψ.  Each decision vector evaluates to a single point in the k-

dimensional ℜk objective space, Λ.  The goal of a multi-objective optimization is to find 

or approximate the Pareto [47] optimal solutions, P* ∈ Ψ.  Pareto optimal solutions in P* 

cannot be improved in one objective without reducing performance in at least one of the 

remaining objectives.  The set of solutions that approximate P* are said to be non-

dominated [48].  When mapped to Λ, P* defines a Pareto-front (k = 2), Pareto-surface (k 

= 3), or Pareto-hypervolume (k > 3) that result from the tradeoffs between objectives.  It 

is not just sufficient to find solutions in or near P* (the first goal of MOO: convergence), 
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it is also desirable to find solutions along the full extent of the tradeoff space (the second 

goal of MOO: diversity) thereby providing more choice to a DM.  A more formal 

mathematical introduction to multi-objective optimization and Pareto-optimality can be 

found in Deb [49]. 

3.1.1 Classical Methods 

The foundations of MOO can be found as early as 1895 with Cantor’s work [50] 

on Set Theory, but it was not until the mid-1960s that tradeoff became a common term 

used by managers and DMs [51].  The first engineering application reported in literature 

[52] appeared in 1963, but it was not until the mid-1970s that the use of MOO became 

generalized [53].  Since then, many MOO techniques have been developed and may be 

classified according to the two stages in which the solution to the multi-objective 

problem is divided. 

The first stage of solving a MOP is a search for optimum over several objectives, 

while the second stage is a decision process for what kind of tradeoffs are appropriate and 

is usually influenced by the problem’s stakeholders.  Cohon and Marks [51] classify 

MOO techniques into three categories: 1) a priori preference articulation where decisions 

are made before searching; 2) a posteriori preference articulation where decisions are 

made after searching; 3) progressive preference articulation where search and decisions 

are integrated in some manner. 

A priori methods assume that a decision maker’s preference information is 

introduced prior to the search for optima.  Several methods seek the decision vectors that 
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get as close to an ideal goal as possible (Global Criterion Method [54]), minimize the 

deviation of the objectives from their corresponding goals (Goal Programming [55],[56]), 

or attempt to under- or over-attain the desired goals sought by the DM (Goal-Attainment 

Method [57]).  Others, like Roa’s Lexographic Method [58], rank the objectives in order 

of preference and proceed by minimizing the most important first, followed by the next in 

the list until all objectives have been considered.  Another method [59] seeks the highest 

degree of multi-attribute utility with respect to all objectives by maximizing over a utility 

function that mathematically models a DM’s preference structure.  Many other a priori 

methods exist (see Coello Coello et al. [48] for a comprehensive presentation). 

Classical a posteriori methods do not require preference information from the 

DM prior to search.  One of the most common and easily implemented approach searches 

for the minimum of a linear combination of the products of weight vector and objective 

vector components.  This Linear Combination of Weights (LCW) [60] approximates the 

set of non-dominated solutions by parametrically varying the weights and solving each 

minimization problem.  Figure 3-1 illustrates a potential drawback of the LCW method 

wherein non-convex regions of Λ (between points A and B), for a two-objective 

minimization problem, are not found due to non-linearity in the mapping between Ψ and 

Λ.  The components of the weight vector, w1 and  w2  in Fig. 3-1 are those associated with  

f1 and  f2. 

 



59 

 

 

The ε-Constraint Method [61] alleviates the difficulties faced by the LCW approach in 

solving problems exhibiting these non-convex regions.  Here, the MOP is reformulated 

where one objective is minimized and the other objectives are incorporated as constraints 

bound by ε levels.  The ε parameter represents an upper bound of the value of the other 

objectives and does not necessarily mean a small value approaching zero.  Through the 

variation of ε, a non-dominated set can be formed.  The final type of classical method 

integrates search and decision roles. 

Progressive preference articulation methods typically assume an initial preference 

structure provided by a DM, search for non-dominated solutions, and then bring the DM 

back into the process to iterate on their preferences.  This loop is carried out until the DM 

is satisfied or no further improvement is possible.  Several examples include the 

 

 
Figure 3-1: Drawback of the LCW method 
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Probabilistic Tradeoff Development Method [62], the STEP Method [63], and the 

Sequential Multi-objective Problem Solving Method [64]. 

In Chapter 2 it was established that both enumerative and deterministic search 

techniques are ill suited to provide general solutions to the reconfiguration problem.  

Evidence for this observation is provided by prior literature [8],[10],[14],[32] and the 

previous discussion of the characteristics of the principal objectives of the 

reconfiguration problem.  In this section, the classical methods, regardless of their type, 

dealt with the roles of search and decision making independently and, similar to 

deterministic optimization methods, many of them imposed limiting requirements on the 

objective function like linearity or continuity.  It is reasonable, then, to suggest that a 

stochastic method like an Evolutionary Algorithm (EA), is more generally suited to solve 

the multi-objective reconfiguration problem because they address both search and multi-

objective decision making and because their population-based exploration allows for any 

combination of the discontinuous/continuous, discrete, multimodal, and nonlinear 

objective function characteristics. 

3.1.2 Evolutionary Computing Methods 

EAs are part of the stochastic class of global search and optimization algorithms 

(see [48], [65], [66], [71] for examples of other common stochastic paradigms).  They 

mimic Darwinian [101] natural selection by treating possible solutions as individuals in a 

population who compete, mate, and produce offspring.  The result of many generations 

of this survival-of-the-fittest reproduction loop is a progression towards an optimal 
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design, or in a multi-objective sense, a set of *xv  optimal solutions in P*.  Following the 

biological analogy, the decision variables are encoded in a chromosome using one or 

many data types in the representation (binary, floating point, symbols, letters).  Children 

are produced from the parents via a crossover operator that fulfills the job of perpetuating 

the characteristics of the fit solutions as the evolution progresses.  Mutation, which 

generally occurs at a much lower rate, provides an additional element of randomness 

during search.  These mechanisms work together to simultaneously explore for optimal 

solutions and exploit knowledge of the fitness landscape.  The balance between 

exploration and exploitation (search and selection) is a classic dilemma studied 

intensively in Statistical Decision Theory (SDT) [98], [99]. 

Goldberg [43] compares the EA to the k-armed bandit problem [68] in SDT.  

Take for example, a two-armed bandit, which is nothing more than a slot machine with 

two arms.  Each arm produces an average payout, with one arm paying better than the 

other.  The goal is to maximize return given a particular number of pulls.  Initially, 

nothing is known about which arm will produce, on average, a higher payout, so there is 

tradeoff between gathering information (exploration) and using that information 

(exploitation) to accumulate the highest possible reward.  The optimal solution for the k-

armed bandit problem provided by Holland [69] shows slightly more than an 

exponentially increasing number of trials should be given to the observed best arm.  If 

designed properly [43], an EA can give an exponentially increasing number of trials to 

the high quality, most fit solutions in subsequent generations and, therefore, EAs can be 

classified as near-optimal global search procedures.  The first multi-objective 
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implementation of an EA, the Vector Evaluated Genetic Algorithm (VEGA), was 

suggested by Schaffer [67] in 1984. 

VEGA is a simple extension of a single-objective GA.  Illustrated in Fig. 3-2, 

Schaffer divides the initial population of size N into subpopulations equal in size to the 

ratio of the total population to number of k objectives. 

 

 

Subpopulations assign fitness according to their particular objective function and 

crossover is performed across the boundaries.  It turns out that performing MOO in this 

manner produces solutions that perform well in any one objective, thereby meeting the 

first goal of MOO.  By performing crossover between champion solutions of each 

subpopulation, Schaffer hypothesized that the compromise or tradeoff designs would 

emerge.  Unfortunately, combining the genetic material of two individually fit solutions 

does not necessarily result in non-dominated compromise designs.  It was not until nearly 

a decade later, in 1993, when an MOEA was implemented that simultaneously met both 

goals of MOO. 

 

Figure 3-2: VEGA generational flow adapted from Deb [49] 
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Although first suggested by Goldberg in 1989 [43], Fonseca and Fleming [72] 

were the first to develop an algorithm, Multi-Objective Genetic Algorithm (MOGA), that 

explicitly emphasized non-dominated solutions and simultaneously maintained their 

diversity.  One year later, Srinivas and Deb [73] published their Non-dominated Sorting 

Genetic Algorithm (NSGA), which more directly implemented Goldberg’s non-

dominated sorting concept.  That same year, Horn et al. [74] proposed the Niched-Pareto 

Genetic Algorithm (NPGA), which differed from NSGA, MOGA, and VEGA in the 

selection operator.  All three of these mid-1990s algorithms have various advantages and 

disadvantages [49] and, while they represented progress towards meeting both goals of 

MOO, they all suffer from the potential for the average fitness of the population to 

deteriorate over time. 

The previous MOEAs did not contain any mechanisms to ensure that the best 

solutions are retained.  The next major advance in the EC community came when 

researchers implemented elitism, which is a mechanism that favors the most fit solutions 

in a population such that they have the opportunity to be directly carried from generation 

to generation.  Zitler and Thiele [75] proposed an algorithm, Strength-Pareto 

Evolutionary Algorithm (SPEA), that implements elitism by maintaining an external 

population of non-dominated solutions that not only preserves the elites but also 

participates in the genetic operations with the current population.  Deb [76] introduced 

both an explicit elite-preserving strategy and a diversity-preserving mechanism in his 

Non-dominated Sorting Genetic Algorithm Two (NSGA-2). 
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Due to its relevance as the foundation algorithm extended in subsequent sections 

for use in this research, the NSGA-2 generational flow, adapted from Deb [49] is 

provided in Fig. 3-3. 

 

 

With the NSGA-2, a population of N parents is initially randomly created and 

combined with a child population generated via crossover [77] and mutation of selected 

parents.  These two subpopulations are merged and non-domination sorting is conducted 

wherein each solution is sorted into a front according to their domination rank.  This 

 

 
Figure 3-3: NSGA-2 generation flow adapted from Deb [49] 
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procedure is illustrated in Fig. 3-4 for a two-objective optimization problem, where a 

merged population of size 2N is sorted into four ranks (the coloring of the data markers 

serve to illustrate the grouping of solutions into domination rank levels).  Domination 

ranking is the first component of an individual’s fitness. 

 

 

The second, crowding distance, provides the diversity-preserving mechanism.  

Shown in Fig. 3-5 for a two-objective problem, each solution’s crowding distance, dcrowd, 

is calculated by averaging the side length of the cuboid formed by using the two nearest 

 

Figure 3-4: Non-domination sorting 
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neighbors on either side of the individual as vertices.  Deb [49] provides an algorithm that 

generalizes crowding distance for any number of k objectives. 

 

 

After non-domination sorting, individuals that are members of the most fit (ranks 1, 2, 

etc.) fronts form a new parent population of size N.  Since the parent population is fixed 

at size N, any overlapping solutions in front b are selected based on their crowding 

distance.  This new parent population begins the cycle anew in another generation and 

search proceeds until a maximum number of generations has elapsed.  As search 

progresses, all solutions typically become members of the same domination rank and the 

crowding distance metric becomes important.  In this manner, the NSGA-2 can be 

considered a greedy algorithm that attempts to rapidly approach the Pareto-front early in 

 

 
Figure 3-5: Crowding distance 
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the evolution, and enforces the diversity component of fitness only after some 

convergence is experienced. 

While the merging of child and parent populations ensures elitism, because of the 

fixed population size, the NSGA-2 can loose non-dominated solutions.  Further, due to its 

greediness, the NSGA-2 can pre-converge to a local region in the landscape leading to 

random seed dependence for successful search.  Parameter tuning required for successful 

search was noted in the constellation design problem domain, first by Smith [32] for a 

single-objective GA, and then by Ferringer et al. [14] for NSGA-2.  Additionally, search 

termination after a number of generations have elapsed is arbitrary and can potentially 

waste resources if a reasonable solution is arrived at prior to termination.  The Epsilon 

Non-Dominated Sorting Genetic Algorithm Two (ε-NSGA-2) was designed to address 

these challenges and has compared favorably to the performance of its parent algorithm 

for a suite of real-world problems [78], [79], [80]. 

3.1.3 Epsilon Non-dominated Sorting Genetic Algorithm Two (ε-NSGA-2) 

The ε-NSGA-2 has three primary innovations (epsilon-dominance archiving [81], 

auto-adaptive population sizing [80], use of time continuation [82]) that address the 

previous challenges [14].  Epsilon-dominance sorting, illustrated in Fig. 3-6 for a two-

objective minimization problem, allows the user to place a grid over Λ that specifies a 

particular level of precision, εk, for each objective. 
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For example, typical non-domination sorting of a given population of designs for a two-

objective minimization problem will result in the set shown in Fig. 3-6a.  When epsilon-

non-domination sorting is performed using the grid formed by ε1, and ε2, P* is reduced to 

those solutions shown in Fig. 3-6b.  In this minimization example, the thinning of points 

occurs by eliminating every epsilon block that is above and to the right (see Fig. 3-6b) of 

the boxes that hold the epsilon-non-dominated designs of Fig 3-6a. 

The thinning of P* serves several purposes: convergence towards P* can occur 

more rapidly; the decision maker controls the resolution of the final result, which is 

important since objective values (due to data uncertainties and numerical error) are 

meaningless beyond a particular level of precision; P* can only grow to a size limited by 

the user specified εk.   

 

 
                                                 (a)                                              (b) 

Figure 3-6: Illustration of epsilon non-dominated sorting (a) before and (b) after sorting; 
adapted from Tang et al. [83] 
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Time continuation is the idea that periodic injection of random solutions will 

allow the search to continue while maintaining population diversity for as long as 

computationally feasible or necessary.  Auto-adaptive population sizing supports time 

continuation by growing or shrinking the population to a size proportional to the off-line 

archive.  This innovation eliminates the finite run limitation of NSGA-2 where multiple 

random seeds might be needed to characterize P*.  Time continuation is particularly 

important when resource limitations may exclude the possibility of random seed analyses 

or parameter tuning. 

The overview of the ε-NSGA-2, adapted from Kollat and Reed [80], is presented 

in Fig. 3-7. 
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The ε-NSGA-2 maintains the basic operators (crossover and mutation), and 

parameter options of the original NSGA-2, but the search progresses differently.  With 

the NSGA-2, the search proceeded from one generation to the next by looping through 

 

 
Figure 3-7: ε-NSGA-2 generational flow; final ε-non-dominated population size is Ac at 

simulation termination;  adapted from Kollat and Reed [80] 
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the process of non-domination sorting a combined parent and children population of size 

2N; performing crowded tournament selection resulting in a new parent population of 

size N; then performing crossover and mutation on the selected parents to generate a new 

child population of size N.  The ε-NSGA-2 adds an offline archive that contains A 

epsilon-Non-Dominated Solutions (ε-NDS) accumulated from each parent population for 

each generation.  The archive is maintained between a series of connected runs, c, shown 

in Fig. 3-7, wherein each run proceeds to a maximum of 250 generations as 

recommended by Deb et al. [76] or until search has failed to produce an improvement of 

less than 10% in the archive.  For each new run, the initial population, N, is generated by 

taking the archive from the last run (representing 25% of the new population) and 

injecting 3Ac-1 randomly generated solutions into the current run.  Search proceeds via the 

connected runs and termination criteria are left to the DM but are generally related to 

either total elapsed time or lack of improvement in solution quality looking back over one 

or more runs. 

3.2 Parallel Multi-objective Evolutionary Algorithms 

The evaluation of the reconfiguration objective vector for this research involves 

propagating satellites to calculate access-constrained multi-fold coverage over thousands 

of receiver locations (the specific cases studied will be presented in Chapter 4).  On 

average, one evaluation of this vector requires on the order of one minute per processing 

core and some scenarios require over 10 million function evaluations (~100 days on a 
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serial machine) before run termination.  This computational demand leads to the 

consideration of parallel processing. 

Van Veldhuizen et al. [85] notes that parallelization of an MOEA is motivated by 

the desire to reduce execution time and/or resource expenditure.  In the case of the 

reconfiguration problem, the motivation is not necessarily to obtain a solution quickly, 

but rather one of computational intractability.  Without parallel computing, arriving at a 

solution to the reconfiguration problem, as it has been described, simply is not possible in 

any reasonable amount of time.  While there are many ways in which a MOEA may be 

adapted to use parallel resources, two major paradigms are highlighted in the literature. 

These parallel Multi-Objective Evolutionary Algorithm (pMOEA) models are 

Master-Slave (MS), and Multiple-Population (MP) [86].  The MS paradigm, shown in 

Fig. 3-8, executes the MOEA on a single master core and sends the decision vectors to 

slave cores for evaluation. 

 

 

 
Figure 3-8: MS paradigm 
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Note, in parallel computing nomenclature a ‘cluster’ is made up of several ‘nodes’ each 

containing a number of ‘processors’ that may have one or multiple ‘cores’.  The MS 

model searches the fitness landscape in an identical manner to its serial counterpart and 

requires no new MOEA parameters.  The MP paradigm, on the other hand is considerably 

more complex with regard to parameter choices that affect search. 

The MP scheme, shown in Fig. 3-9 for several configurations, is generally 

modeled after the metaphor that emerges from Darwin’s observations [87] of finch 

diversity on the Galapagos Archipelago. 

 

 

Each core can be thought of as an ‘island’ wherein a MOEA operates in isolation for 

some period of time before sharing the genetic information of its inhabitants with those of 

 

 
Figure 3-9: MP paradigm for (a) a minimally connected, one-way migration strategy, and 

(b) for a two-way migration to any of three possible subpopulations 
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other islands.  The model adds a number of parameters that impact the balance of 

exploration and exploitation.  These include the number of chromosomes to move 

between subpopulations; the migration frequency, or how often genetic information is 

shared; the number of subpopulations (typically the number of cores); the connectivity 

and topology that determine both the number of neighboring islands and how they 

communicate with each other [85].  Generally, search using the MP paradigm will 

progress at a slower rate when compared to the MS model for a given period of wall-

clock time.  The potential advantage, however, is that search progresses differently, 

which may be more effective for certain problems.  To understand why, a slight diversion 

is provided. 

Looking again towards a biological metaphor, the aforementioned MP parameters 

that control the exploration and exploitation of the search space can be tuned to mimic 

two contrasting evolutionary theories known as punctuated equilibrium [88] and phyletic 

gradualism [89].  Punctuated equilibrium, illustrated in Fig. 3-10a, posits that evolution 

takes place in rapid bursts separated by long periods in which little change occurs.  This 

theory might be imitated through a low migration rate and a sparsely connected core 

topology (Fig. 3-9a, for example).  Phyletic gradualism, shown in Fig. 3-10b, on the other 

hand states that evolution occurs uniformly and gradually through the steady 

transformation of whole lineages. 
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This smooth and continuous view of search progress may correspond to a more fully 

connected topology (Fig. 3-9b for example) with more frequent migration rates.  The MP 

scheme’s multitude of parameter combinations represent exploration and exploitation 

compromises between the extremes represented by these two theories offering many 

more potential search paths through the solution space relative to the MS scheme.  

Accordingly, literature [15] [83] has demonstrated that the MP scheme can dramatically 

enhance search for extremely challenging problems where the MS model fails.  The 

question then becomes, when little is known a priori regarding the complexity of the 

multi-dimensional reconfiguration problem fitness landscape, which paradigm, MS or 

MP, is appropriate? 

There is no straightforward answer to the previous question.  In the early years of 

this research, lacking any literature that might have provided initial guidance, the 

approach was simply to implement a MS and MP version of Deb’s [76] original NSGA-2 

 

 
Figure 3-10: Illustration of (a) punctuated equilibrium, and (b) phyletic gradualism 



76 

 

and study their efficiency and effectiveness on a benchmark, two-objective constellation 

design problem [14].  These two objectives were coverage metrics like those discussed in 

Chapter 2 and provided initial insight into a subcomponent of the reconfiguration 

problem.  For this initial implementation, Ferringer et al. [14] identified and resolved 

several algorithmic issues associated using a pMOEA on large clusters with 

heterogeneous hardware, processing speeds, and architectures.  At the same time Tang et 

al. [79] were exploring similar paradigms but with the ε-NSGA-2 on small homogeneous 

clusters to solve multi-objective problems in the water resources domain.  Ferringer et al. 

[14] experienced the parameterization challenges, random seed dependence, and finite 

run limitations of the NSGA-2 noted earlier.  The three primary innovations provided by 

ε-NSGA-2 addressed these issues, but Tang et al. [79] had not yet dealt with how their 

algorithm might scale to large heterogeneous clusters. 

Through a joint research effort, Reed et al. [15] adapted ε-NSGA-2, merging the 

contributions of Ferringer et al. [14] and Tang et al. [79], and used a statistical metric 

based evaluation framework to compare MS and MP schemes on a benchmark 

constellation design problem.  Several key contributions emerged from their work.  The 

first was a pMOEA, hereafter referred to as the Large-Cluster epsilon-Non-dominated 

Sorting Genetic Algorithm Two (LC-ε-NSGA-II), which touts all of the benefits of ε-

NSGA-II and also scales well with clusters consisting of any heterogeneous hardware and 

architectures.  The second, was that the comparatively simple MS paradigm that exploits 

time continuation was shown to be statistically superior to the MP scheme.  This is due to 

the fact the benchmark problem was constrained by time not the properties of the fitness 

or decision variable landscapes. 



77 

 

Tang et al. [83] classifies search failures (i.e. not reaching a user specified level of 

solution quality) into two categories.  The first are problems that have highly deceptive 

objective and decision space properties where no amount of time will allow an algorithm 

to converge to the global Pareto-set.  Tang et al. [83] demonstrated this failure with the 

MS scheme on such a test problem (DZT6 [113], a manufactured test function with many 

false Pareto-frontiers).  The MP scheme, however, did not fail, and was therefore more 

effective than the MS approach.  The second category of search failure is defined when 

all that is needed for a better solution quality is more computational time.  The real-world 

problems of Tang et al. [83] in the water resources domain, and the benchmark 

constellation design problem highlighted in Reed et al. [15] both exhibited objective and 

decision space properties that place them into the time constrained category where the 

MS scheme was shown to be superior. 

This insight is applied in the current research where the MS version of LC-ε-

NSGA-II is used as the method for solving the heavily time constrained reconfiguration 

problem.  The results presented in Chapter 5 will reinforce the observation that the MS 

scheme, and its superior parallel scalability, is an appropriate paradigm choice.  In the 

next section, details regarding the LC-ε-NSGA-II adaption [15] of Tang et al.’s [79] 

original parallel version of ε-NSGA-II are provided. 

3.3 ε-NSGA-2 Adapted for use with Large Heterogeneous Clusters 

Both Tang et al.’s [79] original implementation and Reed et al.’s [15] adaption of 

ε-NSGA-II were developed using the Message Passing Interface (MPI) [90] standard.  
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The development of the MPI specification involved scores of people from organizations 

in government, industry, and universities, with the first published Version 1.0 of the 

standard appearing in 1994 and the second major revision MPI-2 in 1997 [91].  A variety 

of implementations of MPI were transformed into working code, and to-date, well over a 

dozen implementations of the MPI standard have been developed.4  The implementation 

selected for use in this research is Open-MPI, an open source implementation of the MPI-

2 standard.5 

Tang et al.’s [79] ε-NSGA-II used the standard form of the MS paradigm wherein 

the master core sends a single chromosome to each slave for evaluation.  As slaves 

become available, the remaining population members for the current generation are 

evaluated.  The evolutionary operations occur on the master core only after all slaves 

have finished processing.  Since the original implementation was designed for use with 

small (less than 16 cores) homogeneous clusters, the master core also participated in 

objective function evaluation.  There are several scalability issues with this 

implementation. 

Scalability refers to the ability of the MOEA to use available cores to the greatest 

extent possible as the size of a given cluster increases and its processor speeds and 

hardware types become more diverse.  The two primary scalability issues identified with 

Tang et al.’s [79] implementation include generational synchronization and the master 

core bottleneck.  Generational synchronization refers to the requirement that all function 

evaluations from slave cores be returned to the master core before evolutionary 
                                                 

4 http://en.wikipedia.org/wiki/Message_Passing_Interface#Implementations, cited July 17, 2008 
5 http://www.open-mpi.org/, cited July 17, 2008 
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operations commence.  As demonstrated by Ferringer et al. [14], when heterogeneity of 

the cluster and core count increase, the synchronization issue can cause idle time in well 

over half of the available resources.  The master core bottleneck is a result of requiring 

the master to perform function evaluations as well as coordinate message passing to the 

slaves.  Another scalability issue that may arise when the cluster size increases is a 

communication bottleneck, particularly when function evaluation time is short.  Reed et 

al.’s [15] LC-ε-NSGA-II incorporated the solutions to these scalability issues provided by 

Ferringer et al. [14] into Tang et al.’s [79] original MS implementation. 

The first, and most obvious adaption is to relieve the master core of its duties to 

perform function evaluations and only require message passing functions and 

evolutionary operations.  The second, and the key enabler towards eliminating the 

scalability issue, is the development of asynchronous evolution [15], wherein the master 

core does not wait for the final objective vector evaluations of a given population before 

proceeding to the next generation.  Instead, these individuals are included in a subsequent 

population.  Figure 3-11 presents an overview of the LC-ε-NSGA-II generational flow. 
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Asynchronous evolution proceeds by dividing the child population into two lists, one 

with individuals awaiting evaluation (‘To-Evaluate’ list) and the other with those whose 

objective vector has been evaluated (‘Finished’ list).  As soon as the ‘To-Evaluate’ list 

has sent its last chromosome to a slave core, those individuals residing in the ‘Finished’ 

list form a variable length child population, Nv, that is immediately merged with the 

parent population N.  Even though the child population size varies at the beginning of 

each run, the population size reaches a steady-state where the number of individuals left 

behind approximately equals the number of individuals from earlier generations whose 

 

 
Figure 3-11: LC-ε-NSGA-II generational flow 
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slave cores have finished processing.  The net result of asynchronous evolution is near 

100% core utilization for clusters containing hundreds of nodes [15].  While the 

scalability issue is resolved with LC-ε-NSGA-II, another modification was required to 

cope with potential extend-duration processing time and system failures. 

Smith [32] notes when discussing his experience using a GA for constellation 

design, “as of 1999, computation time issues are a main limitation to the use of this 

approach in an operational manner.”  Smith’s observation will be supported in Chapter 5, 

where it is shown that large archive sizes result from the complex high-dimensional 

fitness landscape of the reconfiguration problem.  That, coupled with function evaluation 

time on the order of minutes per chromosome, even several hundred cores may require 

weeks to produce a satisfactory solution.  In this research, parallel computing resources 

are shared and limits imposed on the length of time a particular core is used for a given 

application.  To deal with this limitation, a check-pointing mechanism is implemented.   

Check-pointing, originally developed [92] to allow for the restarting of a 

simulation on distributed processors after a fault had occurred, is implemented by 

periodically saving to disk the population of solutions residing in the archive.  When a 

maximum allowable run time is reached, and if a satisfactory solution has not been 

obtained, the simulation is resubmitted to the queue of competing jobs and search 

continues from the last check-point.  This mechanism allows for time continuation both 

with regard to shared resources and any core failure that may occur during the run forcing 

the simulation to shut down. 



 

 

Chapter 4 
 

Experimental Design 

In this chapter, the experimental design for the general reconfiguration framework 

is detailed.  Principal concerns of performance, cost, and risk are developed into mission 

specific objective functions to form a six-dimensional tradeoff landscape.  A variety of 

case studies are identified that consider both idealized and operational assumptions.  

Finally, the specific parameter settings for the LC-ε-NSGA-II with check-pointing are 

outlined and the parallel computing cluster details are provided. 

4.1 Objective Function Construction 

The idealized Global Positioning System (GPS) constellation, orbits are pictured 

in Fig. 4-1, was selected to illustrate the general reconfiguration framework; however, 

any existing constellation could be used. 

 



83 

 

 

The idealized baseline constellation consists of 24 satellites in approximately 12-hour 

circular orbits distributed in six planes inclined at 55° relative to the equatorial plane 

[93].  The relative phasing between most satellites in adjoining planes is approximately 

40° [94]. While the operational constellation includes additional satellites to ensure that 

maintenance and anomalies will have minimal impact on service, only the nominal 24-

satellite constellation is used here.  It is not the intent of this research to provide a 

comprehensive introduction to GPS.  However, some background material is introduced 

to motivate specific objective function definitions. 

The principlal goal in developing GPS was to offer users accurate estimates of 

position, velocity, and time continuously and nearly instantaneously over the globe [95].  

By broadcasting ranging signals and navigation data from each satellite, the constellation 

enables users with a clear view of the sky that have a minimum of four satellites in view 

 

 
Figure 4-1: Idealized baseline GPS constellation 
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to resolve their position and velocity using receivers.  Given the loss of one or more 

satellites, four-fold global coverage may not be attainable without reconfiguration. 

4.1.1 Performance 

The performance objective functions are developed with the guidance of the GPS 

coverage standard performance specification [96].  The GPS constellation must provide 

greater than 99.9% global average and greater than 96.9% worst-case point coverage by 

at-least four satellites above a 5° elevation angle (above the horizon) with a Position 

Dilution of Precision (PDOP) [95], ρ, less than 6.0.  Global average represents a 

conservative average performance that a user located at any arbitrary location on the 

Earth can expect to experience.  Worst-case point represents a bound on the performance 

that a user located at the worst possible location on the Earth can expect to experience.  

PDOP provides a simple characterization of the user satellite geometry, with more 

favorable geometry producing a lower PDOP.  Adopting the notation from Chapter 2, 

PDOP is calculated, 
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which contains unit vectors formed by the difference between the satellites position 

vector and a particular receiver location where slO
v

 is the range magnitude between 

satellite s and receiver l.  Note Hii are the diagonal elements of the matrix H. 

Figure 4-2 illustrates the PDOP calculation during a 24-hour period for four GPS 

satellites to a receiver located at Vandenberg Telemetry Station (VTS). At t = 0.0 hrs, 

four satellites (arbitrarily identified by 23A, 24A, 26A, 27A) have at least a 5º elevation 

angle into the receiver and a PDOP of about 2.0.  Some time later, at t = 2.78 hrs, satellite 

23A is no longer in view and the PDOP drops to near 3.0.  Generally, a better (lower) 

PDOP will result when more satellites are in view, but it is not always the case.  Since 

PDOP is a measure of the geometric diversity of the satellites in view relative to a 

receiver, situations can exist where the observation vectors are near or are coplanar, 

332211PDOP HHH ++= , 
 

from the geometry matrix, 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

=

sl

lS

l

l

l

l

O
Rr

O
Rr

O
Rr

v

vv
M

v

vv

v

vv

2

2

1

1

G , 

 
with  
 

( ) 1−
= GGH T , 

 

(4.1)



86 

 

resulting in a very poor PDOP relative to fewer satellites with a more diverse geometry.  

Another way to think about PDOP quality is to visualize the volume formed by the 

receiver and satellites in view.  The larger the volume, the smaller the PDOP. 

 

 

 
Figure 4-2: PDOP illustration 
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With GPS, it is sufficient to evaluate coverage by propagating the satellites 

through a 24-hour period because the approximately 12-hour orbits maintain precisely 

repeating ground tracks [97].  Coverage performance for any receiver location will be the 

same whether the satellites are propagated for a day or a year.  The next task is to define 

the receiver grid. 

Satellite orbits that have long repeat cycles will experience latitude banding where 

coverage can be sufficiently evaluated using a small latitude strip of receivers located at a 

single longitude. For GPS, however, the propagation time is relatively short (24-hours) 

and 12-hour repeat ground tracks require the simulation of a global grid.  In an effort to 

reduce function evaluation time it is assumed that, due to the coverage geometry 

exhibited by circular orbits, an equal area grid located in the Northern hemisphere only is 

sufficient to simulate global coverage.  The receivers are placed at 0º latitude spaced 3º 

degrees apart from 0º to 360º East longitude at 0 km altitude.  The remaining receivers 

are placed over the Northern hemisphere such than an equal area grid is formed totaling L 

= 2339 points.  This set of receivers is used instead of an equally spaced grid so that 

coverage calculations would not be biased towards the polar regions.  A grid of this size 

was chosen as a compromise between taking smaller steps in longitude, (potentially 

wasting computational resources) versus taking larger steps, where the possibility that 

considerable coverage gaps might occur between receiver locations is exacerbated. 

To capture the coverage standards in the form of objective functions, one or 

several coverage metrics from those discussed in Chapter 2 must be defined.  Towards 

this end, F-fold Daily Visibility Time, FDVT, is selected, which reports the total time (in 
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minutes) during a 24-hour period that the constellation has at least F satellites in view of 

a given receiver.  The FDVT coverage function for GPS, 

 

 

is calculated by summing the four- (or greater) fold accesses (refer to Appendix F for the 

multi-fold access algorithm) to a particular receiver from the one-day propagation.  The 

nominal constellation produces a FDVT of 24 hours for every point on Earth, but a 

degraded constellation may suffer coverage gaps in various regions.  Therefore, the first 

performance objective function, 

 

 

is to maximize the average FDVT to L receivers, subject to a ρ and minξ  constraint.  This 

objective function serves the goal of attempting to get as close as possible to, or 

completely restoring, the nominal global average coverage requirement. 
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The second performance objective function, 

 

 

evaluates a candidate design’s ability to meet the worst-case point standard by 

maximizing the minimum FDVT found across all receivers.  Both ( )xf v
1  and ( )xf v

2  are, to 

some extent, in conflict [33] with each other and, as such, it is important to include each 

in the objective vector so the degree to which they tradeoff can be ascertained. 

In general, coverage metrics and their associated access constraints are mission 

specific.  For example, while FDVT constrained by PDOP is important to resolving 

measurement estimates with GPS, a satellite constellation whose primary goal is to take 

imagery might use revisit time [13] constrained by minimum image quality to evaluate 

performance.  Recall from Chapter 3 that since MOEAs allow for challenging 

combinations of objective function characteristics, any mission specific performance 

metric and constraints can be incorporated into the general framework (limited only by 

computational demands). 

4.1.2 Cost, Idealized Assumptions 

The idealized cost objective functions make the assumptions that all satellites 

have the same amount of propellant remaining, the same dry mass, and the same engine 

impulse.  By allowing part of the reconfiguration cost to be modeled using energy instead 

( ) =xf v
2 max[min[FDVT] L∀ ], (4.4)
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of propellant mass, the DM is provided with a solution to the question, “Assuming I had 

unlimited propellant, how should I reconfigure my satellite constellation?”  The answer 

to this question is significant because it sets a performance ceiling for all objectives.  In 

an operational scenario, the lowest ΔV expended by any single satellite may not equate to 

the least propellant used.  That case is handled in the next subsection. 

With the idealized assumptions, the cost to achieve the reconfigured constellation 

B is decomposed into energy usage, time, and mission life expectancy reduction.  To 

formulate the energy and reconfiguration time objective functions, the orbital maneuvers 

available (refer to Section 2.3 for a comprehensive discussion) must be considered in the 

context of the mission requirements.  The GPS requirement of approximately 12-hour 

circular orbits resulting in precisely repeating ground tracks rules out changes to altitude 

and eccentricity.  Additionally, changes to inclination or node are very expensive relative 

to the energy cost of circular coplanar rephasing of the mean anomalies.  Since it is 

desirable to arrive at constellation B with minimal energy usage and time, only 

maneuvering that results in mean anomaly rephasing is considered. 

The first cost objective function, 

 

 

is to minimize the Total-Time-Of-Flight (TTOF) required to arrive at the reconfigured 

constellation B.  The time-of-flight for each satellite, s, is a function of a, K, and α.  
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Considering constraints on satellite operators and ground station resources, a 

conservative definition for the total time for the reconfiguration assumes that only one 

satellite is moved at a time.  The corresponding objective function is to minimize the sum 

of each time-of-flight for all satellites transferred, S. 

The next element of cost to be minimized is the largest ΔV required by any single 

satellite during the reconfiguration, 

 

 

where the semimajor axis of the phasing orbit, 

 

 

is needed to determine the ΔV for this objective function.  A detailed derivation of ΔV for 

circular coplanar phasing in identical orbits is provided by Vallado [17]. 

The final cost objective function, 
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is formulated to maximize the remaining life of constellation B by minimizing the sum of 

the variance of the required ΔV among the satellites that undergo maneuvering.  This 

objective function favors designs for constellation B that most evenly distribute the ΔV 

required by each satellite.  In what follows, ( )xf v
4  and ( )xf v

5  are reformulated to account 

for the specific satellite mass/engine properties and propellant remaining at the time of 

loss. 

4.1.3 Cost, Operational Assumptions 

For a constellation as large as GPS, where the satellites are launched over decade 

time scales, design modifications might result in changes to the spacecraft mass and 

engine performance characteristics.  Further, the amount of propellant remaining on each 

satellite will vary considerably with the oldest satellites near their end of life and other 

recently launched spacecraft with full tanks.  These considerations must be incorporated 

into ( )xf v
4  and ( )xf v

5  to avoid the possibility of an infeasible or unrealizable solution. 

Through an application of Newton’s second law, where g0 where the gravitational 

constant at sea level, the energy an engine will produce, 
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is a function of its specific impulse, Isp, and a ratio of the spacecraft mass before, mi, to 

that after a burn, mf [25].  The Isp, or the thrust-per-propellant-weight flow rate, is a 

measure of propellant quality and typically has units of seconds.  Instead of minimizing 

the maximum ΔV expended by any maneuvered satellite, ( )xf v
4  is reformulated using Eq. 

4.9 and noting that mu is simply the difference between initial and final mass, 

 

 

to minimize the maximum propellant used, mu, by any maneuvered satellite. 

Previously, the objective function that sought to maximize lifetime was defined to 

minimize the variance of the energy expended among maneuvered satellites.  This 

function is reformulated, 
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to minimize the variance of the propellant remaining, mr, across all maneuvered satellites.  

This requires knowledge, or at least an estimate of the propellant mass available, ma, 

prior to any burn.  The EA generates candidate orbits for satellites in constellation B 

before the mass required to arrive at the new configuration is determined.  As such, it is 

likely that many potential solutions will be infeasible and, as such, the inequality 

constraint, ( )xT v
1 , 

 

 

is enforced.  Recall from Section 3.1 that ( )xT v
1  must be greater than or equal to zero.  For 

all satellites maneuvered that have expended more propellent than was available, mr will 

be negative.  Equation 4.12 accumulates these infeasible maneuvers such that the more 

negative ( )xT v
1  becomes, the greater the constraint violation. 
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The final task to fully define the operational assumptions is to specify Isp, ma, and 

mi of each satellite in the GPS constellation at the time of loss.  The specific values for all 

of these parameters are not published and, as such, they are estimated with guidance 

taken from Wertz and Larson [102].  A typical Isp for a maneuvering monopropellant 

hydrazine thruster is between 220 and 240 sec.  It is assumed that, midway through the 

construction of the nominal 24-satellite GPS constellation, an improved thruster was 

designed and flown on half of the fleet.  Therefore, it is assumed that half of the satellites 

contain thrusters capable of 220 sec Isp with the other half hosting the more capable 240 

sec thruster.  The mass of propellant available on each satellite is a function of the 

duration on orbit, but may also be affected by an unplanned maneuver early in life due to 

a missed target orbit during launch.  As such, ma is pulled randomly from a uniform 

distribution with amplitude equal to the maximum beginning-of-life propellant mass 

budgeted for maneuvering set arbitrarily to 25 kg.  In the figures that follow in Chapter 5 

it is convenient to define propellant depleted before the maneuver, md, as the difference 

between the beginning-of-life propellant and ma. Finally, mi – which is the sum of the dry 

mass of the satellite, the propellant available for maneuvering, and any other propellant 

remaining onboard for mission events such as de-orbiting – is given one of two values, 

1106 kg or 1136 kg.  The assumed values assigned to these variables for each satellite are 

summarized in Table 4-1.  In the event of an actual loss, this table would be populated 

with precise values or accurate estimates of state of the constellation prior to 

reconfiguration. 
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4.1.4 Risk 

The quantification of risk can be highly subjective and constructed from one or 

many models.  One possible pragmatic definition from the perspective of maneuvering 

can be the integer number of satellites that are actually maneuvered.  Each satellite that is 

transferred requires planning and execution wherein mistakes may be made or 

Table 4-1: Assumed operational thruster and mass characteristics prior to reconfiguration

Satellite, s Isp (sec) ma (kg) mi (kg) 
1 220 17.0 1106 
2 220 18.9 1106 
3 240 18.6 1136 
4 240 9.8 1106 
5 240 16.4 1136 
6 240 4.3 1136 
7 220 17.7 1106 
8 240 0.8 1106 
9 220 6.9 1136 
10 220 1.2 1106 
11 240 2.4 1136 
12 240 20.6 1106 
13 220 17.4 1136 
14 220 7.9 1136 
15 220 23.8 1136 
16 240 0.9 1106 
17 220 11.0 1106 
18 240 9.5 1136 
19 220 19.1 1106 
20 220 19.9 1106 
21 220 4.7 1106 
22 240 12.2 1136 
23 240 11.1 1136 
24 240 16.2 1136  
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malfunctions may occur.  It is desirable, therefore, to limit the number of satellites that 

undergo maneuvering to achieve the reconfigured constellation B.  The following 

objective function 

 

 

encapsulates this definition of risk.  Moving every satellite in constellation A to achieve 

B poses the highest risk, while moving only one satellite to arrive at constellation B poses 

the least risk.  Note this sixth objective function takes discrete values introducing yet 

another challenging objective function characteristic into the existing multi-dimensional 

landscape. 

For reference, each of the numbered objective functions in all figures and tables 

that follow are identified by the abbreviations shown in Table 4-2. 

 

( ) [ ]Sxf min6 =v  (4.13)
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4.2 Reconfiguration Case Studies 

Two scenarios are developed to illustrate the framework.  The multi-objective 

reconfiguration problem is solved for the loss of a single satellite, Case-1, and for the loss 

of an entire plane, Case-2.  While Case-1 may be brought on by on-orbit malfunctions or 

natural causes, the second case might present itself if debris causes the breakup of a 

single satellite resulting in the cascading pollution of a given plane and subsequent 

collisions.  Two optimizations will be performed for each case, where satellite accesses 

are constrained to a PDOP of 6.0 (per the specification) and 2.0 resulting in a total of four 

Pareto-hypervolumes.  While a PDOP of 6.0 is the standard published in the GPS 

specification [96], there are both civil [103] and military [104] applications that benefit 

from a better PDOP, so it is reasonable to contrast changes in the hypervolumes when the 

Table 4-2: Summary of objective function descriptions and abbreviations 

Function 
Number 

Optimization 
Direction Name Abbreviation Units 

( )xf v
1  Maximize 

Four-fold Average  
Daily Visibility Time A-DVT min 

( )xf v
2  Maximize 

Four-fold Worst-Case-
Point Daily Visibility 

Time 
WCP-DVT min 

( )xf v
3  Minimize Total-Time-Of-Flight TTOF days 

( )xf v
4  Minimize 

Maximum ΔV or mu 
required by any 

maneuvered satellite 

Worst ΔV or 
Worst mu 

m/s 
kg 

( )xf v
5  Minimize 

Sum of the ΔV or mr 
variance of those satellites 

maneuvered 

ΔV Var or 
 mr Var 

m/s 
kg 

( )xf v
6  Minimize Satellites maneuvered Man -  

 



99 

 

access constraint is tightened.  All four of these scenarios are studied for the situation 

when K is common to all satellites or independent.  In practice, each satellite will have an 

independent K, but this situation doubles the number of decision variables when 

compared to a common K.  By considering both decision vectors, observations can be 

made regarding the impact of decision vector length on search progress.  All eight of 

these scenarios are considered using both the ideal (unlimited energy, identified in the 

case name by ‘ideal’) and operational (identified in the case name by ‘op’) assumptions 

detailed in Sections 4.1.2 and 4.1.3 respectively.  The test matrix shown in Table 4-3 

depicts the sixteen cases and their associated decision variables for each reconfiguration 

scenario.  For a real scenario, the satellite or plane that is lost is not known beforehand, so 

the selection of these satellites in Table 4-3 is arbitrary. 
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The decision vectors are made up of the mean anomaly, M, for each satellite and 

either a common number of integer phasing orbits (Case-1a, -1b, -2a, -2b) or independent 

phasing orbits (Case-1c, -1d, -2c, -2d).  The decision variable ranges are, 

 

Table 4-3: Decision vectors for each reconfiguration scenario 

Case- ρ Decision Vector 
Decision 
Variables 

(D) 

Index of 
Satellites 
Lost (s) 

1a-ideal 6 [ ]TKM...MMx 2321=v  24 24 

1b-ideal 2 [ ]TKM...MMx 2321=v  24 24 

1c-ideal 6 [ ]TK...KKM...MMx 23212321=v  46 24 

1d-ideal 2 [ ]TK...KKM...MMx 23212321=v  46 24 

2a-ideal 6 [ ]TKM...MMx 2021=v  21 21,22,23,24

2b-ideal 2 [ ]TKM...MMx 2021=v  21 21,22,23,24

2c-ideal 6 [ ]TK...KKM...MMx 20212021=v  40 21,22,23,24

2d-ideal 2 [ ]TK...KKM...MMx 20212021=v 40 21,22,23,24

1a-op 6 [ ]TKM...MMx 2321=v  24 24 

1b-op 2 [ ]TKM...MMx 2321=v  24 24 

1c-op 6 [ ]TK...KKM...MMx 23212321=v  46 24 

1d-op 2 [ ]TK...KKM...MMx 23212321=v  46 24 

2a-op 6 [ ]TKM...MMx 2021=v  21 21,22,23,24

2b-op 2 [ ]TKM...MMx 2021=v  21 21,22,23,24

2c-op 6 [ ]TK...KKM...MMx 20212021=v  40 21,22,23,24

2d-op 2 [ ]TK...KKM...MMx 20212021=v 40 21,22,23,24 
 

oo 3600 <≤ M  

and 

502 <≤ K , 

(4.14)
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where the choice of limits for K were determined by noting that below 2 revolutions, the 

ΔV required for rephasing any single satellite becomes prohibitively large while a K 

above 50 results in an excessive transfer time.  For each satellite that undergoes a 

maneuver, αs is calculated, 

 

 

by taking the difference between M in constellation A, MsA, and the target M in 

constellation B,  MsB. 

Due to the GPS constellation’s robustness, the constellations with 23 satellites 

exhibited in Case-1a and Case-1c are able to achieve four-fold 24-hour per day coverage 

at every receiver location at a PDOP of 6 or less without undergoing any reconfiguration.  

These cases were designed to test the pMOEA’s ability to find a known result: the expert 

decision is the single Pareto-optimal design representing no action on the part of the DM.  

For these cases, what the LC-ε-NSGA-2 has to discover is the original 23-satellite 

configuration at the time of loss of the single satellite.  Finding this solution, however, is 

not trivial because the entire design space must be considered just as it would be with any 

of the other cases.  For the remaining cases, either the PDOP constraint or the loss of 

more than one satellite requires reconfiguration and the tradeoff between the six 

objectives is sought. 

sAsBs MM −=α , (4.15)
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4.3 LC-ε-NSGA-2 Parameter Settings 

Just as with its predecessor [76], both a crossover and mutation probability that 

provide a balance between search and selection pressure must be specified within the LC-

ε-NSGA-2.  As recommended by Deb [49] and Kollat and Reed [80], these parameters 

are detailed in Table 4-4 along with the initial population size. 

 

 

Recall epsilon settings are required that define a grid over the k-dimensional objective 

space and serve the purpose of thinning the non-dominated set, potentially decreasing 

time to convergence. 

The process of defining an epsilon vector can proceed in the following manner. 

For example, consider the TTOF objective function, ( )xf v
3 .  If a DM would like to retain 

designs that are at least different by one hour, then an epsilon setting of one hour should 

be used.  Keep in mind, however, depending on where the non-dominated designs fall in 

the hyper-grid, it is possible (and likely) that solutions will be almost adjacent to each 

other (meaning there will be much less than an hour difference between them in the case 

of this example).  If one minute were used, many more candidate solutions would be 

Table 4-4: Parameter summary 

Parameter Setting 
Initial population size 12 

Simulated binary crossover 
probability 0.9 

Polynomial mutation probability 1/D 
Epsilon vector [1 min, 1 min, 1 hr, 5 m/s (kg), 1 m/s (kg), 1]  

 



103 

 

generated slowing the search algorithm and burdening the DM with an exorbitant number 

of choices.  If instead one week is used, the final set of candidate solutions may be too 

sparse, resulting in too few choices for the DM.  The epsilon vector shown in Table 4-4 is 

used for the majority of this research; however, an experiment is presented in Chapter 5 

that studies the impact of epsilon value selection on the resulting hypervolumes. 

4.4 Cluster Configuration 

All simulations are executed on The Aerospace Corporation’s Fellowship [105] 

high performance computing cluster.  Currently, Fellowship contains processors and 

servers totaling 1384 cores connected by Gigabit Ethernet to a dedicated Cisco Catalyst 

6509 switch.  The front-end servers provide job scheduling, shell access, directory 

service for user accounts, shared temporary file storage, network boot services, and 

backups.  The cores run the Free Berkeley Software Distribution 6.26 operating system on 

a private non-routed network.  Each simulation uses 250 cores from the current 

configuration shown in Table 4-5 via the Sun Grid Engine (SGE) batch queuing system.7 

 

                                                 

6 http://www.freebsd.org, cited on July 24, 2008 
7 http://gridengine.sunsource.net/documentation.html, cited on July 24, 2008 
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The SGE uses a first-in-first-out scheduling policy to manage the shared 

Fellowship resource.  When a job is submitted to the queue, if the quantity of cores 

required is available, execution begins immediately, if not, execution is delayed until the 

core quantity requirement can be met.  When there are more cores available than 

required, SGE uses system load information on the machines to select the least loaded 

cores for processing. 

In order to gain insight into the scheduler’s core allocation strategy, a test was 

conducted wherein 4-, 8-, 16-, 32-, and 64-core requests were made.  Each request was 

made 40 times to obtain a statistically meaningful sample of the overall frequencies with 

which SGE selects processor groups for executing job submissions.  The distributions 

shown in Fig. 4-3b-f nearly match the Fellowship cluster core distribution illustrated in 

Fig. 4-3a. 

Table 4-5: Fellowship nodes 

Node Count Type Speed (GHz) RAM (GB) Core Count 
64 Intel Xeon 2.0 1.0 512 
32 Opteron 244 1.8 2.0 64 
32 Opteron 244 1.8 2.0 64 
24 Opteron 246 2.0 2.0 48 
12 Opteron 246 2.0 2.0 24 
32 Opteron 246 2.0 2.0 64 
8 Opteron 252 2.6 2.0 16 

116 Opteron 270 2.0 2.0 464 
32 Opteron 275 2.2 2.0 128  
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This result indicates that most simulations will use a similar heterogeneous combination 

of cores for processing for each 250 core request. 

 

 
Figure 4-3: Fellowship core distribution test summary 



 

 

Chapter 5 
 

Pareto Hypervolumes and Decision Support 

This Chapter presents the results from the individual case studies described in 

Chapter 4.  Results include a discussion of the search dynamics and presentation of the 

Pareto-hypervolumes.  The decision making process in a six-dimensional tradeoff 

landscape is presented and individual designs are selected for detailed examination and 

discussion. 

5.1 Coverage Performance Baseline 

The baseline coverage performance ( ( )xf v
1  and ( )xf v

2  from Eqs. 4.3 and 4.4 

respectively) of each degraded constellation before reconfiguration is shown in Table 5-1. 

 

 

Cases-1a/c reveals that, even with the loss of the selected satellite, the GPS constellation 

is still able to provide four-fold coverage to every receiver with a PDOP better than 6.0 

Table 5-1: Coverage performance prior to any reconfiguration, all cases 

Cases- ρ ( )xf v
1  (min) ( )xf v

2  (min) 
Index(s) of 
Satellite, s, 

Lost 
1a/c 6 1440.00 1440.00 24 
1b/d 2 1439.99 1432.84 24 
2a/c 6 1439.87 1402.53 21, 22, 23, 24 
2b/d 2 1430.24 1345.47 21, 22, 23, 24  
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(above 5° minimum elevation).  Since the hypervolumes sought maximize ( )xf v
1  and 

( )xf v
2  and minimize ( )xf v

3  through ( )xf v
6 , there can only be one Pareto-optimal solution 

for Cases-1a/c.  The solution is the original 23-satellite constellation where no satellites 

are maneuvered resulting in the maximum possible values for ( )xf v
1  and ( )xf v

2  (1440.00 

minutes) and minimum possible values for ( )xf v
3  through ( )xf v

6  (0.0).  The result for 

Cases-1a/c presents an opportunity to test the pMOEA’s ability to find a known result 

shown in Table 5-2. 

 

 

For the remaining cases, no single solution defines each hypervolume because 

four-fold coverage to every receiver is not attainable without maneuvering.  The coverage 

objective functions each provide a single value that quantifies the average or worst case 

performance over the receiver grid.  It is instructive to understand how those single 

values map to their associated global coverage contours for each of the remaining three 

cases before any maneuvering takes place.  The contours, shown in Fig. 5-1 to 5-3 for 

Cases-1b/d, Cases-2a/c, and Cases-2b/d, respectively, provide a baseline to compare the 

coverage performance of any reconfigured designs.  Inside each color swatch, appearing 

Table 5-2: Pareto-hypervolume objective vector for Cases-1a/c 

( )xf v
1  (min) ( )xf v

2  (min) ( )xf v
3  (days) ( )xf v

4  (m/s) ( )xf v
5  (m/s) ( )xf v

6  
1440.00 1440.00 0.00 0.00 0.00 0 

       maximum values                                              minimum values 
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in the legend below the Robinson Earth projection, is the percentage of the total contour 

region with a FDVT between the printed values. 

These contour plots show that the PDOP constrained accesses are not symmetrical 

between Northern and Southern hemispheres.  This access behavior is due to the 

combination of the PDOP constraint and the loss of satellites from the nominal 

constellation.  To better understand why, consider Fig. 5-4 where the global contour plot 

of the full 24-satellite GPS constellation with PDOP<1 and ξ>5º at epoch is presented.  

The contours for the nominal constellation present a mirror image between Northern and 

Southern hemispheres, so for this case, a hemispherical receiver grid provides the same 

global coverage information as a global grid.  Now consider Fig. 5-5, where a full plane 

of the nominal constellation is removed.  The resulting contours are no longer a mirror 

image of each other indicating that the Northern hemisphere cannot be used to simulate 

global coverage for the case studies considered in this research (a prior assumption from 

the experimental design Section 4.1.1).  As a result, it is important to note that the non-

dominated reconfigurations that follow are optimized to a receiver grid in the Northern 

hemisphere only. 
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Figure 5-1: Cases-1b/d (one satellite lost, PDOP<2) DVT global contours before any 

reconfiguration 

 

 
Figure 5-2: Cases-2a/c (one plane lost, PDOP<6) DVT global contours before any 

reconfiguration 
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Figure 5-3: Cases-2b/d (one plane lost, PDOP<2) DVT global contours before any 

reconfiguration 

 

 
Figure 5-4: Global four-fold contour of original 24-satellite GPS constellation with 

PDOP<1 and ξ>5º at epoch 
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5.2 Search Dynamics 

The Pareto-hypervolumes for the k-dimensional (where k = 6) objective space 

contain the non-dominated solutions present in the archive at optimization run 

termination.  The Fellowship cluster enforces maximum run durations of 95 hours for any 

set of processing resources allocated for a particular job (this limit is imposed because 

Fellowship is a shared parallel computing resource).  In many cases, for a variety of 

reasons (node failures, etc.), the job is terminated before the 95-hour period has elapsed.  

The check-pointing mechanism allows the job to pick up where it left off.  The decision 

to terminate each run is a pragmatic one.  Periodically, at each check-point or at the time 

of a node failure, if a sufficient solution quality has been reached and the computational 

 

 
Figure 5-5: Global four-fold contour of the GPS constellation missing one plane with 

PDOP<1 and ξ>5º at epoch 
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demands associated with further search are not warranted, then the optimization is halted.  

This philosophy driving the termination criteria is known as satisficing [107] (typically 

better than has been previously demonstrated), and is necessary given the computational 

demands of this research. 

One way to gain insight into the impact that the assumptions and constraints of 

each reconfiguration case have on the characteristics of the fitness landscape is to observe 

the archive size dynamics leading up to run termination.  These are shown for Cases-

1a/c-ideal and Cases-1a/c-op (one satellite lost with PDOP<6) in Fig. 5-6 where each data 

point is printed at ten generation intervals. 

 

 

 

 
Figure 5-6: Archive dynamics, one satellite lost, PDOP<6, all cases 
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In every case, the LC-ε-NSGA-2 was able to successfully converge to the single known 

Pareto-optimal solution.  The operational cases initially have no archive members 

because only feasible solutions (e.g., those who do not violate the propellant constraints) 

are allowed to enter the archive.  The traces for Case-1a-op and Case-1c-op also grow 

and shrink more frequently than those with ideal assumptions indicating that considerable 

multimodality was introduced into the fitness landscape through the inclusion of 

operational constraints.  For the idealized cases of Fig. 5-6 (and Figs. 5-8, 5-9, 5-10), 

shortly after 0.1 hours, the first interconnected run finishes and population reinvigoration 

occurs (i.e., time continuation as described in Section 3.1.3).  The clear gap between the 

blue and green markers after 0.1 hours is due to the extended function evaluation time 

required to evaluate each generation of the much larger archive at the start of the next 

interconnected run. 

The time to convergence for Case-1a-ideal/op, where K is common among all 

satellites, and Case-1c-ideal/op, where K is independent for each is shown in Fig. 5-7 

(recall D is the number of decision variables). 
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The introduction of operational constraints cut the convergence time to one third of those 

cases that had access to unlimited energy.  A glance at Fig. 5-6 reveals why.  By 

imposing propellant limits, the number of potential solutions that can make up the archive 

as search progresses are considerably less than those with idealized assumptions. 

When the number of decision variables increases from 24 to 46, convergence 

occurs more rapidly in both the ideal and operational cases.  Allowing K to be 

independent created many more potential paths in the search space, so the result might 

seem counterintuitive since the chromosome increased in complexity, but required less 

search time.  This observation, however, is better understood by considering the impact 

 

 
Figure 5-7: Convergence time for Cases-1a/c-ideal and  Cases-1a/c-op 
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that a common vs. independent K has on the fitness landscape.  Requiring K to be 

common among satellites maneuvered created feasibility islands wherein a large portion 

of the search space could not be accessed.  Releasing K, such that it is independent for 

each satellite maneuvered bridged the feasibility gaps allowing for more rapid 

convergence, despite the increase in chromosome size. 

The search dynamics for all remaining cases, where the Pareto-hypervolumes are 

not known a priori, are illustrated in Figs. 5-8 through 5-10.  Since the final 

hypervolumes are not known for any of the remaining cases, any sweeping claims 

regarding convergence will be avoided; however, all solutions at run termination were 

checked to ensure that a satisfactory quality was attained.  The results presented in this 

section will motivate the suggestion of a new termination criterion in Section 5.4 that will 

add rigor to the satisficing philosophy. 

By counting the number of times that the trace for the archive size changes 

direction, it is possible to gain insight into the modality of the search space created by the 

assumptions.  As with the previous cases, every case of Figs. 5-8 through 5-10 shows that 

the introduction of operational considerations (red and orange data markers) creates 

multi-modality in the search space that was not present in the cases with access to 

unlimited energy (blue and green data markers).  In both Figs. 5-6 and 5-8, one satellite 

was lost, but in Fig. 5-8 the PDOP constraint was tightened.  Recall the effect of reducing 

the PDOP to 2 is to create more access gaps in the coverage, presumably making the 

problem harder to solve.  The search traces of Fig. 5-8 extend well beyond those of Fig. 

5-6 supporting this claim.  As before, Fig. 5-8 also shows that the introduction of 
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operation assumptions allow for earlier run termination than the cases whose satellites 

have access to unlimited energy. 

 

 

In Figs. 5-9 and 5-10, the search traces for the loss of an entire plane (Case-2) are 

shown.  The size of the archives and time at run termination in Fig. 5-10 are an order of 

magnitude greater than those of Fig. 5-9 that are also an order of magnitude greater than 

Fig. 5-8.  This observation indicates that the loss of an entire plane and the tightening of 

the PDOP constraint make the problem exponentially more difficult to solve.  The reason 

for this is likely due to the impact that reducing the size of the constellation and 

tightening of the PDOP constraint has on the access patterns.  A brief glance at the 

contour plots of Figs. 5-1 through 5-3 shows that the coverage becomes progressively 

 

 
Figure 5-8: Archive dynamics, one satellite lost, PDOP<2, all cases 
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worse, in an unsymmetrical manner, both as more satellites are subtracted from the 

constellation and as greater demands are placed on PDOP performance.  As the access 

gaps increase, so do the number of potential reconfiguration alternatives.  Also note that, 

while the number of decision variables decreases when an entire plane is subtracted from 

the constellation, the problem became more difficult to solve.  Further, data markers 

representing the operational cases (red and orange) of Figs. 5-9 and 5-10 begin to 

intermingle with the idealized cases (green and blue data markers) indicating that it is no 

longer possible to claim that operational assumptions make the problem easier to solve.  

In fact, the opposite is true because the operational cases of Fig. 5-10 appear to be 

making progress even after 500 hours of search. 

 

 

 

 
Figure 5-9: Archive dynamics, one plane lost, PDOP<6, all cases 
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Any problem that requires search for nearly a month (even with 250 cores) will 

not necessarily enable a rapid turnaround on the reconfiguration decision.  Even though 

search progress was made, Case-2b-op and Case-2d-op fit into this category and 

represent exceptions to the run termination criterion outlined earlier.  Search on these 

cases was halted near 500 hours because they had used an exorbitant amount of 

processing resources in the shared parallel computing environment.  It was previously 

mentioned that increasing the size of epsilon values has the potential to increase 

convergence speed.  Later in this chapter, Case-2d-op will be revisited with an epsilon 

vector that is coarser than the original used throughout the majority of this research.  At 

that point, it will be possible to compare the hypervolumes to determine what, if 

anything, was lost or gained in solution quality for the potential reduction in search time. 

 

 
Figure 5-10: Archive dynamics, one plane lost, PDOP<2, all cases 
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5.3 Case Studies 

Of the remaining reconfiguration case studies outlined in Section 4.2, half of them 

(Case-1b, Cases-2a/b) required K to be common among all satellites maneuvered.  In the 

previous section, these cases along with the others (Case-1d, Cases-2c/d) presented an 

opportunity to make observations regarding the impact of chromosome size on search 

progress.  Since, in reality, there would generally be no reason to limit K to be common 

among all satellites maneuvered, any subsequent presentation of the resulting 

hypervolumes and their designs for Case-1b and Cases-2a/b are deferred to Appendix G.  

Those results are included for completeness, but the decision-making process for the 

figures presented in Appendix G is identical to what follows for Case-1d and Cases-2c/d 

(reference Table 5-3 for a review of these cases).  The following sections will consider a 

total of six scenarios and are organized into four sections (5.3.1 to 5.3.4) according to the 

number of satellites lost and the idealized or operational assumptions applied. 

 

Table 5-3: Review of decision vectors for independent Ks cases 

Case- ρ Decision Vector 
Decision 

Variables, 
D 

Index(s) of 
Satellite, s, 

Lost 
1d-ideal 2 [ ]TK...KKM...MMx 23212321=v  46 24 

2c-ideal 6 [ ]TK...KKM...MMx 20212021=v  40 21,22,23,24

2d-ideal 2 [ ]TK...KKM...MMx 20212021=v 40 21,22,23,24

1d-op 2 [ ]TK...KKM...MMx 23212321=v  46 24 

2c-op 6 [ ]TK...KKM...MMx 20212021=v  40 21,22,23,24

2d-op 2 [ ]TK...KKM...MMx 20212021=v 40 21,22,23,24 
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5.3.1 One Satellite Lost, Idealized Assumptions 

To briefly review, with Case-1c-ideal, the single Pareto-optimal solution was 

found after 1,095,071 function evaluations and 28.6 hours of search on 250 processing 

cores.  Case-1d-ideal, where the PDOP constraint was tightened to 2, achieved the seven 

solutions, whose objective vectors are shown in Table 5-4, after completing 3,357,055 

function evaluations during the first 95-hour checkpoint period. 

 

 

While presenting the objective vectors in table format is appropriate for small data 

sets, it is cumbersome for many more than 20 designs.  One way to visualize hundreds or 

even thousands of designs simultaneously is to use a glyph plot where data markers are 

assigned different attributes for each dimension of the problem.  All hypervolume glyph 

plots in the pages that follow associate each objective function with the attributes shown 

in Table 5-5. 

 

Table 5-4: Hypervolume objective vectors, Case-1d-ideal (one satellite lost, PDOP<2) 

Design ( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(m/s) 

( )xf v
5  

(m/s) 
( )xf v

6  

1 1439.99 1437.00 1.00 6.58 0.00 1 
2 1439.99 1435.00 1.00 3.42 0.00 1 
3 1439.98 1432.84 0.00 0.00 0.00 0 
4 1439.99 1437.00 1.50 4.39 0.00 1 
5 1440.00 1440.00 2.00 4.46 0.00 1 
6 1440.00 1440.00 1.00 8.91 0.00 1 
7 1440.00 1440.00 0.99 10.52 0.00 1  
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Three of the objectives ( ( )xf v
2 , ( )xf v

4 , and ( )xf v
6 ) are plotted in ℜ3, while the remaining 

three are illustrated with the size ( ( )xf v
1 ), direction ( ( )xf v

5 ), and color ( ( )xf v
3 ) of the 

conical marker. A small blue cone pointing downward indicates a design that is closer to 

the lower end of the plotting range. Since the goals are to minimize TTOF and the sum of 

the ΔV variance (or mr variance) and maximize the A-DVT, the decision maker seeks 

designs that are represented by downward pointing, large markers colored towards the 

blue end of the color scale. For the remaining three objectives, the locations of the 

desirable designs are a function of the orientation of the ℜ3 volume.  For the 

hypervolume of Case-1d-ideal shown in Fig. 5-11, the designs in the lower left corner 

towards the back of the ℜ3 volume are best, but the reader should not assume that the 

orientation will remain consistent from figure to figure.  In some cases, rotation of the 

volume is necessary for analysis and, as such, the reader should take a moment with each 

glyph plot to orient themselves to both the scale for each objective function and 

positioning of the ℜ3 volume. 

Table 5-5: Plotting attributes for all glyph hypervolumes 

Objective Abbreviation Plotting Attribute 
( )xf v

1  A-DVT marker size 
( )xf v

2  WCP-DVT z-axis 
( )xf v

3  TTOF color 
( )xf v

4  Worst ΔV or Worst mu y-axis 
( )xf v

5  ΔV Var or mr Var cone direction 
( )xf v

6  Man x-axis  
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As with Case-1c-ideal, the solution where no satellites are maneuvered appears in 

the hypervolume for Case-1d-ideal as Design 3 from Table 5-4. In contrast to this design 

for 1c, Design 3 does not achieve perfect coverage because of the tightened PDOP 

constraint. Of the remaining designs in Table 5-4, all maneuver only one satellite and 

three designs (5, 6, and 7) attain continuous coverage to all receivers.  If it is critical that 

the constellation restore continuous four-fold coverage, the obvious selection is Design 5 

because it costs the least amount of energy and takes only one extra day to accomplish 

the reconfiguration relative to the higher energy solutions.  Since the remaining solutions 

 

 
Figure 5-11: Glyph hypervolume at run termination, Case-1d-ideal (one satellite lost, 

PDOP<2) 
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do not offer any dramatic improvement in coverage performance, and if four-fold 

coverage is not essential, the hypervolume could be used to justify the decision to simply 

accept the loss and operate with the current configuration. 

While the hypervolumes provide a six-dimensional overview of the objectives in 

Λ, the individual decision variables must be examined to determine which satellites are 

rephased and by how much.  In Fig. 5-12, each design is given a vertical slice of the plot 

and, if maneuvered, the change in phase (the integer number of phasing orbits, Ks, plus its 

phase angle, αs/360°) appears as a colored block.  For small archives, like that of Fig.     

5-12, the design number is shown inside of the color block for reference purposes only.  

The hypervolume designs are sorted by number of satellites maneuvered in ascending 

order along the horizontal axis delineated by black vertical lines.  The white lines that 

horizontally cross the plots are intended to provide delineation between the individual 

planes of the constellation. During any preceding discussion of these decision variable 

figures, satellites 1 to 4 are referred to as occupying plane 1, satellites 5 to 8 as occupying 

plane 2, and so on. 

A counterintuitive observation from Fig. 5-12 is that not a single satellite is 

reconfigured from plane 6 where the satellite was lost.  Instead, the majority of designs 

rephase satellites 9 and 10 in the plane opposite to plane 6.  This indicates that, even with 

idealized conditions, the more intuitive approach of redistributing the satellites 

symmetrically within the plane where the loss occurred does not produce a non-

dominated choice.  The lesson here is to avoid the tendency towards symmetry in 

problems involving constellation design, especially when the problem’s assumptions 

deviate from Walker’s [11] purely geometric, idealized case. 
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5.3.2 One Satellite Lost, Operational Assumptions 

The operational assumptions, originally detailed in Table 4-1, incorporate engine 

and satellite mass characteristics and introduce propellant constraints.  Figure 5-13 shows 

the initial state of each satellite’s propellant tank at the time that the constellation 

 

 
Figure 5-12: Hypervolume decision variable plot, Case-1d-ideal (one satellite lost, from 

plane 6, PDOP<2) independent phasing orbits, Ks, plus change in phase, αs, for each 
epsilon-non-dominated design, sorted by ( )xf v

6  ascending 
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experiences the loss.  The propellant-gage-like representations show the propellant 

already depleted before any maneuver is performed (blue portion, md) and the propellant 

available for maneuvering (red portion, mr).  Recall from Chapter 4 that mr is drawn 

randomly from a uniform distribution with amplitude equal to 25 kg so the percentages 

displayed are the fraction of that total.  Figures of this type are used to illustrate the actual 

propellant expenditure for each satellite for any given non-dominated design. 
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The single Pareto-optimal solution for Case-1c-op was found in 9.8 hours on 250 

processing cores after 344,311 function evaluations.  Case-1d-op, with the tightened 

PDOP constraint, achieves five solutions that have the objective vectors shown in Table 

5-6 after a full checkpoint period of 95.0 hours has elapsed during which 3,274,759 

function evaluations were completed.  Even though both the ideal and operational Case-

 

 
Figure 5-13: Initial propellant state of the constellation 

blue: % mass depleted, red: % mass remaining 
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1d completed approximately the same number of function evaluations in the same wall 

clock period, Case-1d-ideal only completed several hundred (284) interconnected runs, 

much fewer than the thousands (5424) of the operational case.  This suggests that the 

hypervolume shown in Fig.  5-14 was found much earlier in the 95.0-hour search period 

indicating that the introduction of operational assumptions made Case-1d easier to solve. 

 

 

Table 5-6: Hypervolume objective vectors, Case-1d-op (one satellite lost, PDOP<2) 

Design ( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(kg) 

( )xf v
5  

(kg) 
( )xf v

6  

1 1440.00 1440.00 0.99 5.06 0.00 1 
2 1440.00 1440.00 1.49 3.37 0.00 1 
3 1439.9877 1432.84 0.00 0.00 0.00 0 
4 1439.9958 1437.00 0.99 3.38 0.00 1 
5 1439.9988 1438.46 1.00 4.04 0.00 1  
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Note that Design 3 (the solution where no satellites are maneuvered) still meets 

both the A-DVT and WCP-DVT coverage requirements per the specification; however, 

there are several designs that provide continuous coverage to the receiver grid, and one 

obvious choice (Design 2) from a minimum propellant perspective.  However, since each 

satellite has a different amount of propellant, it is not enough to use only Table 5-6 or 

Fig.  5-14 to make a decision.  Instead, the propellant-state information is introduced in 

Table 5-7 to further aid the analysis.  The green colored sections indicate the percentage 

of propellant used as a result of the maneuver, mu (note that because of rounding in the 

graphic, it is possible that the percentages do not appear to add up to 100%). 

 

 
Figure 5-14: Glyph hypervolume at run termination, Case-1d-op (one satellite lost, 

PDOP<2) 
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Both Designs 1 and 2, due to their continuous coverage, compete for the most 

preferred choice.  Table 5-7 shows that Design 2 leaves 52% of the propellant remaining 

post-maneuver in contrast to the more rapid reconfiguration described by Design 1 

leaving 45% with both options rephasing the same satellite.  If continuous coverage is not 

critical, then Designs 4 and 5 can be considered, but it is likely that Design 5 would be 

removed from consideration since the reconfiguration only leaves 12% of the propellant 

remaining on satellite 9 for future maneuvering. 

 

 

Table 5-7: Propellant-gage plot (reduced to show only those maneuvered) hypervolume 
Designs 1, 2, 4, and 5, Case-1d-op (one satellite lost, PDOP<2) 

 
Design Propellant Gage 

1 

2 

4 

5 
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By comparing the decision-variable plot of Fig. 5-15 to that of Fig. 5-12, it is 

possible to determine the impact that the introduction of operational assumptions has on 

the satellites that are selected for maneuvering.  In Fig. 5-15, a different pattern emerges 

than was previously observed.  Here, there is no particular trend between both the most 

common satellite maneuvered and the planes in which they are rephased.  Further, the 

satellites that have the most available propellant (e.g., satellite 15) or the highest specific 

impulse and/or propellant combination (e.g., satellite 12) are not maneuvered.  This 

observation leads to another important point.  When deciding which satellites to 

maneuver, propellant remaining, engine impulse, and satellite mass should not be 

considered in isolation (e.g., maneuvering satellite 15 would produce a result that is 

dominated and hence inferior to any of the choices shown in Table 5-7). 
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5.3.3 One Plane Lost, Idealized Assumptions 

5.3.3.1 Access Constrained to PDOP ≤ 6  

When an entire plane is lost, recall that, with a PDOP constraint of 6, the coverage 

performance improvements offered by the hypervolume designs must offer 

improvements on the ‘do-nothing’ solution, which has an A-DVT and WCT-DVT of 

 

 
Figure 5-15: Hypervolume decision variable plot, Case-1d-op (one satellite lost,      

PDOP<2) independent phasing orbits, Ks, plus change in phase, αs, for each epsilon-non-
dominated design, sorted by ( )xf v

6  ascending 
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1439.87 and 1402.53 minutes, respectively.  After 3,039,223 function evaluations (101 

interconnected runs) and 95.0 hours of search on 250 processing cores, Case-2c-ideal 

found the 165 non-dominated solutions shown in Fig. 5-16.  One of the most noticeable 

differences between this hypervolume and those of the previous cases is that non-

dominated solutions exist for maneuvering zero satellites up to four satellites.  

Additionally, the number of solutions available to a DM is greatest when maneuvering 

one satellite, and choices decrease as the number of satellites maneuvered increases. 

 

 

 

 
Figure 5-16: Glyph hypervolume at run termination, Case-2c-ideal (one plane lost, 

PDOP<6) 
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The decision-variable plot for the hypervolume shown in Fig. 5-16 is given in Fig. 

5-17 with the designs sorted in ascending order according to the number of satellites that 

undergo maneuvering.  No clear pattern emerges, however, when one satellite is 

maneuvered, most often only satellites 4, 6, and 16 are rephased.  As more than one 

satellite is reconfigured, satellites 4, 9, 12, and 18 join those rephased.  It can also be 

observed that there are many satellites that never undergo reconfiguration for any non-

dominated design. 

 

 

 
Figure 5-17: Hypervolume decision variable plot, Case-2c-ideal (one plane lost, plane 6, 
PDOP<6) independent phasing orbits, Ks, plus change in phase, αs, for each epsilon non-

dominated design, sorted by ( )xf v
6  ascending 
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A hypervolume with 165 solutions can be challenging to a DM.  In the previous 

cases, the relatively small non-dominated sets could be easily explored and decisions 

made.  This is not the case with the current hypervolume and those that follow.  

Ultimately, a single decision must be made and the large number of designs synthesized 

in a reasonably short period of time adding to the difficulty of the process.  Towards this 

end, a design-by-shopping paradigm is used to overcome decision challenges. 

Balling [108] classifies the design-by-shopping paradigm as an a posteriori 

articulation of preferences used to solve multi-objective optimization problems.  In this 

research, we will modify the definition slightly to read: an a posteriori articulation of 

preferences on a set of non-dominated designs used to identify a set of most preferred 

solutions for the purposes of decision making.  Stump et al. [109] describe an approach 

for calculating the most preferred design among a multi-dimensional set of data given a 

DM’s preference structure.  The approach constructs a weighting vector, W
v

, that has 

elements associated with each individual objective function.  The dot product of W
v

 and 

the norm of each objective in f
v

, (using the maximum and minimum values of each 

objective to calculate the norm), 

 

 

is constructed in the hyperspace defining a preference direction.  The first non-dominated 

design that intersects the hyper-plane normal to the preference direction is the most 

621 fffWV
v

L
vvvv

⋅= , (5.1)
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preferred.  For example, consider the two-dimensional minimization problem shown in 

Fig. 5-18, where the objectives f1 and f2 are minimized.  Assuming both objectives are 

equally important produces a preference direction at a 45° angle to the horizontal axis 

passing through the origin.  The most preferred design is then identified by constructing a 

vector perpendicular to the preference direction at the utopia point ({0,0} in this case).  

That vector is then moved backwards, against the preference direction, until it encounters 

the first non-dominated design.  This solution, identified by the green marker in Fig.      

5-18, is the most preferred design for the associated preference structure. 

 

 

For this research, the set of six W
v

 vectors shown in Table 5-8 are constructed to 

capture several DM preference structures.  The sign for each weighting corresponds to 

 

 
Figure 5-18: Example of the most preferred design selection for a two-dimensional 

minimization problem, both objectives weighted equally 
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the optimization direction of the individual objective (positive for maximization and 

negative for minimization). 

 

 

The first gives the best compromise design in the hypervolume by assigning equal 

weights to all objectives.  The second vector assumes that the DM is only concerned with 

coverage performance at any cost and risk.  The next vector assumes that coverage 

objectives and risk are all equally important.  The fourth emphasizes time-of-flight 

equally with coverage and risk without regard for the propellant cost required to 

maneuver.  The fifth, instead of minimizing time-of-flight for reconfiguration, weights 

propellant usage equally with coverage and risk.  This vector produces the most preferred 

design without regard to the time-of-flight objective.  The sixth and final preference 

structure weights coverage, time-of-flight, and propellant usage equally but does not 

Table 5-8: Preference articulations 

Number W
v

 Description 

1 ⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1

6
1  best compromise 

2 ⎥⎦
⎤

⎢⎣
⎡ 0000

2
1

2
1  best coverage 

3 ⎥⎦
⎤

⎢⎣
⎡ −

3
1000

3
1

3
1  best coverage, least risk 

4 ⎥⎦
⎤

⎢⎣
⎡ −−

4
100

4
1

4
1

4
1  best coverage, least risk and time-of-flight 

5 ⎥⎦
⎤

⎢⎣
⎡ −−−

5
1

5
1

5
10

5
1

5
1  best coverage, least risk and energy/propellant 

usage 

6 ⎥⎦
⎤

⎢⎣
⎡ −−− 0

5
1

5
1

5
1

5
1

5
1  best coverage, least time-of-flight and 

energy/propellant usage  
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place a desire on reducing the number of satellites moved to achieve the new 

configuration.  While these six do not represent all possible preference articulations, they 

do capture a balanced set that provide a context to a DM for the selection of a most 

preferred design. 

The application of the preference structures of Table 5-8 to the 165 non-

dominated solutions of Fig. 5-16 results in the most preferred designs shown in Table 5-9 

for Case-2c-ideal. 

 

 

Recall that the unlimited energy assumption was made in this section, so a reasonable 

first step towards selecting a final reconfiguration is to eliminate the most preferred 

designs that are clearly infeasible due to their excessive energy requirements.  Using Eq. 

4.9 and assuming a full maneuvering propellant budget of 25.0 kg, a dry mass of 1106 kg 

Table 5-9: Most preferred designs, Case-2c-ideal (one plane lost, PDOP<6) 

Preference Vector Best 
Design 

( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(m/s) 

( )xf v
5  

(m/s) 
( )xf v

6  

⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1

6
1  41 1439.99 1439.03 3.56 48.79 0.00 1 

⎥⎦
⎤

⎢⎣
⎡ 0000

2
1

2
1  11 1439.99 1439.64 20.45 4.66 0.00* 4 

⎥⎦
⎤

⎢⎣
⎡ −

3
1000

3
1

3
1  126 1439.99 1439.03 17.52 9.91 0.00 1 

⎥⎦
⎤

⎢⎣
⎡ −−

4
100

4
1

4
1

4
1  79 1439.99 1439.03 1.06 163.10 0.00 1 

⎥⎦
⎤

⎢⎣
⎡ −−−

5
1

5
1

5
10

5
1

5
1  126 1439.99 1439.03 17.52 9.91 0.00 1 

⎥⎦
⎤

⎢⎣
⎡ −−− 0

5
1

5
1

5
1

5
1

5
1  125 1439.99 1439.41 3.51 28.41 0.00* 3 

 
*The variance is not zero, but appears to be because of rounding to the nearest hundredth
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and an engine with an impulse of 240 seconds, the maximum ΔV one could hope for is 

52.6 m/s.  Table 5-9 reveals that four of the preference structures result in identical 

coverage performance, and two of the four (Designs 79 and 41) exceed or nearly exceed 

the maximum possible ΔV.  Additionally, the same most preferred solution (Design 126) 

appears for several preference vectors, which demonstrates that multiple preference 

structures can lead to a single design.  The best coverage design, while taking nearly 

three weeks to achieve, does so with a reasonable amount of energy and almost no 

variance, but rephases four satellites in the process representing the most risky prospect.  

The final most preferred solution (Design 125), at worst, uses over half of potentially 

available propellant and maneuvers three satellites to get within 10 seconds of the best 

coverage solution.  If time-of-flight is not critical, the DM should select Design 126 

because only one satellite is maneuvered with the final configuration producing only a 

20-second difference in the WCP-DVT when compared to the more risky and expensive 

Design 125. 

A 20-second increase in coverage performance is what the DM would gain at 

greater cost and risk if they chose Design 125 over 126.  To determine if the additional 

performance is worth the cost, the receiver coverage contour plots for Designs 125 and 

126 are constructed in Figs. 5-19 and 5-20, respectively.  The contour plot for the ‘do-

nothing’ solution is shown in Fig. 5-21 for reference.  Recall that the receiver grid was 

constructed for the Northern hemisphere only and, as such, the contour plots are 

displayed accordingly. 
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Figure 5-19: Case-2c-ideal (one plane lost, PDOP<6) global DVT contours for 

Design 125 

 

Figure 5-20: Case-2c-ideal (one plane lost, PDOP<6) global DVT contours for 
Design 126 
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Both solutions provide significant improvement over the ‘do-nothing’ solution, and both 

have similar coverage gap patterns but over different regions of the hemisphere.  If the 

DM is concerned with conterminous United States applications they should select design 

125. 

5.3.3.2 Access Constrained to PDOP ≤ 2 

Case-2d-ideal, with the tightened PDOP constraint, finds 3636 solutions shown 

from two perspectives in Fig. 5-22 and 5-23 after searching for 406.1 hours and 

completing 15,089,931 function evaluations (18 interconnected runs).  The range that the 

worst ΔV objective function takes has expanded several orders of magnitude with many 

designs requiring on the order of several km/sec in velocity changes. 

 

 
Figure 5-21: Case-2c-ideal (one plane lost, PDOP<6) global DVT ‘do-nothing’ solution
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Figure 5-22: Glyph hypervolume at run termination, Case-2d-ideal (one plane lost, 

PDOP<2), view 1 
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Clearly, most of these designs would be eliminated in practice; however, it is 

instructive to observe the decision-variable plot shown in Fig. 5-24, where patterns begin 

to emerge.  When maneuvering fewer than seven satellites, generally only those in 

adjacent planes to the one that was lost participate in the reconfiguration.  As the number 

of satellites maneuvered approaches 19, designs in plane 2 contribute the most to 

extending the TTOF objective.  This plot gives insight into the fitness landscape as well.  

There are no smooth transitions or precise patterns, but the decision variable space does 

exhibit some, albeit discontinuous, structure that the LC-ε-NSGA-2 is able to exploit. 

 

 

 
Figure 5-23: Glyph hypervolume at run termination, Case-2d-ideal (one plane lost, 

PDOP<2), view 2 
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Applying the previously defined set of preference vectors to the hypervolume 

produces the set of most preferred designs shown in Table 5-10.  Not surprisingly, all of 

the most preferred non-dominated solutions except Design 3395 require unrealizable 

amounts of energy.  Even Design 3395 uses over 85% of the maximum potentially 

available and, because the variance is low, all six of the satellites maneuvered would use 

nearly the same 85% of their propellant.  It is unlikely that Design 3395 could be 

 

 
Figure 5-24: Hypervolume decision variable plot, Case-2d-ideal (one plane lost, 

PDOP<2) independent phasing orbits, Ks, plus change in phase, αs, for each epsilon non-
dominated design, sorted by ( )xf v

6  ascending 
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achieved; however, a contour plot of the coverage is generated in Section 5.3.4.2 for 

purposes of comparison with the operational case detailed in the same Section. 

 

 

Even though the initial application of the preference vectors resulted in mostly 

infeasible designs with regard to energy expenditure, there are many designs in the 

hypervolume that require ΔV less than 52.6 m/s.  A data-thinning technique called 

brushing [109] is introduced here to eliminate any designs above a particular threshold in 

any of the objectives.  Since energy is the issue, the brush is applied to ( )xf v
4  with a new 

ceiling set to 5 m/s.  This value is chosen for illustration purposes only, but should be set 

according to the best knowledge of the propellant available to all satellites.  The 

hypervolume is now reduced to 131 designs from the original 3395.  Reapplying the 

preference vectors on the reduced set gives the set of solutions shown in Table 5-11. 

Table 5-10: Most preferred designs, Case-2d-ideal (one plane lost, PDOP<2) 

Preference Vector Best 
Design 

( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(m/s) 

( )xf v
5  

(m/s) 
( )xf v

6  

⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1

6
1  1169 1438.07 1411.17 14.59 110.08 5.00 6 

⎥⎦
⎤

⎢⎣
⎡ 0000

2
1

2
1  3247 1439.38 1424.81 50.24 223.00 66.59 18 

⎥⎦
⎤

⎢⎣
⎡ −

3
1000

3
1

3
1  2259 1438.09 1411.19 7.61 376.00 83.85 6 

⎥⎦
⎤

⎢⎣
⎡ −−

4
100

4
1

4
1

4
1  2244 1438.03 1411.11 5.62 1626.65 2030.91 6 

⎥⎦
⎤

⎢⎣
⎡ −−−

5
1

5
1

5
10

5
1

5
1  3395 1438.05 1411.03 36.53 43.42 0.790 6 

⎥⎦
⎤

⎢⎣
⎡ −−− 0

5
1

5
1

5
1

5
1

5
1  1210 1438.73 1419.16 18.21 76.08 5.58 14 
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Without exception, all designs in Table 5-11 have reduced performance in both 

coverage metrics when compared to the non-dominated solutions of Table 5-10.  The best 

coverage design (2612) provides performance that is nearly as good as most of the 

solutions in Table 5-10, but is realized at the cost of reduction in the constellation’s 

energy, increasing TTOF to a half a year, and doubling of the number of satellites 

maneuvered.  In practice, the process of iterating on brushing levels and preference 

vectors until feasibility is obtained is cumbersome.  The value of understanding the 

idealized cases, however, is that a performance ceiling is established because the 

hypervolumes represent the best attainable coverage without regard to energy limitations.  

Table 5-11: Most preferred designs, Case-2d-ideal after brushing to potential feasibility 
(one plane lost, PDOP<2) 

Preference Vector Best 
Design 

( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(m/s) 

( )xf v
5  

(m/s) 
( )xf v

6  

⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1

6
1  1115 1434.53 1386.45 32.96 4.36 0.00* 2 

⎥⎦
⎤

⎢⎣
⎡ 0000

2
1

2
1  2612 1437.93 1411.10 165.97 4.91 0.01 12 

⎥⎦
⎤

⎢⎣
⎡ −

3
1000

3
1

3
1  3182 1437.07 1401.64 96.23 4.77 0.01 6 

⎥⎦
⎤

⎢⎣
⎡ −−

4
100

4
1

4
1

4
1  1115 1434.53 1386.45 32.96 4.36 0.00* 2 

⎥⎦
⎤

⎢⎣
⎡ −−−

5
1

5
1

5
10

5
1

5
1  3182 1437.07 1401.64 96.23 4.77 0.01 6 

⎥⎦
⎤

⎢⎣
⎡ −−− 0

5
1

5
1

5
1

5
1

5
1  3521 1437.17 1402.53 77.79 4.91 0.00* 7 

 
*The variance is not zero, but appears to be because of rounding to the nearest hundredth
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In the next section, the operational assumptions from Table 4-1 are imposed on the cases 

where one plane is lost, thereby eliminating the need for brushing of infeasible solutions. 

5.3.4 One Plane Lost, Operational Assumptions 

5.3.4.1 Access Constrained to PDOP ≤ 6 

After searching to the end of the first checkpoint at 95.0 hours with 3,634,823 

function evaluations (501 interconnected runs), Case-2c-op, finds the 55 solutions shown 

in Fig. 5-25.  Note the axis label change from energy to kg of propellant.  The decision 

variable plot, shown in Fig. 5-26, exhibits a more patterned behavior than the idealized 

case of Fig. 5-17.  In the operational case, only four satellites (4, 6, 9, and 18) participate 

in any reconfiguration.  Reviewing the initial propellant states for these satellites shows 

that they all had less than 10 kg of propellant of the maximum 25.0.  Satellite 6 had the 

least propellant available of any of the satellites moved, at 4.3 kg, and also generally had 

the longest TTOF as illustrated by Fig. 5-26.  When more than two satellites are 

maneuvered, satellite 6 no longer participates in reconfiguration; rather, satellites 4, 9, 

and 18 exclusively contribute to all three-vehicle solutions. 
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Figure 5-25: Glyph hypervolume at run termination, Case-2c-op (one plane lost, 
PDOP<6) 
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Applying the preference vectors to the hypervolume gives the solutions shown in 

Table 5-12.  Interestingly, Design 30 appears three times indicating that the most 

preferred design, when coverage and risk are equally weighted, is invariant to preferences 

on TTOF or propellant costs.  The remaining designs (15, 46, and 50) provide nearly 

continuous coverage but at degraded performance in the remaining objectives.  In order 

to move towards a decision, the propellant-gage plots are generated for these designs in 

Table 5-13. 

 

 
Figure 5-26: Hypervolume decision variable plot, Case-2c-op (one plane lost, PDOP<6) 
independent phasing orbits, Ks, plus change in phase, αs, for each epsilon non-dominated

design, sorted by ( )xf v
6  ascending 
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Table 5-12: Most preferred designs, Case-2c-op (one plane lost, PDOP<6) 

Preference Vector Best 
Design 

( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(kg) 

( )xf v
5  

(kg) 
( )xf v

6  

⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1

6
1  30 1439.97 1432.51 9.51 4.28 0.0 1 

⎥⎦
⎤

⎢⎣
⎡ 0000

2
1

2
1  15 1439.99 1439.51 11.98 4.98 0.95 3 

⎥⎦
⎤

⎢⎣
⎡ −

3
1000

3
1

3
1  46 1439.99 1439.03 17.00 4.96 0.61 2 

⎥⎦
⎤
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⎤
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1
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Design 30 is not acceptable relative to the other choices since the maneuvering 

exhausts almost all of satellite 6 propellant available.  Similarly, Designs 46 and 50 leave 

less than 10% propellant remaining.  After considering the data shown in Table 5-13, the 

best choice is clearly Design 15, which also produces the best coverage performance of 

all the most preferred choices.  Design 15, when compared to the idealized case with the 

same preference vector (Design 11 in Table 5-9) produces the same average performance 

and a worst-case-point coverage within 15 seconds of what is possible when the entire 

constellation has access to unlimited energy. 

Table 5-13: Propellant-gage plot (reduced to show only those maneuvered), hypervolume 
Designs 15, 46, 30 and 50, Case-2c-op (one plane lost, PDOP<6) 

 
Design 
Number Propellant Gages 

15 

46 

 

30 

    

50 
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5.3.4.2 Access Constrained to PDOP ≤ 2 

After 509.4 hours of search and 19,879,932 function evaluations (98 

interconnected runs), 3401 solutions were found for Case-2d-op.  The hypervolumes 

from two different perspectives are shown in Figs. 5-27 and 5-28 with the associated 

decision-variable plot given in Fig. 5-29.  The hypervolumes reveal a clear correlation 

where, as the number of satellites maneuvered increases, so does the total time-of-flight 

and the variance of the mass of propellant remaining among those rephased. 

 

 

 

 
Figure 5-27: Glyph hypervolume at run termination, Case-2d-op (one plane lost, 

PDOP<2), view 1 
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Figure 5-28: Glyph hypervolume at run termination, Case-2d-op (one plane lost, 

PDOP<2), view 2 
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The key difference between the decision-variable plot of Fig. 5-29 and that with 

idealized assumptions (Fig. 5-24) is the fact that several satellites (8 and 16), are never 

maneuvered.  Reviewing Table 4-1, satellites 8 and 16 have the least amount of 

propellant for maneuvering at 0.8 and 0.9 kg, respectively.  This indicates that no benefit 

could be derived (in a non-dominated sense) from expending the relatively small quantity 

of propellant offered by these two vehicles.  Satellite 18, on the other hand, has a 

reasonable amount of propellant at 9.5 kg, but is only maneuvered in two of the 3401 

hypervolume solutions.  This suggests that satellite 18, with the propellant available to it, 

 

Figure 5-29: Hypervolume decision variable plot, Case-2d-op (one plane lost, PDOP<2) 
independent phasing orbits, Ks, plus change in phase, αs, for each epsilon non-dominated

design, sorted by ( )xf v
6  ascending 
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could generally not be rephased to benefit the constellation.  Recalling Fig. 5-24, a 

similar observation is made where satellite 18 was almost never maneuvered, indicating 

that, even with unlimited energy, the same observation holds true.  In Fig. 5-29, the 

maximum number of satellites maneuvered is 14, instead of all 19 in the unlimited energy 

case.  Interestingly, all of these designs maneuvered the same 14 satellites and did not 

maneuver the same 6 (satellites 2, 5, 8, 12, 16, and 18).  Satellites 2 and 5 had plenty of 

propellant available at 18.9 and 16.4 kg, respectively, but as before could not be rephased 

to produce a non-dominated result.  This is an example of the non-intuitive discoveries 

that emerge through the application of the framework. 

The preference vectors are applied to the hypervolume data and the resulting most 

preferred designs are shown in Table 5-14.  This case exhibits the greatest difference in 

coverage performance among the set of most preferred designs relative to all other cases 

considered in this research. 
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The propellant-gage plots for each most preferred design are shown in Figs. 5-30– 

5-35.  The best coverage design, shown in Fig. 5-31, requires that 14 satellites be 

maneuvered, during which time two (satellites 10 and 11) exhaust all but 1% of their 

useable propellant and another six (satellites 3, 4, 6, 14, 17, and 19) leave less than 10% 

in their tanks.  It is unlikely that any DM would consider this design due to the dramatic 

reduction in life of the constellation at a relatively meager WCP-DVT coverage 

advantage over the next best most preferred design (3239).  Designs 3239 and 2039, 

shown in Figs. 5-32 and 5-33, respectively, leave less than 1% of propellant remaining on 

satellites 10 or 11 and 17.  Since these satellites might soon require de-orbiting and hence 

a reduction in capacity, they are discontinued from consideration.  With all of the 

remaining most preferred designs, 2835, 204, and 2849, no satellites are maneuvered to 

the point of emptying the tanks. 

Table 5-14: Most preferred designs, Case-2d-op (one plane lost, PDOP<2) 

Preference Vector Best 
Design 

( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(kg) 

( )xf v
5  

(kg) 
( )xf v

6  

⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1
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⎥⎦
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⎢⎣
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2
1

2
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⎥⎦
⎤
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⎡ −

3
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3
1

3
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⎥⎦
⎤

⎢⎣
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4
100

4
1

4
1

4
1  2039 1436.12 1399.18 12.55 13.74 29.87 4 

⎥⎦
⎤

⎢⎣
⎡ −−−

5
1

5
1

5
10

5
1

5
1  204 1436.26 1401.48 46.88 4.85 16.69 5 

⎥⎦
⎤

⎢⎣
⎡ −−− 0

5
1

5
1

5
1

5
1

5
1  2849 1437.73 1408.17 39.71 9.37 14.15 8 
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Figure 5-30: Propellant-gage plot, hypervolume Design 2835, Case-2d-op (one plane lost, 
PDOP<2) 
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Figure 5-31: Propellant-gage plot, hypervolume Design 2150, Case-2d-op (one plane lost, 
PDOP<2) 
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Figure 5-32: Propellant-gage plot, hypervolume Design 3239, Case-2d-op (one plane lost, 
PDOP<2) 
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Figure 5-33: Propellant-gage plot, hypervolume Design 2039, Case-2d-op (one plane lost, 
PDOP<2) 

 



160 

 

 

 

 

 
 

 
 

Figure 5-34: Propellant-gage plot, hypervolume Design 204, Case-2d-op (one plane lost, 
PDOP<2) 
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In order to make a decision among the three remaining most preferred designs, 

refer again to Table 5-14.  Design 2849 requires that nearly twice as many satellites be 

maneuvered as Designs 2835 and 204 and a TTOF of well over a month with nearly 

double the worst case propellant expenditure.  What is gained is a 1.5-minute 

 

 
 

 
 

Figure 5-35: Propellant-gage plot, hypervolume Design 2849,  Case-2d-op (one plane 
lost, PDOP<2) 
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improvement in A-DVT and about 7 minutes in WCP-DVT.  If the DM selected this 

design, it would be the most costly of the three and they would need a compelling reason 

for the associated performance improvement.  Notice that Designs 2835 and 204 have 

nearly identical coverage objective values and both maneuver the same five satellites, but 

Design 2835 completes the reconfiguration in half the time (about three weeks) at only a 

slightly greater propellant cost per satellite.  At this stage in the decision making process, 

a DM would likely favor Design 2835, but before a final decision is made, it is prudent to 

consider the contour plots of all three solutions. 

For comparison purposes, the contour plot of Design 3395 (Case-2d-ideal) is 

presented in Fig. 5-36 while Designs 2849, 204, and 2835 are shown in Figs. 5-37, 5-38, 

and 5-39, respectively.  Recall, Design 3395 was the only potentially feasible design 

when unlimited energy was assumed.  Design 2849 continuously covers 5% less of the 

receiver grid than the ideal case, while Designs 204 and 2835 degrade a further 5%, 

continuously covering approximately three-quarters of the grid.  The coverage contours 

of Designs 204 and 2835 are almost identical.  At this point, a DM has enough 

information to finalize their choice.  Due to the high cost to achieve what amounts to a 

6% gain in continuous coverage and the nearly identical contours of Figs. 5-38 and 5-39, 

Design 2835 is the best choice.  Note, however, that Design 2849 provided significant 

coverage improvement to various regions like the conterminous United States.  This 

might influence the DM to pay the cost.  However, given this requirement, a better 

approach would be to modify the receiver grid to optimize the constellation towards only 

that region of interest. 

 



163 

 

 

 

 

 
Figure 5-36: Case-2d-ideal (one plane lost, PDOP<2) global DVT contours for Design 

3395 

 

Figure 5-37: Case-2d-op (one plane lost, PDOP<2) global DVT contours for 
Design 2849 
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5.4 Revisiting Case-2d-op 

Take a moment to review the search trace shown in Fig. 5-10 for Case-2d-op.  As 

first mentioned in Section 5.2, this case represented an exception to the termination 

 

 
Figure 5-38: Case-2d-op (one plane lost, PDOP<2) global DVT contours for Design 204

 

Figure 5-39: Case-2d-op (one plane lost, PDOP<2) global DVT contours for Design 
2835 
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criterion in that search progress was still being made even after over 500 hours of run 

time on 250 processing cores.  If the termination of a run is used as a measure of the 

problem’s difficulty, this case is the most challenging studied in this research.  Case-2d-

op is characteristic of a problem where the chosen epsilon vector resulted in extensive run 

time that is not likely acceptable in practice.  One possible way to decrease the run time 

at the cost of fewer solutions available to a DM is to increase the coarseness of the 

epsilon vector. 

Due to the inability to ascertain the geometrical properties of the six-dimensional 

fitness landscape, the coarse epsilon vector, shown in Table 5-15, is again formulated 

using engineering judgment, but also with some help from the previous optimization.  In 

an iterative manner, various coarse epsilon vectors were used to post-process the 3401 

designs of Section 5.3.4.2 until the set was reduced several orders of magnitude to 19 

solutions.  The final coarse epsilon vector selected for use in a new optimization 

simulation increases epsilon values in all objectives except ( )xf v
4  and ( )xf v

6 .  The epsilon 

value was decreased to 1 kg for ( )xf v
4  because a DM would likely favor more choices 

with regard to maximum propellant used on any maneuvered satellite.  The epsilon value 

for ( )xf v
6  was left unchanged because again, in the author’s judgment, this remains a 

dimension were more choices are desirable. 

 

Table 5-15: Coarse epsilon vector comparison 

Parameter Setting 
Original Epsilon vector [1 min, 1 min, 1 hr, 5 kg, 1 kg, 1] 
Coarse Epsilon vector [2 min, 10 min, 30 days, 1 kg, 100 m/s, 1]  
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The optimization for Case-2d-op is repeated, but with the coarse epsilon vector 

(identified by ‘coarse-eps’).  The archive search dynamics for this new case are contrast 

against the original in Fig. 5-40. 

 

 

After searching until the end of the first checkpoint at 95.0 hours and 3,716,083 function 

evaluations (951 interconnected runs), Case-2d-op-coarse-eps finished with 46 non-

dominated designs.  The archive size reaches an oscillatory steady state at approximately 

40 hours into search.  For any given problem, the epsilon vector uniquely fixes the 

maximum number of solutions that may be found (even if the knowledge of the fitness 

landscape is not known a priori).  The oscillatory steady-state of the search dynamics 

trace provides an opportunity to determine if the population in the archive is mostly static 

 

 
Figure 5-40: Archive dynamics, one plane lost, PDOP<2, operational assumptions, 

original and coarse epsilon vectors 
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or being completely replaced between hours 40 and 95.0.  Using hour 40 as the baseline, 

Table 5-16 shows both the number of original solutions and epsilon blocks remaining in 

the archive at 10 hour increments.  In two dimensions, the epsilon values form a 

rectangle; in three, a volume is constructed; and greater than three dimensions results in 

hyper-blocks. 

 

 

Even though the archive is oscillating about a relatively fixed size, Table 5-16 

shows that almost the entire population is replaced between hours 40 and 90.  That is not 

the entire picture, however.  Another perspective on search progress is provided by 

considering the epsilon hyper-blocks that remain as search proceeds. 

Recall from Chapter 3 that each population member is assigned a box fitness and 

that no two solutions can exist within the same epsilon hyper-block.  Table 5-16 shows 

that nearly half of the original hyper-blocks from the non-dominated population at hour 

40 remain at hour 90.  This data indicates that, while new non-dominated solutions are 

being found and replacing most of the archive, at least half of these improved designs still 

occupy identical epsilon hyper-blocks even after 50 hours of search.  The fact that 21 of 

Table 5-16: Archive population replacement 

Hour Archive 
Size 

Original solutions 
remaining 

Original epsilon hyper-blocks 
remaining 

40 47 47 47 
50 54 10 38 
60 47 5 28 
70 44 3 25 
80 40 2 21 
90 41 2 21  
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the original 47 hyper-blocks remain also indicates that the algorithm is not moving to 

entirely different parts of the space, suggesting, at least empirically, that search progress 

has slowed.  This observation provides confidence to terminate the run after the first 

checkpoint period of 95.0 hours has elapsed and compare the resulting hypervolume to 

Case-2d-op. 

Figure 5-41 contrasts the hypervolumes resulting from the a priori application of 

(a) the coarse epsilon vector and (b) the original epsilon vector at run termination for both 

cases.  At a glance, it appears that there are far fewer choices available to the DM due to 

the coarse epsilon vector, but before the observation can be confirmed, the quality of the 

solutions must be compared according to epsilon dominance.  Applying the coarse 

epsilon vector of Table 5-15 a posteriori to the original hypervolume of Fig. 5-41b 

results in a reduction from 3401 solutions to 19 coarse epsilon non-dominated designs.  

When these 19 designs are combined with the 47 found for Case-2d-op-coarse-eps and 

sorted according to their coarse epsilon nondomination rank, 17 remain from (a) and 34 

from (b).  This result means that the original 500+ hour run for Case-2d-op had made 

significant search progress in many of the coarse epsilon hyper-blocks, but confirms the 

earlier suspicion that search had not reached a reasonable termination point.  The 17 

solutions remaining after coarse epsilon nondomination sorting of the original run 

replaced 13 of the 47 from Fig. 5-41a.  This indicates that the extensive run time did 

result in better search progress in certain regions of the fitness landscape.  In the coarse 

epsilon vector case, however, the 34 additional epsilon non-dominated designs shown in 

Fig. 5-41a suggests that the DM now has access to more diverse choice across a greater 
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expanse of the fitness landscape.  This observation is highlighted more clearly by 

considering the decision variable plots for both cases. 



 

 

 

 

 

 
Figure 5-41: Glyph hypervolumes at run termination, Case-2d-op (one plane lost, PDOP<2), (a) coarse epsilon vector , (b) 

original epsilon vector 

120 
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Figure 5-42 contrasts the decision-variable spaces produced by the final 

hypervolumes for both (a) coarse and (b) original epsilon vector cases.  The hypervolume 

structure with regard to which satellites are maneuvered, and in what planes, is generally 

the same.  However, over half of the solutions in Fig. 5-42a have TTOF greater than 50 

days while only 20% of solutions in Fig. 5-42b fall into that bin.  This observation is 

likely a direct consequence of the dramatic increase in the TTOF epsilon value from 1 

minute to 30 days (43200 minutes).  All of the other objectives receive increases or 

decreases in the epsilon vector that were several orders of magnitude less than that of 

TTOF.  Another difference between Fig. 5-42a and 5-42b is that there are no solutions 

that maneuver more than 13 satellites with the coarse epsilon vector despite the fact that 

( )xf v
6  epsilon value remained at 1 for both cases.  Solutions in the fitness landscape that 

maneuvered 14 satellites were only found during the longer-duration, original epsilon 

vector search.  At this point, it has been demonstrated that a coarse epsilon vector can 

allow for earlier run termination and provide more diverse choice across the fitness 

landscape, but no observations have yet been made regarding the specific objective 

function values. 
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          (a) 

 
       (b) 

Figure 5-42: Hypervolume decision variable plot, Case-2d-op (a) coarse epsilon vector, 
(b) original epsilon vector, (one plane lost, PDOP<2) independent phasing orbits, Ks, plus 
change in phase, αs, for each epsilon non-dominated design, sorted by ( )xf v

6  ascending 
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When the preference structure, originally detailed in Table 5-8, is applied to the 

set of non-dominated designs in Fig. 5-41a, six solutions presented in Table 5-17 result.  

A design in Table 5-17 might be one of the 13 that were dominated by those of  

Case-2d-op.  Keeping this in mind, it is instructive to compare Table 5-17 with 5-14 to 

illustrate the potential implications (if any) associated with choosing a coarse epsilon 

vector and shortening the search time. 

 

 

After coarse epsilon nondomination sorting of combined results of Tables 5-17 

and 5-14, all of the solutions from Table 5-17 remain, and two designs (204 and 2849) 

from Table 5-14 are dominated.  Recall that the preference structure associated with the 

best compromise, Design 2835, was the best choice from Case-2d-op.  This choice 

remains non-dominated when compared to the best compromise, Design 21, in Table     

Table 5-17: Most preferred designs, Case-2d-op-coarse-eps (one plane lost, PDOP<2) 

Preference Vector Best 
Design 

( )xf v
1  

(min) 
( )xf v

2  
(min) 

( )xf v
3  

(days) 
( )xf v

4  
(kg) 

( )xf v
5  

(kg) 
( )xf v

6  

⎥⎦
⎤

⎢⎣
⎡ −−−−

6
1

6
1

6
1

6
1

6
1

6
1  21 1434.01 1384.33 26.97 2.98 24.83 2 

⎥⎦
⎤

⎢⎣
⎡ 0000

2
1

2
1  32 1438.78 1420.20 89.52 8.00 170.26 13 

⎥⎦
⎤

⎢⎣
⎡ −

3
1000

3
1

3
1  1 1437.96 1410.30 94.83 5.98 140.22 7 

⎥⎦
⎤

⎢⎣
⎡ −−

4
100

4
1

4
1

4
1  33 1436.50 1391.26 26.01 5.88 104.95 4 

⎥⎦
⎤

⎢⎣
⎡ −−−

5
1

5
1

5
10

5
1

5
1  40 1436.04 1402.21 76.78 1.91 49.76 5 

⎥⎦
⎤

⎢⎣
⎡ −−− 0

5
1

5
1

5
1

5
1

5
1  40 1436.04 1402.21 76.78 1.91 49.76 5 
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5-17.  Even though Design 21 performs worst with regard to coverage, the 

reconfiguration uses less propellant and rephases only 2 satellites in about the same 

amount of time.  In order to gain further insight into the propellant benefit offered by 

Design 21, its associated propellant-gage plot is presented in Fig. 5-43. 
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Clearly Design 21, which maneuvers fewer satellites and uses less propellant, 

provides an excellent alternative to Solution 2835.  As before, the coverage contours are 

constructed in Fig. 5-44 for Design 21 to determine if the reduced performance relative to 

 

 
 

 
 

Figure 5-43: Propellant-gage plot, hypervolume Design 21, Case-2d-op-coarse-eps (one 
satellite lost, PDOP<2) 
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Solution 2835 is worth the significant propellant savings and risk reduction.  Comparing 

Fig. 5-44 with the contour of Solution 2835 in Fig. 5-39, coverage gaps do appear in 

areas that might be of importance to the decision maker (conterminous United States for 

example).  However, there are regions, like northeastern Africa where coverage 

improves.  There is no clear ‘better’ design here; however, the coarse epsilon vector did 

supply a DM with a design that would be a fine alternative if the computational or run 

time limitations prohibited the long-duration run with the original epsilon vector.  

 

 

Several key lessons emerge from the observations and discussion presented in this 

section.  A coarse epsilon vector can allow for run termination before that of a finer-

grained case (taking care to study the box fitness changes over time to determine if search 

has slowed) and supply a greater diversity of solutions across the objective function 

landscape.  Kollat and Reed [114] also demonstrated that a coarse epsilon vector can 

 

 
Figure 5-44: Case-2d-op-coarse-eps (one plane lost, PDOP<2) global DVT contours for 

Design 21 
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result in compressed (in time) convergence. The shorter time-to-an-answer does not come 

for free, however.  Seventeen of the 19 solutions remained from the long-duration run 

after being combined and sorted with the coarse hypervolume.  This is an indication that 

certain parts of the fitness landscape were not yet explored and/or further exploration in 

regions with existing solutions would be beneficial.  It appears that there is a tradeoff 

between providing an overview of the fitness landscape to the DM (coarse epsilon vector 

case) or providing better options within specific regions. 

5.5 The Impact of a Global Grid 

Smith [32] had noted, in reference to his research on GAs and satellite 

constellations, that the convergence time was directly tied to the number of variables to 

be optimized.  In Section 5.2, it was shown that convergence time is not necessarily tied 

to the number of decision variables (in fact, it was demonstrated that increasing the 

number of variables can cause more rapid convergence).  Another assumption that may 

extend function evaluation time and, therefore, convergence is the number of points in 

the receiver grid. 

The contour plots of Section 5.1 demonstrated that PDOP constrained accesses 

produce coverage contours in the Northern hemisphere that are not symmetrical with the 

Southern hemisphere.  This observation led to the conclusion that the typical 

hemispherical receiver grid assumed in the experimental design could not be used to 

simulate a global grid in order to reduce function evaluation time.  As a result, all 

optimization runs presented to this point sought the reconfigurations that maximized 
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regional coverage performance to the Northern hemisphere.  The peculiarity of the of the 

PDOP constraint effects on accesses presents an opportunity to study the impact that a 

global grid might have on extending run time and the corresponding reconfiguration 

alternatives. 

Recall the equal area receiver grid defined in the experimental design consisted of 

2339 points.  For this section, a global equal area grid is constructed where receivers are 

placed at 0º latitude spaced 3º degrees apart from 0º to 360º East longitude at 0 km 

altitude.  The remaining receivers are placed over the globe such that an equal area grid is 

formed totaling L = 4558 points.   

Case-1d-op, where one satellite was lost and PDOP constrained to 2 or better, is 

selected to study the impact of the global grid.  The archive size dynamics for this case 

(Case-1d-op-globe) are represented in Fig. 5-45 along with the original search trace.  

Figure 5-45 reveals an unexpected result.  Doubling of the receiver grid approximately 

doubled the evaluation time for each objective vector; however, the termination criterion 

is still met within the first 95.0-hour check point period.  At run termination, Case-1d-op-

globe completed 1.64 million function evaluations and contained ten solutions in the 

archive.  The hemispherical receiver grid of Case-1d-op completed twice as many 

function evaluations (3.27 million) in that time and finished with five archive solutions. 
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This result indicates that the global receiver grid made the problem easier to solve, 

despite the increase in function evaluation time.  Another interesting observation from 

Fig. 5-45 is that no feasible solutions were found for the global grid case until about one-

half hour into search, which is nearly triple that of Case-1d-op.  The key lesson here is 

that no correlation should be assumed between the sizes of a receiver grid and the 

difficulty or run time for the problem. 

The objective vectors for the ten solutions making up the hypervolume at run 

termination in Fig. 5-46a are given in Table 5-18.  The original hypervolume for Case-

1d-op is supplied in Fig. 5-46b for comparison purposes. 

 

 

 
Figure 5-45: Archive dynamics, one plane lost, PDOP<2, operational assumptions, 

global receiver grid 

1.64 million 
function 

evaluations 

3.27 million 
function 

evaluations 



 

 

 

 

 
Figure 5-46: Glyph hypervolumes at run termination, Case-1d-op (one satellite lost, PDOP<2), (a) global receiver grid, (b) 

hemispherical receiver grid 

120 
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In Section 5.3.2, it was shown that two of the reconfiguration designs for Case-

1d-op would result in continuous four-fold coverage to the entire hemispherical receiver 

grid.  When a global grid is used, continuous coverage is no longer possible with any 

reconfiguration of the remaining satellites.  Additionally, the hypervolume for the global 

case (Fig. 5-46a) includes four solutions that maneuver two satellites, whereas the 

previous case (Fig. 5-46b) rephased a maximum of one vehicle.  These four solutions 

provide a WCP-DVT within one minute of each with various tradeoffs between 

propellant usage and time-of-flight.  They are not, however, the best coverage solutions.  

Designs 3 and 4 maneuver one satellite and come within 40 seconds of continuous global 

coverage. 

Table 5-19 compares the propellant-gages for designs 3 and 4 and the best 

coverage design from Table 5-7 for the hemispherical coverage case.  Table 5-19 shows 

Table 5-18: Hypervolume objective vectors, Case-1d-op global receiver grid (one 
satellite lost, PDOP<2) 

Design ( )xf v
1  

(min) 
( )xf v

2  (min) ( )xf v
3  

(days) 
( )xf v

4  (kg) ( )xf v
5  (kg) ( )xf v

6  

1 1439.9997 1439.06 2.00 4.85 6.00 2 
2 1439.9947 1437.00 1.00 3.46 0.00 1 
3 1439.9998 1439.23 1.51 9.10 0.00 1 
4 1439.9998 1439.23 3.00 4.57 0.00 1 
5 1439.9997 1439.06 2.50 4.90 2.00 2 
6 1439.9997 1439.06 2.00 4.26 12.28 2 
7 1439.9882 1432.84 0.00 0.00 0.00 0 
8 1439.9997 1439.06 3.00 4.77 1.00 2 
9 1439.9983 1438.09 0.99 12.38 0.00 1 
10 1439.9989 1438.46 1.00 4.26 0.00 1  
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that the same satellite (17) is maneuvered to achieve the best global coverage, with the 

only difference between the designs being a longer TTOF for Design 4.  The DM must 

choose between reconfiguration time of 1.51 (Design 3) or 3.00 days (Design 4).  It is 

likely that Design 4 would be the best choice since one-quarter of available propellant 

would remain after the maneuver. 

 

 

The decision variable plot for Case-1d-op-globe is compared to Case-1d-op in 

Fig. 5-47.  There are few similarities with regard to the satellites maneuvered for the 

global coverage case when compared to the hemispherical receiver grid assumption. 

Table 5-19: Propellant-gage plot, hypervolume Designs 3, and 4, Case-1d-op-globe (one 
satellite lost, PDOP<2) 

Design Propellant-gage 

3 

 

4 

 

2* 

 

 
 
 
 
 

 

*Best coverage design from Case-1d-op in Section 5.3.2, Table 5-7 



183 

 

 

 

     
           (a) 

 
           (b) 

Figure 5-47: Hypervolume decision variable plot, Case-1d-op (a) global receiver grid, (b) 
original receiver grid, (one satellite lost, PDOP<2) independent phasing orbits, Ks, plus 
change in phase, αs, for each epsilon non-dominated design, sorted by ( )xf v

6  ascending 
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There are two important points that should be taken away from this section.  

Increasing the grid to encompass more receivers will increase function evaluation time, 

but might make the problem easier to solve, ultimately reducing run time.  One possible 

explanation for this observed fact was first discussed in Section 5.2.  The global grid 

might have the effect of increasing the size of the feasibility islands, making it easier for 

the search algorithm to converge towards the fit regions of the search space in less time.  

The second, more obvious observation but nonetheless important, is to be very careful 

with the reconfiguration scenario assumptions regarding the behavior of access patterns.  

If an access constraint’s impact on coverage is not well understood a priori, it is best to 

use the highest fidelity grid tolerable that will capture mission requirements.  In the 

following concluding chapter, lessons like these will be summarized for this entire body 

of work and new research questions that have emerged as a result of this study will be 

posed. 



 

 

Chapter 6 
 

Conclusions, Reflections, and Potential Future Contributions 

This work addressed the question of how an existing satellite constellation that 

has experienced the loss of capacity might be reconfigured to a new, undetermined, 

constellation using only the remaining vehicles.  To answer this question, a general 

framework was developed that both approximates the set of Pareto-optimal 

reconfiguration options and guides a DM to the most preferred choice among multiple, 

competing objectives. 

The objectives of the reconfiguration problem were classified as belonging to one 

of three categories: performance, cost, and risk (there could certainly be others and the 

framework allows for this).  In this work, performance was associated with various 

metrics that assess a constellation’s ability to ‘cover’ a receiver.  Towards this end, the 

equations for the averaged rates of change of the classical elements, due to the first-order 

secular effects of J2, were developed to model the position vector of a satellite at a future 

time.  This vector was combined with minimum elevation and other constraints to 

produce an oscillatory access function that gave the rise and set intervals to a particular 

receiver.  These intervals were then combined across multiple satellites to provide single- 

or multi-fold access statistics.  From these intervals, coverage figures-of-merit were 

developed that provided, with a single quantity, an assessment of the performance of the 

constellation to the entire receiver grid.  The specific metrics used for any given 

reconfiguration problem are mission dependent.  In the case of GPS, the mission used to 
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demonstrate the framework, performance was assessed against two metrics, A-DVT and 

WCP-DVT, developed with guidance from the mission coverage specification. 

The cost to maneuver is generally a tradeoff between the propellant required and 

time-of-flight to reach the future configuration.  A variety of minimum energy solutions 

were introduced including those provided by Lambert, Gauss, and Battin as well as 

several less computationally intensive simplifications for coplanar and non-coplanar 

maneuvering.  Again, the precise formulation for calculating energy or time-of-flight is 

mission dependent.  For this work, the GPS constellation was constrained to 

approximately 12-hour precisely repeating ground traces precluding all but coplanar 

rephasing of the satellites.  As such, the cost of maneuvering was quantified by the TTOF 

required to achieve the future constellation and the maximum energy or propellant 

expended by any of the maneuvered satellites.  Another cost of reconfiguration identified 

in this work was the reduction in life expectancy incurred due to maneuvering and was 

quantified by calculating the propellant usage variance among the satellites maneuvered. 

The final objective category, risk, can take many definitions.  As it pertains to this 

work, however, the quantity of satellites that undergo a transfer determined the risk for 

reconfiguration.  The minimum of this integer-valued function was sought, along with 

that of the TTOF, Worst ΔV or mu, ΔV or mu Var, and the maximum of the A-DVT and 

WCP-DVT.  This six-objective tradeoff containing discrete, continuous, discontinuous, 

and nonlinear functions created a tradeoff landscape where deterministic optimization 

methods fail. 

Building from recent contributions in satellite constellation design optimization 

and evolutionary computing research, a Master-Slave pMOEA, the ε-NSGA-2 was 
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selected and adapted to approximate the Pareto-optimal solutions in this complex fitness 

landscape.  The ε-NSGA-2 uses epsilon-dominance archiving, auto-adaptive population 

sizing, and time continuation to collectively address the previously noted drawbacks of 

its parent algorithm, the NSGA-2.  For this work, a shared parallel computing 

environment was used that consisted of a large combination of heterogeneous processing 

cores. 

The original ε-NSGA-2 was designed to work efficiently on a dedicated small 

homogeneous cluster.  In this research, several algorithm adaptations were made to 

improve the algorithm’s scalability.  The first modification relieved the master core of its 

duties to perform function evaluations.  The second and more significant contributor 

towards mitigating the scalability issue was the development of asynchronous evolution 

wherein the master core did not wait for the final objective vector evaluations of a given 

population before proceeding to the next generation.  Since the objective vector evaluated 

on the order of a minute per processing core and given that some cases required over 10 

million function evaluations, a need emerged to ensure long duration run time.  Whether 

the cause for premature termination was a node failure or reaching the maximum run time 

(95.0 hrs) in the shared resource environment, a check-pointing mechanism was 

developed that allowed for restarting of a given simulation where it left off. 

Throughout this work, the framework has been referred to as general because this 

characteristic is what differentiates this research from others that came before it.  

Previously, work with the reconfiguration problem made specific and limiting 

assumptions about the future configuration in that it took the form of the well known 

solutions to the global coverage problem (Walker or SOC types).  This assumption is 



188 

 

sufficient when more satellites are available for launch to increase capacity and restore 

global coverage or when the remaining vehicles have the ability to be maneuvered to the 

appropriate positions.  These approaches, however, are inappropriate and potentially 

wasteful when global coverage is not required, and fail altogether when any possible 

reconfiguration is not capable of meeting a global coverage requirement.  In this case, the 

optimization problem becomes one of discontinuous coverage, which is a much more 

difficult problem.  The LC-ε-NSGA-2 was introduced into the framework as the 

optimization engine because it has the capacity to provide solutions to both types of 

coverage problems. 

Another common drawback of previous work is the tendency to seek the optima 

of a single cost function through the subjective application of a preference structure prior 

to performing the optimization.  In this work, however, the population-based approach to 

search and fitness based on a solution’s epsilon-dominance and diversity allowed for the 

approximation of the entire set of optimal reconfiguration alternatives without an a priori 

introduction of preference information.  The DMs preference structures were then 

applied, a posteriori, to the final non-dominated sets such that the cost of their choice 

was observed in the context other non-dominated solutions. 

The framework was demonstrated on two loss scenarios for an idealized GPS 

constellation.  The first considered the situation where a single satellite malfunctioned 

and the second asked how the constellation might be reconfigured after the loss of an 

entire plane.  Glyph-hypervolume and decision-variable plots were produced in every 

case for both idealized and operational assumptions.  The decision making process took a 

design-by-shopping approach where the most preferred designs in each hypervolume 
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were identified from a set of preference structures.  In some cases, supplemental 

information including coverage contour plots or propellant-gage illustrations, were 

generated to aid with down-selection to a final choice. 

Akin’s Laws of Spacecraft Design8 were developed by David Akin9 to impart 

some of his wisdom gleaned during a lifetime of involvement in spacecraft and space 

systems design.  Practitioners, professors, and students alike have found these bits of 

wisdom invaluable as they progressed through their careers.  It is in a spirit similar to 

Akin that the following lessons-learned from the results of this work are distilled down 

into digestible pieces that might be enabling, or at the very least, prevent timely mistakes 

both in applications of the current framework or in future research: 

• One should not assume that increasing the number of decision variables 

will produce a more challenging problem. 

• The objectives of the reconfiguration problem pertaining to coverage have 

the greatest impact on the multimodality of the fitness landscape.  As 

constraints like minimum elevation angle and PDOP are introduced, and 

more satellites are subtracted from the constellation, visibility is reduced 

and access gaps are created.  As a result, there are more potential 

configurations to fill these gaps and hence longer run times. 

                                                 

8 http://spacecraft.ssl.umd.edu/akins_laws.html, cited on September 17, 2008. 
9 Associate Professor of Aerospace Engineering, Department of Aerospace Engineering, University of 
Maryland 
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• Imposing operational assumptions can create infeasible regions in the 

fitness landscape, which can reduce the number of potential solutions that 

can populate the LC-ε-NSGA-2 archive, which can reduce run time. 

• Avoid constraining the search with preconceived biases.  Most of the 

results presented produced counter-intuitive designs.  For example, the 

hypervolume for Case-2d-op did not contain a single design that 

maneuvered satellite 18, which had plenty of propellant available, while 

others with much less contributed to the reconfiguration. 

• The hypervolumes can demonstrate that inaction after the loss of capacity 

is a better choice than any reconfiguration. 

• When hundreds to thousands of non-dominated designs make up the 

hypervolume at run termination, a carefully selected set of preference 

structures applied a posteriori provides a rigorous methodology for 

reducing the set size. 

• Multiple preference structures can lead to the identical non-dominated 

design, which demonstrates the preference induced dimensional reduction 

of one or more of the objectives. 

• Choose the epsilon vector very carefully as they do not directly relate to 

tolerances.  Suppose, for example, k = 2, and the epsilon vector is [1.0 

1.0].  Depending on where the non-dominated designs fall in the grid, it is 

possible to have solutions nearly adjacent to each other in one dimension, 

well within the epsilon value of 1.0.  This issue becomes exasperated as 

the number of dimensions increase. 



191 

 

• The use of an epsilon vector does not necessarily provide a free lunch with 

regard to reducing search time.  When selecting an epsilon vector, a 

balance must be struck between an overly fine or coarse gird.  The former 

can bring search to a crawl where little-to-no innovation takes place while 

the later will make search progress to a point and then genetically drift 

[115] among the large epsilon blocks. 

• Clearly understand the impact of all access constraints (e.g., PDOP) on 

their associated access patterns for the entire region of interest before any 

assumptions are made that reduce the number of receivers to simulate the 

region. 

• Do not assume any correlation between the size of the receiver grid and 

the difficulty of the problem.  The global grid can actually make the 

problem easier to solve than one with a regional grid despite the increase 

in function evaluation time. 

The limitations of the framework are detailed next to provide context for 

extensions and suggestions for future work.  When the geometrical characteristics of the 

true Pareto-hypervolume are not known beforehand, solutions can be lost due to the 

chosen epsilon vector.  In two-dimensions, these solutions would exist on segments of the 

Pareto-front that are almost horizontal or vertical.  Methods [112] that dynamically adapt 

the epsilon vector have been proposed and demonstrated on test-functions; however, no 

work to-date has considered such schemes on real-world problems. 

The GPS mission studied in this work had a repeat cycle of one day, which means 

that the access pattern for the constellation could be accurately captured by propagating 
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for 24 hours.  Other constellations might have repeat cycles of a much greater duration 

requiring a much longer propagation and, in turn, an order of magnitude increase in 

function evaluation time.  Additionally, the EOM developed for this research included the 

secular effects of J2, but other missions might require modeling of third-body effects, 

drag, higher-order geopotential terms, etc. – all of which will result in extension to the 

function evaluation time.  It is not difficult to imagine a problem that would require 

months of run time with the framework in its current form.  For these types of problems, 

future work might consider how low fidelity models might be combined with high 

fidelity models to rapidly recognize inferior designs, reducing the total run time that 

would be required if only the high fidelity models were used. 

One alternative solution to the high fidelity issue is the allocation of more parallel 

processing resources.  This, however, is not a straightforward task.  The simulations in 

this work used 250 cores from a cluster containing over 1200.  Aging communication 

hardware and an interaction between the MPI implementation and the operating system 

resulted in frequent node failures and simulation aborts when more than 250 cores were 

tasked.  Additional allocation of cores is also problematic on heavily shared resources 

because of the resulting simulation-execution wait times.  With asynchronous evolution, 

there is no reason to believe that the efficiency of those processors tasked would decrease 

beyond 250 cores; however, other scalability bottlenecks will likely be encountered, such 

as the master not being able to keep up with slave coordination functions.  Future work 

might focus on methods to mitigate these issues when greater than 250 cores are 

involved. 
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Despite these new challenges, the current framework is easily extensible to a 

variety of other closely related problems.  In this work, constellations were reconfigured 

after the loss of a capacity.  The inverse to this problem, or constellation build-up, could 

be studied by simply adapting the representation and applying the appropriate mission-

specific objective functions.  Since many satellite constellations are more than 10 years 

old, a more direct extension would allow for the reassessment of program requirements.  

If priorities or stakeholders have changed (and they almost always do over decade 

timescales), DMs could ask the question of how they might reconfigure the existing 

architecture to better meet new requirements.  Regardless of the extension, the framework 

allows a DM to make informed and defensible decisions for an extremely difficult class 

of optimization problems that were otherwise computationally intractable. 
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Nomenclature 

A.1 Abbreviations 

A offline archive size containing epsilon non-dominated solutions 

a semimajor axis, km 

ae semimajor axis of the earth, km 

aphase semimajor axis of phasing orbit, km 

arep semimajor axis of repeating ground track orbit, km 

a  mean semimajor axis, km 

0a  mean semimajor axis at epoch, km 

B inequality constraints 

C folds array 

c connected runs 

D decision variables 

d integral number of days 

dcrowd crowding distance 

db length of cuboid base 

dh length of cuboid height 

E eccentric anomaly, deg or rad 

e eccentricity 
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e  mean eccentricity 

0e  mean eccentricity at epoch 

F folds of coverage 

foscil oscillatory access function 

G gravitational constant, km3/(kg·sec2) 

g0 gravitational constant at sea level, km/sec2 

H total accesses 

h access interval number 

Isp specific impulse, sec 

i inclination, deg 

i  mean inclination, deg 

0i  mean inclination at epoch, deg 

J2 oblateness term in geopotential expansion 

j inequality constraint index 

K integer phasing revolutions 

Ks integer phasing revolutions for satellite, s 

k dimension of the objective vector 

L total receivers in the target deck 

l receiver index 

M mean anomaly, rad 

M0 mean anomaly at epoch, rad 

M  mean, mean anomaly, rad 
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0M  mean, mean anomaly at epoch, rad 

m mass, kg 

ma propellant mass available before a burn, kg 

md propellant mass depleted before the maneuver, kg 

me mass of the earth, kg 

mf satellite mass after a burn, kg 

mi satellite mass before a burn, kg 

mr propellant mass remaining after a burn, kg 

msat mass of the satellite, kg 

mu propellant mass used during a burn, kg 

N population size 

Nv variable length population size 

n mean motion, rad/sec 

nrep estimated mean motion for repeat ground track, rad/sec 

n  perturbed mean motion, rad/sec 

P orbital period, sec 

P2 Legendre polynomial of order 2 

P* Pareto-optimal set 

p integral number of orbit periods 

q repeat cycle ratio 

R disturbing potential, km2/sec2 

R~  secular disturbing potential, km2/sec2 
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Ravg average disturbing potential over one revolution, km2/sec2 

r magnitude of satellite position vector, km 

re magnitude of the earth’s radius, km 

S total satellites transferred 

s satellite index 

SOCT number of satellite in a Streets-Of-Coverage plane 

SOCP number of planes in a Streets-Of-Coverage constellation 

T inequality constraint 

t time from epoch, sec 

t0 epoch time, sec 

h
trise  access interval rise time for access h, sec from epoch 

h
tset  access interval set time for access h, sec from epoch 

tsid time in a sidereal day, sec 

ttran maneuver transfer time, sec 

U aspherical gravitational potential, km2/sec2 

Usphere spherical gravitational potential, km2/sec2 

u equality constraint index 

V equality constraint 

WT total number of satellites in a Walker Delta Pattern 

WP total number of planes in a Walker Delta Pattern 

WF relative spacing between satellites in adjacent planes in a Walker Delta Pattern 

w equality constraints 
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x,y,z satellite position variables in the KJI ˆˆˆ  reference frame 

A.2 Symbols 

α phase angle, deg 

γ  vernal equinox 

ΔV change in velocity, km/sec 

ε epsilon level for epsilon-constraint method 

εk epsilon level for objective function k 

Λ objective space 

λ longitude, deg 

μ gravitational parameter, km3/sec2 

ν  true anomaly, deg 

ν&  true anomaly rate, deg/sec 

ξ  satellite elevation angle, deg 

minξ  satellite minimum elevation angle, deg 

ρ Position Dilution Of Precision constraint 

φ  argument of latitude, deg 

gcφ  geocentric latitude, deg 

Ψ design space 

Ω right ascension of the ascending node, deg 

Ω  mean right ascension of the ascending node, deg 
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0Ω  mean right ascension of the ascending node at epoch, deg 

ω argument of perigee, deg 

ω  mean argument of perigee, deg 

0ω  mean argument of perigee at epoch, deg 

ωe Earth’s rotation rate, deg/sidereal sec 

ζ substitution variable 

 

A.3 Vectors 

f
v

 objective function vector 

F
v

 force, N 

gF
v

 force of gravity, N 

G geometry matrix 

KJI ˆˆˆ  Earth Centered Inertial coordinate system 

O
v

 observation vector from the satellite to the receiver, km 

Ô  unit observation vector from the satellite to the receiver 

WQP ˆˆˆ  perifocal coordinate system 

R
v

 receiver vector from the center of the earth to a receiver, km 

R̂  unit receiver vector from the center of the earth to a receiver 

ROT elementary rotation matrix 
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rv  satellite position vector relative to KJI ˆˆˆ  coordinate system, km 

r&&v  acceleration, km3/sec2 

er
v  Earth position vector in the ZYX ˆˆˆ  coordinate system, km 

ECEFrv  satellite position vector in the earth centered earth fixed coordinate system, km 

er&&
v  Earth acceleration vector in the ZYX ˆˆˆ  coordinate system, km/sec2 

satrv  satellite position vector in the ZYX ˆˆˆ  coordinate system, km 

satr&&v  satellite acceleration vector in the ZYX ˆˆˆ  coordinate system, km/sec2 

V
v

 most preferred design preference vector 

W
v

 preference articulation vector 

ZYX ˆˆˆ  inertial coordinate system 

xv  decision variable vector 

*xv  decision variable vector that is a member of P* 
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Acronyms 

A-DVT     Average Daily Visibility Time 

DMs      Decision Makers 

DVT      Daily Visibility Time 

ε-NDS      Epsilon Non-Dominated Solutions 

ε-NSGA-2     Epsilon Non-Dominated Sorting Genetic Algorithm Two 

EA      Evolutionary Algorithm 

EC      Evolutionary Computing 

ECEF      Earth-Centered Earth-Fixed 

ECI      Earth Centered Inertial 

EOM      Equations Of Motion 

FDVT      Multi-fold Daily Visibility Time 

GA      Genetic Algorithms 

GEO      Geosynchronous Earth Orbit 

GPS      Global Positioning System 

LC-ε-NSGA-2     Large-Cluster Epsilon Non-Dominated Sorting Genetic Algorithm Two 

LCW      Linear Combination of Weights 

LEO      Low Earth Orbit 

MOEA      Multi-Objective Evolutionary Algorithm 

MOGA     Multi-Objective Genetic Algorithm 
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MOO      Multi-Objective Optimization 

MOPs      Multi-Objective Optimization Problems 

MP      Multiple-Population 

MS      Master-Slave 

NPGA      Niched-Pareto Genetic Algorithm 

NSGA      Non-dominated Sorting Genetic Algorithm 

NSGA-2     Non-dominated Sorting Genetic Algorithm Two 

PDOP      Position Dilution Of Precision 

pMOEA     parallel Multi-Objective Evolutionary Algorithm 

SDT      Statistical Decision Theory 

SOC      Streets-Of-Coverage 

SGE      Sun Grid Engine 

SPEA      Strength-Pareto Evolutionary Algorithm 

TTOF      Total-Time-Of-Flight 

US      United States 

VEGA      Vector Evaluated Genetic Algorithm 

VTS      Vandenberg Telemetry Station 

WCP-DVT     Worst-Case-Point Daily Visibility Time 

 



 

 

Appendix C 
 

Calculating rv in a Inertial Reference Frame from Classical Orbital Elements 

In Chapter 2, Kozai’s analytical method is used to provide averaged orbital 

elements as a function of time for the purposes of determining the future state of a 

satellite.  The oscillatory function used to calculate accesses requires the satellite’s 

position vector, rv , in the ECI reference frame.  This appendix provides the algorithm for 

converting the averaged elements ( )M,,,i,e,a ωΩ  into rv .  In this Appendix, the over-bar 

notation for the classical elements is dropped for readability, but averaged elements are 

implied. 

Note, the following algorithm [17] for converting classical elements to a position 

vector in the ECI frame only holds true for the circular orbit assumed for the mission 

discussed in this research.  Noting that ω = 0.0 for circular orbits, the position vector in 

the perifocal ( ŴQ̂P̂ ) coordinate system, 

 

 

is calculated.  Next, this position vector must be converted from the perifocal frame to the 

ECI frame.  This is accomplished using two elementary rotation matrices, ROT1, ROT2. 
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The position vector in the ECI frame, 

 

 

is found by pre-multiplying the position vector in the perifocal frame by the first rotation 

matrix then by the second, replacing the substitution variable, ζ, by the inclination, i, and 

right ascension, Ω respectively.  Note that any appearance of rv in the body of this work is 

the position vector in the ECI frame, K̂ĴÎr
v . 
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Appendix D 
 

Calculating R
v

in a Inertial Reference Frame from Receiver Latitude and Longitude 

Each point in the receiver grid is specified by geocentric latitude, gcφ , and 

longitude, λ, pairs.  With the goal of calculating visibility to these locations, the receiver 

vector, R
v

, must be specified in the ECI frame for incorporation into the oscillatory 

access function.  Latitude and longitude, however, are a type of Earth-Centered Earth-

Fixed (ECEF) representation (a coordinate system that rotates with the Earth).  The first 

step in the transformation is to form an ECEF position vector, ECEFR
v

, 

 

 

from gcφ  and λ.  Next, the ECEF vector of Eq. D.1 is converted to the inertial vector, 
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in ECI at any time, t, by premultiplying ECEFR
v

 by a rotation matrix about the polar K̂  

axis (see Eq. C.3 in Appendix C).  The argument of the rotation matrix is the product of t 

and the Earth’s rotation rate, ωe. 
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Appendix E 
 

Root Finding Methods 

Recall from Section 2.2.1 that the roots of an oscillatory access function provide 

the rise and set times of a satellite to a particular receiver location.  The two methods 

used in this research to determine roots, Newton’s or bisection, are described in the 

following sections.  The continuous polynomial, 

 

 

simulates an oscillatory access function (illustrated in Fig. E-1) and is used to 

demonstrate root finding with each method.  The goal is to find the time, t, during the 

time step bounded by [a,b] where the function produces a root. 

 

( ) 67 234 ++−−= tttttf  
[ ]42,t∈ , 

(E.1)
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E.1 Newton’s Method 

Newton’s method can be derived from a Taylor series expansion of f(t) about a 

point t = t0 + χ, where χ is the desired accuracy of the sought after root [111].  Using only 

the first order terms in the series expansion, 

 

 

iteration proceeds from the initial guess, t0, until the error is less than χ. 

In order to use this method, at the very least, the first derivative of the oscillatory 

function is required, the function must be continuous on [a,b], and a good starting point 

for the initial guess is generally helpful.  Table E-1 illustrates the iteration for Eq. E.1 

with t0 = 2.5 and χ = .001.  Newton’s method finds the root, 3.0, after 5 iterations. 

 

 
Figure E-1: Oscillatory function example 

( )
( )n

n
nn tf

tftt
′

−=+1 , n = 0, 1, 2, ..., (E.2)
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E.2 Bisection 

When Newton’s method diverges or derivative information is not available, the 

bisection method is used.  For this method to be successful, continuity is still a 

requirement and f(a) and f(b) must be of opposite signs.  The bisection method divides 

the interval [a,b] in half to produce c.  There are two possibilities: the first is that f(a) and 

f(c) have opposite signs; the second is that f(b) and f(c) have opposite signs.  Bisection is 

applied recursively to the subinterval, either [a,c] or [b,c] where the sign change occurs, 

until a particular convergence tolerance is achieved.  Table E-2 illustrates iteration with 

bisection on Eq. E.1 where a = 2.5 and b = 4.  The method converges in 13 iterations. 

 

Table E-1: Newton’s Method iteration 

Iteration nt  ( )ntf  ( )ntf ′  
0 2.5 −11.8125 9.75 
1 3.711538 51.91944 112.2254 
2 3.248903 12.48378 61.02274 
3 3.044327 1.848711 43.43405 
4 3.001763 0.070656 40.13412 
5 3.000003 0.000118 40.00022  
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The bisection method converges linearly, which is quite slow relative to Newton’s (which 

is at least quadratic), but is used when needed because convergence is guaranteed.  It is 

assumed that the time step selected is small enough (one-tenth of the orbital period) such 

that multiple roots will not exist in [a,b]. 

 

Table E-2: Bisection Method iteration 

Iteration a b c ( )af  ( )bf  ( )cf  
0 2.5 4 3.25 −11.8125 90 12.5508 
1 2.5 3.25 2.875 −11.8125 12.5508 −4.4275 
2 3.2 2.875 3.0625 12.5508 −4.4275 2.6511 
3 2.875 3.0625 2.9688 −4.4275 2.6511 −1.2132 
4 3.0625 2.9688 3.0156 2.6511 −1.2132 0.6343 
5 2.9688 3.0156 2.9922 −1.2132 0.6343 −0.3102 
6 3.0156 2.9922 3.0039 0.6343 −0.3102 0.1568 
7 2.9922 3.0039 2.998 −0.3102 0.1568 −0.078 
8 3.0039 2.998 3.001 0.1568 −0.078 0.0391 
9 2.998 3.001 2.9995 −0.078 0.0391 −0.0195 
10 3.001 2.9995 3.0002 0.0391 −0.0195 0.0098 
11 2.9995 3.0002 2.9999 −0.0195 0.0098 −0.0049 
12 3.0002 2.9999 3.0001 0.0098 −0.0049 0.0024 
13 2.9999 3.0001 3 −0.0049 0.0024 −0.0012  

 



 

 

Appendix F 
 

Multi-fold Access Interval Algorithm 

The GPS constellation requires a minimum of four-fold coverage to any receiver 

location in order to perform its mission.  The algorithm used to calculate multi-fold 

access is detailed in this appendix. 

Recall from Section 2.2.1 that access interval arrays consist of trise and tset pairs 

that mark the times when the satellite rises into view of the receiver and sets out of view 

during the propagation.  In order to calculate multi-fold coverage, a folds array, C, is 

constructed.  C is a multi-dimensional array of access intervals (which are themselves 

arrays) with the number of columns equal to the number of satellites in the constellation 

and number of rows equal to the maximum required fold calculation.  An example of the 

structure of this array for the GPS constellation with 24 satellites requiring four-fold 

coverage is shown in Table F-1.  The individual array elements in Table F-1 are 

initialized to zero interval arrays ([trise = 0 tset = 0]). 

 

Table F-1: Initialization of the folds array, C 

 Satellite Identifier 
Folds 1 2 3 4 … 24 

1 [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] 
2 [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] 
3 [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] 
4 [0 0] [0 0] [0 0] [0 0] [0 0] [0 0]  
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In order to populate C, the individual access intervals for every satellite must be 

calculated first.  Section 2.2.1 describes how this is accomplished via the oscillatory 

access function.  Hereafter, the sets of access intervals for each satellite to a single 

ground point will be delineated by the satellite identifier enclosed in square brackets, [s1].  

Table F-2, which is used to describe the multi-fold access interval algorithm, is populated 

from left to right, with the rightmost column containing the one-fold to four-fold access 

arrays for the constellation.  The algorithm begins by calculating element (1,1), denoted 

by [1Fs1] which is simply equal to the access interval array for satellite 1, [s1].  Next, 

moving to element (1,2), the single-fold access array for satellites 1 and 2, [1Fs2], is 

calculated by taking the union of [s1] and [1Fs1].  In element (2,2), the two-fold access 

array for satellites 1 and 2, [2Fs2], is found by intersecting the satellite 2 access array, 

[s2], with [1Fs1] calculated previously.  Element (1,3), the single-fold access for satellites 

1, 2, and 3, [1Fs3] is calculated by taking the union of the satellite 3 access array, [s3] and 

the previously calculated [1Fs2].  Moving down column 3 to element (2,3), the two-fold 

access interval array for satellites 1, 2, and 3, [2Fs3], is calculated by first intersecting the 

access array for one-fold coverage by satellites 1 and 2, [1Fs2], with the access array of 

satellite 3, [s3].  This result is then unioned with the two-fold access array of satellites 1 

and 2, [2Fs2] to give the two-fold access array of satellites 1, 2, and 3, [2Fs3].  This 

process of unions and intersections continues down each column proceeding from left to 

right until element (4,24) is finally calculated, [24Fs24], which is the four-fold access 

interval array for the entire 24-satellite constellation.  It is from this set of rise/set times 

that the coverage metrics are calculated.  As a reminder, the PDOP constraint and 

minimum elevation angle are incorporated into the oscillatory access function, so these 
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constraints have already been applied to the intervals that the multi-fold access algorithm 

receives. 

 



 

 

Table F-2: Multi-fold access interval algorithm 

 Satellite Identifier, s 
Folds 1 2 3 … 24 

1 [ ] [ ]111 sFs =  [ ] [ ] [ ]122 11 FssFs ∪=  [ ] [ ] [ ]233 11 FssFs ∪=  … [ ] [ ] [ ]232424 11 FssFs ∪=  
2 [0 0] [ ] [ ] [ ]122 12 FssFs ∩= [ ] [ ] [ ]( ) [ ]2323 212 FssFsFs ∪∩=  … [ ] [ ] [ ]( ) [ ]23242324 212 FssFsFs ∪∩=

3 [0 0] [0 0] [ ] [ ] [ ]233 23 FssFs ∩=  … [ ] [ ] [ ]( ) [ ]23242324 323 FssFsFs ∪∩=

4 [0 0] [0 0] [0 0] … [ ] [ ] [ ]( ) [ ]23242324 434 FssFsFs ∪∩= 
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Appendix G 
 

Results for Case-1b, Case-2a, and Case-2b 

Case-1b, Case-2a, and Case-2b imposed the constraint that all satellites 

maneuvered would share a common K decision variable.  The common K allowed for 

observations to be made regarding chromosome length and problem complexity but has 

little practical use since there is generally no reason to require such a constraint.  As such, 

the hypervolumes and decision variable plots for these Cases are provided here for 

completeness but they have little value in the decision making process illustrated in 

Chapter 5. 
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G.1 One Satellite Lost, Idealized Assumptions 

 

 

 

 
Figure G-1: Glyph hypervolume at run termination, Case-1b-ideal (one satellite lost, 

PDOP<2) 
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Figure G-2: Hypervolume decision variable plot, Case-1b-ideal (one satellite lost, 

PDOP<2) common phasing orbits, K, plus change in phase, αs, for each epsilon non-
dominated design, sorted by ( )xf v

6  ascending 
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G.2 One Satellite Lost, Operational Assumptions 

 

 

 

 
Figure G-3: Glyph hypervolume at run termination, Case-1b-op (one satellite lost, 

PDOP<2) 
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Figure G-4: Hypervolume decision variable plot, Case-1b-op (one satellite lost, PDOP<2) 

common phasing orbits, K, plus change in phase, αs, for each epsilon non-dominated 
design, sorted by ( )xf v

6  ascending 
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G.3 One Plane Lost, Idealized Assumptions 

 

 

 

 
Figure G-5: Glyph hypervolume at run termination, Case-2a-ideal (one plane lost, 

PDOP<6) 
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Figure G-6: Hypervolume decision variable plot, Case-2a-ideal (one plane lost, PDOP<6) 
common phasing orbits, K, plus change in phase, αs, for each epsilon non-dominated 

design, sorted by ( )xf v
6  ascending 
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Figure G-7: Glyph hypervolume at run termination, Case-2b-ideal (one plane lost, 

PDOP<2) 
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Figure G-8: Hypervolume decision variable plot, Case-2b-ideal (one plane lost, PDOP<2) 
common phasing orbits, K, plus change in phase, αs, for each epsilon non-dominated 

design, sorted by ( )xf v
6  ascending 
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G.4 One Plane Lost, Operational Assumptions 

 

 

 

 
Figure G-9: Glyph hypervolume at run termination, Case-2a-op (one plane lost, 

PDOP<6) 
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Figure G-10: Hypervolume decision variable plot, Case-2a-op (one plane lost, PDOP<6) 
common phasing orbits, K, plus change in phase, αs, for each epsilon non-dominated 

design, sorted by ( )xf v
6  ascending 
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Figure G-11: Glyph hypervolume at run termination, Case-2b-op (one plane lost, 

PDOP<2) 
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Figure G-12: Hypervolume decision variable plot, Case-2b-op (one plane lost, PDOP<2) 
common phasing orbits, K, plus change in phase, αs, for each epsilon non-dominated 

design, sorted by ( )xf v
6  ascending 
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