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Abstract 

 
Engineering design problems often contain correlations and trade-offs that may or may 
not be obvious or well-understood.  As design problem complexity increases, decision 
makers find it more and more difficult to grasp these trade-offs effectively.  The rapid 
growth of computing power now allows the simulation of millions of design alternatives.   
Understanding the trade-offs associated with these alternatives has never been more 
important.  Trade space visualization tools are being developed to aid decision makers by 
allowing them to effectively explore a design space and identify the underlying trade-offs 
and nuances particular to a specific problem.  These tools provide great potential in 
evaluating complex dynamical systems in the aerospace industry, among others.   
 
This work explores the application of the Applied Research Lab Trade Space Visualizer 
(ATSV) to various discrete and continuous complex dynamical systems.  First, the 
motivation for and capabilities of ATSV are covered.  Then, ATSV is applied to two test 
problems: (1) a nonlinear mass-spring-damper system and (2) a simple two-burn 
impulsive spacecraft maneuver.  Optimal Pareto solution sets are obtained for each 
system.  Finally, the application of ATSV to more complicated continuous thrust 
spacecraft maneuvers is considered.  The identification of a known optimal solution is 
followed by modification of the equations of motion to include a discrete hardware-side 
design variable, namely, engine type.  Optimal solutions are located for each 
corresponding design variable option.  A study is performed to understand the sensitivity 
of optimal trajectories to perturbations of the initial orbit.  For each problem explored in 
this work, qualitative observations are made on the effectiveness of ATSV as a solution 
acquisition tool with particular emphasis on ATSV’s visual steering capabilities. 
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Chapter 1: Introduction 
 
In industry, a seemingly infinite number of engineering design problems are modeled by 
complex dynamical systems.  Practical analyses of these systems often reveal that solving 
real-world problems is rarely as simple as stakeholders wish.  Frequently, a decision 
maker must consider trade-offs that exist between competing objectives and decisions of 
interest.  The rapid growth of computational and graphical power of personal computers 
in recent years has sparked the scientific community’s interest in visualizing complex 
problem trade spaces, trade space optimization using evolutionary strategies, and the 
ability to enhance search by integrating the human back into the automated optimization 
process. 
 
This thesis applies trade space visualization software to several discrete and continuous 
complex dynamical systems in order to 

1. Locate optimal solutions or solution sets, 
2. Gain a practical understanding of underlying correlations within datasets, and 
3. Comment on the efficacy of solution acquisition through human-in-the-loop 

optimization via visual steering. 
 

A thorough explanation of trade space visualization and the software used in this work is 
given in Chapter 2.  The subject of Chapter 3 is the application of trade space 
visualization software to two simple test problems: a nonlinear mass-spring-damper 
system and a two-burn impulsive spacecraft maneuver.  Continuous-thrust orbital 
maneuvers and the acquisition of optimal spacecraft trajectories via visual trade space 
exploration are the focus of Chapter 4.  General conclusions drawn from this research are 
the subject of Chapter 5. 
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Chapter 2: Trade Space Visualization 
 
Engineering design problems often contain correlations and trade-offs that may or may 
not be obvious or well-understood.  For simple engineering problems, these trade-offs 
may be trivial or even negligible.  As design problems become more and more complex, 
it is necessary to develop tools that permit decision makers to grasp these nuances 
effectively.  Trade space visualization tools are designed for this purpose.  This chapter 
describes in detail the motivation for trade space visualization (TSV) and the TSV 
software used in this thesis, the Applied Research Lab Trade Space Visualizer (ATSV). 

2.1 Motivation 
Complex design can be considered a decision making process, where a classical approach 
to the optimal decision process can be described by [1]: 

• Identify options 
• Identify ways to evaluate options 
• Weight each evaluation dimension 
• Do the rating 
• Pick the option with the highest score 

This method, rational choice analyses, is taught in engineering and business curriculums 
across the country.  With this approach, rational choices are made after applying game-
theoretic or statistical-theoretic methods to a problem [2].  More recently, there has been 
a body of research focusing on observing expert decision makers.  As a result, some have 
proposed new ideas on how optimization-based design should be approached.   
 
Balling has introduced a new paradigm for the optimization-based design process which 
he calls Design by Shopping [3].  He notes that designers using traditional optimization-
based design processes were often left unsatisfied with their results.  This is usually the 
result of the design problem being improperly formulated when the objectives and 
constraints are initially defined.  “The objectives and constraints used in optimization 
were not what the owners and stakeholders really wanted… in many cases, people don’t 
know what they really want until they see some designs.”  Furthermore, in a 
psychological study, Wilson and Schooler [4] have found that people often do worse at 
decision making tasks when they are asked to explain the reasons for their preferences.  
The Design by Shopping process allows a decision maker to first explore the design space 
in order to form “realistic expectations of what is possible” [3].  This gives the user more 
control over the optimization process by first allowing them to form an a posteriori 
articulation of preferences based on visualization and then choose an optimal design 
based on those preferences [5]. 
 
When exploring a trade space, equally optimal solutions with respect to multiple 
conflicting objectives are known as Pareto optimal points within the data set.  Pareto 
optimality is described in detail in Section 2.2.2.  Finding the Pareto set in a large design 
space without efficient search capabilities can be arduous. A suitable set of 
computationally-efficient algorithms have been developed as part of our previous work 
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(See References [6]-[8]) and have since been incorporated into ATSV, allowing us to 
evolutionarily search the design space and interactively “steer” solutions during the 
exploration process. 
 
Within the visualization community, interactive optimization-based design methods fall 
mainly into the category of computational steering whereby the user (i.e., designer) 
interacts with a simulation during the optimization process to help “steer” the search 
process toward what looks like an optimal solution.  The steering process allows the 
designer to gain new perspectives on correlations within the problem and use intuition, 
heuristics, or some other method to adjust the design space to move towards solutions 
that they feel are promising.  Visual Steering can be defined as the process of observing a 
search and making adjustments to it in real time as the user sees fit.  It allows the user to 
simultaneously explore the trade space and exploit new information and insights as they 
are gained [9].  On the importance of visualization in engineering optimization, Messac 
and Chen [10] noted: “If effectively exploited, visualizing the optimization process in 
real time can greatly increase the effectiveness of practical engineering optimization.”  
Furthermore, Ng [11] advocates the use of data visualization and interaction to support 
the designer in making informed decisions and trade-offs during multiobjective 
optimization.  Many others argue that visualization should be considered a solution tool 
and that “human-in-the-loop” optimization has significant advantages over black-box 
search algorithms [12], [13].   
 
The Applied Research Lab (ARL) Trade Space Visualizer (ATSV)*

[14]
 used in this research 

has been developed to support the exploration phase of the design process -[16].  
Throughout this work, ATSV is utilized as a trade space exploration tool for evaluating 
design and objective spaces.  Section 2.2 more fully describes the functionality of the in-
development ATSV software. 

2.2 Multi-Dimensional Trade Space Visualization using ATSV 
ATSV is a Java application that displays multi-dimensional trade spaces using glyph, 
histogram, scatter, scatter matrix, and parallel coordinate plots [16].  ATSV offers 
combinations of visualization and evaluation tools that aid in problem solving such as: 
higher dimensional plots, plot linking, brush controls, preference shading, and real-time 
visualization of evolutionary search [14]-[16].  The software is designed such that the 
user can implement visual steering commands to navigate multi-attribute trade spaces via 
various samplers. Since ATSV is developed in Java, its cross-platform compatibility 
allows relatively simple model integration, giving it an advantage over many 
commercially-available software systems.  The following subsections describe ATSV 
features that are used in this thesis including plots, preference and brush controls, 
sampling types, and ATSV’s evolutionary search technique. 

2.2.1 Plots 
For complex decision and objective spaces, the glyph plot is the key to visualizing many 
dimensions simultaneously.  The glyph plot is capable of displaying eight dimensions 

                                                 
* “Applied Research Laboratory Trade Space Visualization”, http://www.atsv.psu.edu, date cited 3/01/09. 

http://www.atsv.psu.edu/�
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simultaneously: three spatial dimensions as well as point size, color, transparency, 
orientation, and text overlay.  Using the mouse, the user can navigate through the dataset, 
plotting any variable with respect to any of the other seven variables.   Figure 1 shows an 
example glyph plot which displays seven variables simultaneously: three objectives, three 
decisions, and a preference function. 
 

 
Figure 1: Example Glyph Plot Showing 7 Variables Simultaneously 

 
Objective functions f1, f2, and f3 are plotted on the spatial axes.  Decision variables x1, 
x2, and x3 are represented by point size, orientation, and transparency respectively.  In 
Figure 1, point color represents the quality of solutions based on the preference controls 
specified by the user.  A detailed explanation of preference controls can be found in 
Section 2.2.2. 
 
The two-dimensional scatter plot is preferred for simpler problems containing less 
decisions and objectives.  The scatter plot allows the user to visualize two spatial 
dimensions and a third dimension represented by color.  An example scatter plot is shown 
in Figure 2.  Objectives f1 and f2 are plotted on the x and y spatial axes and objective f3 
is represented by the color contour. 
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Figure 2: Example Scatter Plot Showing 3 Objective Functions 

 
ATSV can also display scatter matrix, parallel coordinates, and histogram plots.  The 
scatter matrix shows thumbnail images of 2D scatter plots showing each variable versus 
every other variable.  This allows the user to quickly locate and recognize patterns in 
decision space and objective function data.  The parallel coordinates plot shows graphical 
representations of relationships between design inputs and objective functions as lines 
between values.  It is useful for identifying connections and relationships between 
variables of interest that might otherwise be difficult to discover.  Statistical distributions 
of values of design inputs and objective functions are visualized with the histogram plot.  
This type of visualization is useful for understanding how design input distributions may 
affect objective functions of interest.  The two-dimensional histogram plot allows the 
user to visualize distributions of two variables of interest simultaneously.  Examples of 
scatter matrix, parallel coordinates, and histogram plots can be found in Appendix A. 
 

2.2.2 Brush and Preference Controls and Pareto Optimality 
For each decision space and objective function of interest, there is the ability to view only 
specified points between certain feasible ranges by “brushing” the dataset [16].  
Preference controls allow the user to specify a desired minimization or maximization of 
specific objective functions, permitting ATSV to filter the corresponding Pareto frontier 
(optimal solution set) from the dataset.   
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The Pareto frontier, also known as the Pareto set or non-dominated set, is the set of 
solutions that are simultaneously optimal in each objective of interest.  These points are 
considered “non-dominated” because no other points in the dataset are more preferred 
when considering all objectives simultaneously [17].  Accordingly, “dominated” 
solutions are those which are less optimal in one or more objectives than the non-
dominated solutions. 
 
As an example, ATSV is used to explore a trade space populated with 277 different 
automobiles.  Each automobile has unique properties: highway efficiency, horsepower, 
model, make, year, fuel capacity, number of cylinders, etc.  Some or all of these 
properties may be of interest to the decision maker.  For example, the decision maker 
may have preferences on two objectives for an automobile trade space: maximize 
horsepower and maximize highway fuel efficiency.  ATSV Brush and Preference 
Controls can be added for each decision or objective of interest.  If the decision maker 
has knowledge of what range of these values are feasible, the minimum and maximum 
values can be entered to “brush” out infeasible values.  For example, the user can reduce 
the visible dataset to automobiles with horsepower between 150 and 250, and highway 
efficiency above 20 mpg.  The Brush/Preference Controls window corresponding to these 
settings is shown in Figure 3. 
 

 
 

Figure 3: Brush/Preference Controls Window for Example Automobile Dataset 
 
The resulting brushed dataset showing highway efficiency versus horsepower might look 
something like Figure 4.  The gray points show designs rendered infeasible as specified 
by the brush controls.  The red points are feasible solutions within the specified ranges.  
Points marked with a black + symbol show the Pareto frontier formulated from the 
preference controls [6], [16].  These are the solutions that mutually maximize horsepower 
and highway efficiency and lie within the feasible objective space. 
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Figure 4: Brushed Car Dataset Showing Infeasible Designs (Gray), Feasible Designs 

(Red), and the Pareto Solutions (Marked by +). 

2.2.3 Datasets and Sampling 
ATSV can explore design spaces statically or dynamically.  Static data sets, generated 
from an external model, are read from comma-, space-, or tab-delimited text or 
spreadsheet files (filename.csv in Excel).  Decision variables and objective functions and 
their values for each solution alternative are organized within these files as shown in 
Table 1. 
 

Table 1:  Structure of Static (.csv) Spreadsheet Data Files 
 

Solution 
Alternative 

Decision 
Variable 

#1 

Decision 
Variable 

#2 

Objective 
Function 

#1 

Objective 
Function 

#2 

… Objective/ 
Decision 

#n 
1 <value> <value> <value> <value> … …<value> 
2 <value> <value> <value> <value> … …<value> 
3 <value> <value> <value> <value> … …<value> 

 
Dynamic datasets more fully utilize the full potential of ATSV by integrating visual 
steering into the exploration process.  Dynamic datasets are generated by integrating 
ATSV with external code via a “wrapper” that allows ATSV to directly sample design 
inputs to generate new design alternatives and visualize objective function outputs.  The 
process of sampling a design input and generating a new solution alternative is also 
known as a single function evaluation.   
 
Currently, ATSV has the ability to specify five types of visual steering commands to 
generate new data by random sampling, manual sampling, attractor-based sampling, 
preference-based sampling, and Pareto sampling [16].  Random sampling will randomly 
generate values for each design input between specified limits with uniform or normal 
distributions.  This type of sampling is designed to populate the objective space with 
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random points, possibly to attempt to identify general trends early in the exploration 
process.  Manual sampling allows the user to precisely pick design input values using 
slider bars and visualize the corresponding single solution in the objective space.  
Preference based sampling will generate points in a region of interest specified by the 
weights on objectives of interest in the Preference Controls.   Pareto sampling will 
generate solutions along the Pareto frontier.  The Pareto frontier must be defined by the 
user by specifying a direction of preference for each objective function under 
consideration.  ATSV’s attractor based sampling creates points in the objective space 
close to a desired location, specified by an “attractor”. 
 
Attractors, specified in the interface by the  icon, generate points near a specified n-
dimensional location in the trade space.  These attractors, also referred to as point 
samplers, can be used to create a cluster of points in the trade space in order to “fill gaps” 
or explore a specific space in more detail.  An evolutionary algorithm, specifically 
Differential Evolution [18], is used to guide the sampling process for the attractor, Pareto, 
and Preference samplers in order generate points in the objective space from n-
dimensional discrete and continuous inputs [14].  Details on the implementation of 
Differential Evolution within ATSV can be found in Section 2.2.4.   
 
A new modification of ATSV’s Pareto sampler, the guided Pareto sampler, allows the 
user to select some or all of the initial population from a current dataset to be used in the 
evolution process [16].  This can be used to search specific regions of the objective space 
by biasing the initial population based on user intuition or knowledge gained from a 
previous evolution.  This type of “human-in-the-loop” evolution provides obvious 
advantages over traditional black-box evolutionary strategies by integrating the solution 
process with heuristics that cannot yet be modeled by software.  In Figure 5, an example 
of ATSV’s guided Pareto sampling is shown for an arbitrary objective space consisting of 
objectives f1, f2, and f3.  The plot on the left shows the selection of 11 points used to 
guide the evolution process, and the plot on the right represents the same dataset a few 
generations later.  Note that the new solutions produced in the evolution process are 
similar to the points selected for guiding. 

 
Figure 5: Example of Guided Pareto Sampling 

 

f1 

f2 
f3 f3 f2 
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2.2.4 Evolutionary Search using Differential Evolution 
Differential Evolution (DE) is an evolutionary algorithm that was created by Price and 
Storn and has gained popularity in recent years due to its relatively simplistic technique 
and robust capabilities with regard to optimization [18].  DE is a real-coded algorithm 
that uses the fundamental operators of mutation, crossover, and selection. 
 
Initially, a random population (Px) of Np D–dimensional vectors are generated.  The 
elements of a vector of size D represent D individual design parameters (decisions) and a 
population of size Np represents Np vectors in the evolution process.  Once the current 
population of target vectors Px is initialized, DE produces an intermediate population of 
Np mutant vectors (Pv,g).  These mutant vectors are the result of adding a scaled vector 
difference between two other random vectors to a third base vector.  A trial population 
(Pu) is then generated by recombining each vector in the current population with a mutant 
vector.  The crossover probability in this recombination technique determines how many 
of the parameters from a mutant vector are copied to the target vector.  These trial vectors 
are then compared against their corresponding target vectors; if a trial vector has an equal 
or better fitness than its corresponding target, it replaces the target vector in the next 
generation [18].  Analogous to biological evolution, each time this process repeats a new 
“generation” of solutions is created. 
 
There are many DE strategies and they are described succinctly using the following 
notation: DE / base vector choice method / # of vector differences added to base vector / 
distribution of parameters donated by mutants.  For example, the DE strategy 
“DE/Rand/1/bin” chooses a base vector randomly, one vector difference is added to the 
base vector, and the number of parameters donated by the mutant vector follows a 
binomial distribution [18]. 
 
Though DE was originally designed for single objective optimization problems, it can be 
extended into the multi-objective optimization realm by modifying the selection 
procedure using a Pareto-based approach [17].  The Pareto Differential Evolution method 
incorporates the fast nondominated sorting and ranking selection scheme developed by 
Deb et al. used in the successful NSGA-II algorithm [19].  After the trial population is 
generated from the mutation and crossover operators, it is combined with the parent 
population and the combined set undergoes a nondominated sorting and ranking.  The 
ranking procedure used in the NSGA-II algorithm incorporates the use of non-dominated 
rank and diversity rank to promote Pareto frontier convergence and prevent solution 
crowding [17], [19].  Using this technique, the next generation is then comprised of the 
best Np members of the population and the entire process repeats until some stopping 
criterion is met.  In ATSV’s Pareto sampler, which employs the aforementioned modified 
DE technique, the stopping criterion is set to a maximum number of generations by way 
of modifying the maximum number of dataset members [16]. 
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2.3 ATSV-Excel-MATLAB System 
In order to fully exercise the search and visualization capabilities of ATSV, it is 
necessary to directly link ATSV to the problem model.  Currently, ATSV links efficiently 
with Java, C++, and Excel wrapper files.  These wrapper files “wrap” around the problem 
model, making integration into ATSV simpler; it bypasses the modification of the model 
code directly and instead links ATSV with any model that accepts inputs and delivers 
outputs. 
 
For most problems, the wrapper type that is most easily created and maintained is the 
Excel wrapper because of its widespread use and simple user interface.  An Excel 
wrapper is simply an Excel spreadsheet that links directly to ATSV.  The spreadsheet 
contains cells for each problem input and output.  The spreadsheet can be used as a link 
to another program (e.g., MATLAB) or can contain the problem model itself. 
 
Figure 6 shows a simple example of an Excel wrapper that contains the problem model 
and the corresponding settings for the Exploration Engine in ATSV.  Here, cells read or 
written by ATSV are highlighted in yellow; the decision variables x1 and x2 are listed in 
the left table, and the objectives f1 and f2 are listed in the right table.  In this example, the 
problem model is simply the addition of x1 and x2 for objective f1 and the division of x1 
by x2 for objective f2. 

 

 
Figure 6: Example Excel Wrapper (left) that Contains Problem Model and 

Corresponding Settings for Exploration Engine in ATSV 
 
The top right window in Figure 6 shows the creation of the Exploration Engine 
configuration file used to link ATSV to Excel.  This is how variables are assigned to 
specific cells and how input sampling boundaries are set.  Once the Exploration Engine is 
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created, ATSV can explicitly change inputs x1 and x2 in Excel and read the outputs f1 and 
f2 after those cells are updated by the problem model. 
 
Engineering problems requiring optimization are often more complex than the library of 
mathematical functions Excel offers.  For problems that require integration of dynamical 
equations of motion, it is convenient to have the ability to utilize any of the integration 
functions built into MATLAB libraries.  This can be accomplished by using an Excel 
wrapper that links to MATLAB via the Spreadsheet Link.  Developed by Mathworks as 
an add-on to MATLAB, Spreadsheet Link allows Excel to call MATLAB functions 
directly from a cell formula.  The only downfall of the integration of MATLAB into 
Excel is the trade-off associated with MATLAB, primarily the trading of robustness for 
computational efficiency.  It can be argued that MATLAB’s built-in integration functions 
are not the fastest computational integrators.  Developing a Java program which 
integrates the equations of motion may actually be faster per function evaluation.  
However, the time it would take to develop such software may outweigh any overall 
gains it may inherently have.  For this reason, dynamical equations of motion are 
numerically integrated in MATLAB, which is then connected to ATSV via the method 
described in this section.  In the next chapter, the application of ATSV to two simple test 
problems is explored. 
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Chapter 3: ATSV Test Problems 

3.1 Nonlinear Mass-Spring-Damper 
In order to test ATSV’s visual steering capabilities on a problem that requires integration 
of dynamical equations of motion, a simple nonlinear mass-spring-damper problem is 
developed and tested first. 

3.1.1 Problem Formulation 
 
A simple drawing of the nonlinear mass-spring-damper system is shown in Figure 7.  The 
mass m is restricted to linear motion with amplitude x and velocity v.  The mass is subject 
to the periodic forcing function f(t) as well as a linear damping coefficient c and linear, 
quadratic, and cubic spring stiffnesses k1, k2, and k3 respectively. 
 

 
Figure 7: Illustration of Nonlinear Mass-Spring-Damper System 

 
From simple vibration theory, the system state vector y  and its dynamical equations of 
motion are defined as: 
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The Excel front-end for this problem is shown in Figure 8.  The design space is 
summarized in the topmost table, the initial conditions and integration options are listed 
in the middle table, and the objective space is summarized in the bottommost table.  The 

 
m 

Linear, quadratic, and cubic 
spring stiffness k1, k2, k3 

Damping coefficient c 

Amplitude 
and velocity 

x, v Forcing function 
f(t)=focos(ωt) 



 13 

“execute” button exists as a debugging tool and will run a single model simulation 
without ATSV. 
 

 
Figure 8: Excel Front-End for Nonlinear Mass-Spring-Damper Test Problem 

 
Cells read or written by ATSV are highlighted in yellow.  Note that the decision space 
consists of five components which describe the specific physics of the problem (m, k1, k2, 
k3, c) subject to an external forcing function described by an excitation frequency and 
amplitude (ω, fo).  Not all of the objectives listed in the bottommost table are necessarily 
of interest; they are included in this Exploration Engine in the event new objectives are to 
be explored with the same wrapper.  For this particular test problem, the objectives of 
interest (vmax, freqclosest, and cost) are shown in bold.  These objectives are to maximize 
the difference between the excitation frequency (fo) and the first mode frequency of the 
vibration and simultaneously minimize the maximum absolute velocity experienced by 
the mass (m) and the cost function.  The cost function is a hypothetical function which 
models the “cost” of the system based on cost per unit of individual components (m, k1, 
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k2, k3, c).  The cost per unit is arbitrarily defined here in cells G5-G8 and the resulting 
summation, shown in the Formula Bar, can be found in cell D28 in Figure 8. 
 
The ATSV Exploration Engine used to generate the results in Section 3.1.2 is shown in 
Figure 9.  The decision space search ranges are arbitrarily defined as [0, 10] (continuous) 
for k1, k2, k3, and c and [1, 2, 3, 4, 5] (discrete) for m.  The external forcing function 
parameters are chosen to be ω= 0.5 rad/s and  fo = 2 N. 
 

 
Figure 9: ATSV Exploration Engine Showing Decision Space Search Ranges for 

Nonlinear Mass-Spring-Damper Test Problem 
 
 

3.1.2 Results 
 
Figure 10 shows a glyph plot of 5000 randomly sampled solutions with the cost, vmax, and 
freqclosest objectives plotted on the spatial axes.  From inspection, there is competition 
between the minimization of cost and vmax but the maximization of freqclosest does not 
compete with any other objective. 
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Figure 10: Two Views of Glyph Plot Showing Preliminary Randomly Sampled 
Dataset with cost, vmax, and freqclosest on the Spatial Axes. 

 
Since one of the objectives does not compete with the others, the dataset can be more 
easily visualized without information loss as a scatter plot.  Scatter plots of the competing 
objectives cost and vmax with freqclosest as the color contour are shown in Figure 11(a) and 
(b).  Solutions from the randomly sampled dataset are used to guide the evolution process 
using the guided Pareto sampler.  These points are marked by a black circle in Figure 
11(a).  Figure 11(b) shows the dataset many generations later.  By selecting points near 
the Pareto frontier in the preliminary dataset to guide the evolution, solutions are 
generated along the cost vs. vmax Pareto frontier quickly. 
 
 

 
Figure 11:  Scatter Plots (a) Before a Guided Pareto Sampler Evolution with 

Guiding Points Marked by Black Circle and (b) Many Generations Later 
 
 

  
(a) (b) 
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A more precise visualization of the Pareto optimal solutions for this nonlinear mass-
spring-damper system is shown in Figure 12.  The color contour has been set to the 
decision varible, m, the discrete system mass.  As shown, the discreteness of a single 
decision creates observable gaps in the behavior of the non-dominated solution set.  The 
“stair-step” pattern can be considered the superposition of Pareto frontiers for each 
respective value of m on the same plot.  Since the discrete decision m highly influences 
the mechanics of the system, one might expect to observe correlated discreteness in the 
solution set. 
 

 
Figure 12:  Scatter Plot Showing Close-up of Non-Continuous Pareto Frontier 

Caused by Discrete Decision m 
 
 

3.2 Two-Burn Impulsive Spacecraft Maneuvers 
 
The two-burn impulsive orbital spacecraft maneuver test problem discussed in this 
section explores the capabilities of ATSV when using static datasets.  The visualization 
of solutions and the location of the Pareto solution set is accomplished without linking 
ATSV to the problem model. 

3.2.1 Problem Formulation 
A spacecraft in orbit can be defined by a set of six orbital elements which describe its 
orientation in space [20].  The classical orbital elements (semi-major axis a, eccentricity 
e, inclination i, right ascension of the ascending node Ω, argument of periapsis ω, and 
true anomaly θ) describe the size (a) and shape (e) as well as the orientation (i, Ω, ω) of 
the orbit.  The sixth element (θ) describes the angular position of the spacecraft on the 
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particular orbit described by the previous five elements.  An illustration of these elements 
is shown in Figure 13. 

 
Figure 13: Illustration of Classical Orbital Elements [20] 

 
 

The test problem of interest models an impulsively delivered two-burn plane change 
spacecraft maneuver from an initial circular orbit to a higher altitude circular orbit.  The 
impulsive changes in velocities (ΔV’s) are constrained to be delivered at the nodal 
crossings (see Figure 14 points A and B) to prevent alteration of the right ascension of the 
ascending node.  A graphical illustration of this two-burn transfer is shown in Figure 14. 
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Figure 14: Graphical Illustration of Two-Burn Transfer 
 

The green orbit is the initial circular orbit at inclination i1 shown in Figure 14(a) and (b), 
the blue orbit is the arc traced by the transfer ellipse at inclination it, and the dotted line 
represents the direction of the final circular orbit at inclination i2.  ΔV1 is the impulsively-
delivered velocity change at the first nodal crossing, and it is delivered at a flight path 
angle of Φ with respect to the orbit tangential direction, and an out-of-plane angle β as 
shown in Figure 15 and Figure 14(a), where x'-y' is the plane of the initial circular orbit.  
The problem decisions and objectives with corresponding ranges and preferences are 
summarized in Table 2. 

 

 
Figure 15: Illustration of Flight Path Angle Φ and Out-of-Plane Angle β. 
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Table 2: Impulsive Orbital Problem Decision Variables and Objectives with 
Respective Ranges/Preferences 

 
Decision Variables Range 

ΔV1 ΔV1 > 0 
Out-of-plane angle, β -90° < β < -90° 
Flight path angle, Φ -45° < Φ < 45° 

Objectives Preference 
ΔVTotal Minimize 

Time of Flight Minimize 
Final Orbital Radius r2 Maximize 

Practical Discrete Boolean 
 
Note that only outputs of critical design criteria are listed in Table 2.  All relevant 
variables generated in the model are included in the dataset. 
 
The MATLAB code algorithm developed for this example is shown as a flow chart in 
Figure 16.  First, the inclination (i1) and altitude of the initial circular orbit are specified.  
Then, the essential orbital elements are calculated for this initial orbit.  Next, the code 
randomly varies ΔV1, Φ, and β between the ranges specified in Table 2, and the resulting 
characteristics regarding the transfer and final orbits are obtained.  This information, 
including objective functions ΔVTotal, time of flight, and final orbital radius, is calculated 
by solving Lambert’s problem using Lagrange coefficients [20]. 
 
Each orbit trio is evaluated for practicality based on the rotation of the orbit planes 
between the initial, transfer, and final orbits.  If the transfer orbit has an inclination that is 
not between the inclination of the initial and final orbits, the solution is considered 
impractical.  Though these solutions are feasible, they represent all orbit trios aligned 
with a “one step backward, two steps forward” approach.  Once the program has looped 
through all population members, all objectives of interest are written to a comma-
delimited (.csv) spreadsheet file. 
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Figure 16: Flowchart Depicting the Algorithm of the MATLAB Code 
 
Common initial orbital parameters were chosen for the solutions generated in this work, 
as listed in Table 3.  The initial inclination i1, initial circular orbit altitude, and final 
inclination i2, were chosen to represent an orbital transfer from 28.5°, 500 km low-Earth 
orbit (LEO) to equatorial geosynchronous Earth orbit (GEO). 
 

Table 3: Initial and Desired Final Orbit Characteristics 
 

Initial altitude LEO 500 km 
Initial inclination i1 28.5° 

Final altitude GEO 35,786 km 
Final inclination i2 0° 

3.2.2 Results 
 
Using the MATLAB code as described by Figure 16, a static dataset consisting of 10,000 
members is generated for the orbital transfer problem specified in Table 3.  Plotting the 
three objective functions of interest (ΔVTotal, time of flight, and final orbital radius) on 
each of the spatial axes creates a three-dimensional envelope, as shown in Figure 17.  
Figure 17(b) shows an iso-surface at a final orbital radius corresponding to the final 
desired altitude of 35,786 km.  This plane shows the region of interest to be further 
explored in ATSV. 
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Figure 17: (a) Static Dataset Consisting of 10,000 Members.  (b) Isosurface Showing 

Plane of Interest Near GEO Altitude and Pareto Solutions 
 
The red and blue points are solutions that are practical and impractical, respectively, 
based on the aforementioned criteria.  The solutions marked with a black + symbol 
represent the Pareto solutions as specified by the preferences shown in the 
Preference/Brush Control Window in Figure 18.  These settings aim to highlight 
solutions that simultaneously minimize ΔVTotal and time of flight while maximizing the 
radius of the final circular orbit. 
 

(b) 

(a) 
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Figure 18: Brush/Preference Controls Window for Orbital Problem Solution Set 
 
The static dataset shown in Figure 17 has been brushed to exclude all points that have a 
final orbital radius outside the region of interest, nominally specified to be between a 
final orbital radius of 40,000 km and 45,000 km.  The resulting dataset is shown in Figure 
19(a).  
 
Figure 19(b) shows the problem input distribution for the first impulsive maneuver as an 
ATSV histogram.  The white bars show the total distribution of each input 
(approximately uniform), and the red bars show the distribution of inputs for the brushed 
dataset.   Essentially, any bins without red represent inputs that create solutions far away 
from the area of interest.  Proceeding logically, the range of inputs should be reduced by 
the user to increase the likelihood of generating solutions within the region of interest.  
From visual inspection of the histograms, reducing inputs to larger values of ΔV1 would 
be most effective.  Also, as shown in the color contour in Figure 19(a), non-positive 
values of Φ create solutions along the Pareto frontier that minimize ΔVTotal and flight 
time.  
 

 
Figure 19: (a) Static Dataset Brushed to Final Orbital Radius Between 40,000 and 

45,000 km.  (b)  Histogram plot of Inputs Brushed in the Same Manner 

 

(a) 

 

(b) 
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By changing the random distribution of ΔV1 from [0, 3.0] km/s to [2.0, 3.0] km/s and Φ 
from [-45°, 45°] to [-45°, 0] in the model, a population of 10,000 solutions generates 
approximately 500 new points in the region of interest.  By generating static datasets, 
brushing to the region of interest, and exporting visible designs, the solutions in the 
region of interest are stored in a separate file.  Just a few iterations of this technique result 
in the concatenation of all these region specific points shown in Figure 20(a) and (b). 

 
 

Figure 20: (a) and (b) Two Perspectives of Densely Populated Region of Interest 
with Iso-surface at GEO Altitude 

 
With a more densely populated region of interest, trends in the dataset can be more easily 
interpreted.  As shown in Figure 20, the three-dimensional envelope formed by the 
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practical (red) points seems to be representable by a continuous Pareto surface.  Because 
of the specific physics which describe the model, this apparent continuality leads to the 
conclusion that this problem may be suited for visualization through static datasets.  In 
other words, the nature of the problem results in easily acquired Pareto solutions through 
random sampling, and no “gaps” exist near the Pareto frontier that must be filled. 
 
Using ATSV’s scatter matrix plot, one can easily view trends between variables of 
interest.  A scatter matrix, brushed to ±50 km from the target GEO altitude, is shown in 
Figure 21.  Once again, gray points represent “brushed out” points, and red and blue 
points are the practical and impractical solutions respectively which fall within this 
criterion.  Because of this ±50 km brushing, the trends that follow can be considered 
specific to the LEO to GEO problem parameters listed in Table 3.  Though not all points 
fall precisely on the plane formed by the geostationary altitude, these solutions are 
considered in the neighborhood and would undoubtedly be subject to orbital fine tuning 
and phasing, but this is beyond the scope of this demonstration. 
 

 
Figure 21:  Scatter Matrix Plot of Variables of Interest 

 
The two highlighted scatter plots, time of flight vs. ΔVTotal, and ΔVTotal vs. Δi1 are of 
particular interest.  These plots are enlarged and shown in Figure 22 and Figure 23 
respectively.  The trend of the Pareto frontier in Figure 22 shows an inverse relationship 
between time of flight and ΔVTotal.  Furthermore, it resembles the expected solution for a 
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two-dimensional version of this problem with no plane change (from Lambert’s problem) 
[20].  Intuitively, the trend’s shape remains similar for different desired final orbit sizes. 
 

 
 

Figure 22: Solution Set and Pareto Frontier for Time of Flight vs. Total Impulsive 
Velocity Change (±50 km Brush) 

 

 
 

Figure 23: Total Impulsive Velocity Change vs. Inclination Change from First Burn 
(±50 km Brush) 

 
Figure 23 shows ΔVTotal vs. the change in inclination after the first impulsive maneuver 
(Δi1).  Because of the nature of this specific plane change as well as the manner in which 
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angle β is defined, solutions must have a negative Δi1 value to be considered practical.  
As orbital dynamics theory suggests, the optimal (Pareto) plane change transfers shown 
here are solutions that impulsively deliver the most inclination change during the second 
burn (at a lower orbital velocity).  Consequently, the optimal solutions have small Δi1’s, 
shown in Figure 23 to be within a range of 0° to 5°. 
 
The Pareto design that most effectively minimizes ΔVTotal has the design attributes listed 
in Table 4.  

 
Table 4: Attributes of Solution with Minimum ΔVTotal 

ΔV1 2.403 km/s 
Out-of-plane angle, β -11.05° 
Flight path angle, Φ -0.3776° 

ΔVTotal 4.1625 km/s 
Time of Flight 316.41 min 

Final Orbital Altitude 35,740 km 
Δi1 -2.645° 

 
 
Vallado [20] explored a similar three-dimensional two-burn plane change orbital 
mechanics problem.  The Δi1 and Δi2 which lead to the lowest ΔVTotal can be solved for 
iteratively in what Vallado labels the “minimum combined plane change” algorithm: 
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where Vinitial and Vfinal are the initial and final circular orbital speeds respectively, Vtransfer,a 
and Vtransfer,b are the speeds at points A and B respectively, as shown in Figure 14, and s is 
a scaling factor that represents the percentage of the total inclination change which is 
delivered on the first burn: 
 

 1∆ = ∆i s i  and isi ∆∆ )1(2 −=    (6) 

 
Solving the equation iteratively yields an optimal s, which results in the optimal 
distribution of plane change between the initial and final maneuvers.  For the initial and 
final orbit characteristics listed in Table 3, this algorithm yields the optimal transfer 
parameters listed in Table 5. 
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Table 5:  Comparison between ATSV Results and Minimum Combined Plane 
Change Algorithm 

 
Parameter ATSV Vallado Algorithm [20] % Difference 

ΔVTotal 4.1625 km/s 4.1620 km/s 0.01%* 
Final Orbital Altitude 35,740 km 35,786 km 0.13% 

Δi1 2.645° 2.262° 14.5% 
Δi2 25.855° 26.238° - 

* Negligible within uncertainty 
 
As shown in the last column of Table 5, the percent difference between the ATSV results 
and the minimum combined plane change algorithm results is small.  The total impulsive 
velocity change is the same within the uncertainty of the algorithm calculation.  The 
algorithm yields an optimal initial plane change of 2.645° which is 14.5% higher than 
what ATSV found.  However, since ATSV did not locate a solution precisely at 
geostationary altitude, the comparison to the iterative algorithm serves more as a 
verification of the data and less as an optimality criterion.   
 
The application of ATSV to the two-burn impulsive orbital spacecraft maneuver test 
problem discussed in this section permitted the visualization of trade-offs between time 
of flight and total required velocity change using only static datasets.  The minimum 
impulsive velocity change solution found when using ATSV was comparable to a known 
optimal solution.  The next chapter focuses on continuous-thrust orbital maneuvers which 
require integration of nonlinear equations of motion.  Furthermore, this problem 
formulation is explored in ATSV using dynamic datasets and the guided Pareto sampler 
is used to search for optimal trajectories. 
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Chapter 4: Continuous-Thrust Orbital Maneuvers 

4.1 Introduction 
This chapter explores the application of ATSV to continuous-thrust orbital maneuvers.  
Both constant thrust and constant acceleration transfers are explored with both 
continuous and discrete design variables.  Section 4.2 briefly covers relevant previous 
work and Section 4.3 explores the specifics regarding the constant acceleration and 
constant thrust problem formulations.  Section 4.4 describes the orbit transfer of interest 
and Section 4.5 discusses the results of each problem formulation and a constant thrust 
sensitivity study. 

4.2 Previous Work 
The first to explore optimizing low-thrust trajectories using the variation of parameter 
equations to model orbital perturbations with equinoctial elements as well as adjoint 
variables was Edelbaum, Sackett, and Malchow in 1973 [21].  Due to the limited 
computing power at that time, averaging of the state and adjoint equations of motion was 
employed to allow reasonable computation time.  Kechichian solved the same problem 
using precision-integration of the equations of motion and compared the results to 
Edelbaum’s averaging technique; the accuracy differences between the two techniques 
were significant [22].  In his work, the initial adjoint variables were optimized using an 
iterative scheme based on a general descent method, where the aim was to optimize an 
objective function consisting of a weighted sum of the differences between actual and 
desired orbital properties.  The result was an optimized set of initial adjoint variables that 
corresponded to the minimum-time minimum-fuel trajectory from low-Earth orbit to 
geostationary-Earth orbit, as shown in Table 6. 
 

Table 6: Optimal Initial Adjoint Variables for LEO to GEO Transfer Found by 
Kechichian [22]  

 
Adjoint Variable Initial Value 

λa,o 1.260484756 sec/km 
λh,o 386.5626962 sec 
λk,o -9388.262635 sec 
λp,o -2277.132367 sec 
λq,o -17430.27218 sec 
λL,o 515.5487187 sec/rad 
H 1.002694 

TOF 58624.094 s 
 
 
More recently, the problem has been revisited by Igarashi in the attempt to search 
specific bounds (±5%, ±10%, ±20%) on the set of known optimal initial adjoint variables 
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using a variety of evolutionary algorithms [23].  The results found in Igarashi’s work 
closely matched those found by Kechichian. 
  
The goal of the work described in this chapter is to revisit this problem once again using 
an evolutionary algorithm, specifically Differential Evolution, which has been integrated 
into ATSV.  The bounds on the known optimal initial adjoint variables are extended 
beyond what was explored by Igarashi in an attempt to find other optimal or near-optimal 
solutions.  Furthermore, the constant thrust-acceleration problem formulation, which was 
used by all referenced papers in this section, is altered to model a similar but distinct 
constant thrust problem, which allows the integration of a hardware-side discrete design 
variable, engine specific impulse.  Also, qualitative and quantitative observations will be 
made on the effectiveness of the integration of the user/designer into the real-time 
visualization and multi-objective optimization elements of ATSV. 

4.3 Problem Formulation 
Because of the manner in which the classical orbital elements are defined (see Section 
3.2.1 for details), singularities arise in the equations of motion when certain elements are 
undefined.  For example, the right ascension of the ascending node Ω is defined as the 
angle between Î and the node vector n .  For equatorial orbits (i = 0°, 180°) the ascending 
node vector n  does not exist; therefore Ω is undefined.  Similar singularities arise for 
circular orbits where eccentricity e  has no direction. 
 
In order to avoid the singularities associated with the classical orbital elements for 
circular and/or non-inclined orbits, equinoctial orbital elements (a, h, k, p, q, L) are used 
in the equations of motion [24].  The simple transformation, shown below, eliminates all 
singularities except for the retrograde orbit with i = 180°. 
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4.3.1 Constant Acceleration 
 
Edelbaum, et al. [21], using the calculus of variations, developed the equations of motion 
describing how a spacecraft’s orbit’s equinoctial elements change with time due to an 
applied thrust.  A set of these equations, modified by Kechichian [22], are shown as 
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The equinoctial element state vector ex  and its derivative ex , as well as the adjoint 
variable state vector (Lagrange multiplier) λ


 and its derivative λ
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The matrix [M] is a 6×3 matrix containing expressions involving partial derivatives of 
each state element in ex ; further information regarding the definition of [M] can be found 
in Appendix B and Appendix C.  The vector u  is a unit vector pointing in the thrust 
direction, 
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The angles α and β are yaw (in plane) and pitch (out-of-plane) angles respectively, and ft 
is the constant applied acceleration.  The mean motion n is given by n = (μ /a3)1/2 where μ 
is the gravitational parameter.  The scalar Hamiltonian for this system is defined as 
 
 [ ] LLt

T efuMH 
λλ +=  (12) 

where [ ]100000=Le T and the end condition, H = 1.0, corresponds to the 
minimum-time minimum-fuel transfer.   

 

4.3.2 Constant Thrust 
In order to formulate the problem such that the spacecraft experiences constant thrust 
instead of constant acceleration, some minor modifications to the equations of motion 
(Equations (8)-(12)) are made.  A seventh state variable, spacecraft mass m, is added to 
the state vector ex , and its adjoint counterpart λm is added to the adjoint variable state 
vectorλ .  The value of ft is no longer constant with time and is replaced in Equations (8), 
(9), and (12) by its definition  
 

m
Tft =  

(13) 

This formulation introduces a discrete design variable, engine specific impulse, Isp. The 
equations of motion are also modified to include, m  and mλ , as defined in Equations (14) 
and (15).  With these modifications, simultaneous integration of Equations (8) and (9) 
proceeds as specified in Section 4.4. 
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 [ ] 2m
TM T

m λλ


 −=  
(14) 

 

osp gI
Tm −=  where 31080665.9 −×=og km/s2 (15) 

 

4.4 Problem Specification 
The orbit transfer between the low-Earth orbit (LEO) specified in Table 7(a) and the 
geosynchronous orbit (GEO) specified Table 7(b) is the transfer of interest for this work 
– identical to the transfer explored in References [22] and [23].   

 
Table 7:  (a) Initial LEO “Baseline” Orbit Characteristics and (b) Final GEO Orbit 

Characteristics 
 (a)  Initial Low-Earth Orbit   (b) Final Desired Orbit 

Classical Equinoctial   Classical 
ao  7000 (km) ao  7000 (km)   adesired  42000 (km) 
eo 0 eo 0   edesired 0.001 
io  28.5° io  28.5°   idesired  1° 
Ωo 0° Ωo 0°   Ωdesired 0° 
ωo 0° ωo 0°   ωdesired 0° 
θo -220° Lo -220°  θdesired Free 

 
For the constant acceleration problem described in the previous section, the initial 
conditions of the equinoctial state oex ,

  are known but the initial conditions of the adjoint 
variables oλ


 are unknown.  Therefore, the decision space consists of the initial conditions 

of these six adjoint variables.  Given oλ


 and ft (ft = 9.8×10-5 km/s2), Equations (8) and (9) 
are simultaneously integrated using the ODE45 function in MATLAB with relative and 
absolute tolerances set at 10-8.  Integration is set to terminate if the semi-major axis a 
reaches adesired, if inclination increases or semi-major axis decreases within a small 
tolerance, or if a maximum integration time is achieved as specified by the user.   At the 
termination of integration, the states of interest are the final equinoctial state fex ,

 and the 
Hamiltonian H of the system. 

 
For the constant thrust problem, T and mo are chosen such that the initial acceleration is 
equal to the applied acceleration used for the constant acceleration problem formulation 
(ft|t=0 = T/mo = 9.8×10-5 km/s2).  Also, the decision space has one more decision variable, 
Isp.   Note that the additional adjoint variable λm has no bearing on the integration of the 
equinoctial state and therefore is not considered a decision variable. 

 
The objectives are to achieve the desired final orbit desiredex ,

  and minimize time of flight 
via the transversality condition H = 1.0.  This “target oriented” objective is transformed 
into a “goal oriented” objective by considering the minimization of a weighted sum of 
absolute differences between the final state and the desired final state, as shown in 
Equation (16).  Note that the weights and the order of terms comprising f can 
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significantly affect the ability of a search algorithm to properly converge to an optimal 
solution.  An explanation of how this issue is bypassed using visual steering is covered in 
Section 4.5.1. 

 
 f = w1 |a-adesired|+ w2 |h-hdesired|+ w3 |k-kdesired|+ w4 |p-pdesired|+ 

w5 |q-qdesired|+ w6 |H-1.0| 
(16) 

 
The Excel interfaces used for the ATSV-Excel-MATLAB system specified in Section 2.3 
for the constant acceleration and constant thrust problem formulations are shown in 
Appendix C and Appendix D respectively.  The information in Table 8 summarizes the 
search specifics and cases explored in three subsections of Results and Discussion. 
 

 
Table 8: Summary of Explored Cases for Continuous Thrust Problem Formulations 

Constant Acceleration 
Search Range: Objective: 

±10% of Table 6 Explore decision space immediately surrounding 
known optimal solution listed in Table 6 over a 
wider spectrum than Reference [23] and identify 
other optimal or near optimal solutions, if any, 
within each search range. 

±25% of Table 6 
±50% of Table 6 
±500% of Table 6 

 
Constant Thrust 

Search Range: Objective: 
Custom based on Isp, on the 
order of ±500% of Table 6 

Identify optimal trajectories for engine Isp values of 
3000, 1500, and 600 seconds. 

Constant Thrust Sensitivity Study 
Search Range: Objective: 
Custom based on case, on the 
order of ±500% of Table 6 

Find optimal solutions for small perturbations of 
initial LEO orbit listed in Table 7(a) for Isp=3000 
sec.  Observe sensitivity of decision variables to 
these perturbations. 

Cases: 
ao: ±100 km, -200 km 
io: -1.5°, +1.5°, + 3° 

Ωo: +45° 

4.5 Results 
This section discusses the results of the constant acceleration and constant thrust 
trajectory optimization case studies listed in Table 8.  Section 4.5.1 discusses the visual 
steering commands used to find optimal continuous thrust trajectories.  Sections 4.5.2 and 
4.5.3 explore optimal solutions for a constant applied acceleration and a constant applied 



 33 

thrust respectively.  Section 4.5.4 examines the sensitivity of optimal constant thrust 
solutions to perturbations in the initial low-Earth orbit. 

4.5.1 Optimal Solution Acquisition via Visual Steering 
One of the many goals of ATSV is to use an engineer’s intuition and/or knowledge 
gained from prior experience with a particular engineering problem in order to enhance 
search.  As with any model implementation using ATSV, over the many hours of 
sampling the design space, the most efficient visual steering commands were constantly 
refined as problem-specific wisdom was gained.  The most effective technique found for 
this problem formulation can be described by the flow chart in Figure 24. 
 

 
Figure 24: Optimal Solution Acquisition via Visual Steering Flow Chart 

 
First, the decision space is sampled randomly and uniformly anywhere from 100,000 to 
1,000,000 times.  The objective and decision spaces are then visualized in a variety of 
combinations using ATSV’s scatter plots.  The visualization of f vs. TOF, λa,o, λh,o, λk,o, |a-
adesired|, |h-hdesired|, etc. reveals promising solutions that exist from the randomly sampled 
set.  Solutions of interest are then selected and the exploration of the design space is 
driven by the guided Pareto sampler. 

 
The selection of “solutions of interest” is a problem-specific and designer-specific 
process that can be difficult to quantify because it relies on abstract information such as a 
designer’s intuition, knowledge, and/or problem-specific wisdom.  Generally, solutions 
that have small f are chosen to guide evolutions in early iterations of the exploration 
process. 

 

1. Randomly Sample 
Decision Space 

2. Visualize Objective 
Space(s) 

3. Select Solutions of 
Interest 

4. Evolve Using 
Guided Pareto Sampler 
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Because of the size of the decision space, solutions often converge to false optima, 
meaning the progress of solution evolution will halt with f >> 0.  Pre-convergence issues 
may also arise from improper weighting of the terms comprising the definition of f.  If 
this occurs, some or all of the steps listed in Figure 24 are revisited until f approaches 
zero or it is determined that no solution exists within the given decision space range.  In 
order to overcome pre-convergence, a diverse selection of points is chosen to guide the 
evolution.  Generally, a variety of promising solutions are chosen by examining which 
terms in f are lagging in the evolution process.  An example of promising solution 
selection using this technique is illustrated in the three scatter plots shown in Figure 25.  
In this example, |h-hdesired|, |k-kdesired|, and |p-pdesired| are “lagging” after an evolution has 
pre-converged, meaning their magnitudes are much greater than the other terms 
comprising f.  As shown, points are selected that simultaneously minimize f and these 
lagging terms to guide the next evolution.  By visually steering the trade space with 
ATSV, optimal solutions are efficiently located without tediously fine-tuning the weights 
on specific objectives. 

 
Figure 25: Example Selection of Solutions of Interest used to Guide the Next 

Evolution 
 
The guided Pareto sampler’s ability to pause, adjust, and alter an evolution can drastically 
increase the efficiency of evolutionary search.  Figure 26(a)-(f) shows the progression of 
many guided Pareto searches toward optimality over many iterations of the technique 
described by Figure 24.  Each plot shows f vs. time of flight, and the solutions chosen to 
guide a particular evolution are highlighted by black circles.  Using this method, the 
progression toward false optima shown in Figure 26(b) and (d) is easily overcome.  With 
a combination of visualization, evolutionary search, and intuition/knowledge inspired 
adjustments, the designer is able to visually “steer” solutions toward optimality in order 
to obtain minimum-time minimum-fuel constant acceleration and constant thrust orbit 
transfers.  
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Figure 26: Progression of a Typical Search Using the Guided Pareto Sampler 

 
In order to quantify the point at which the minimization of f is sufficient for optimality, 
the final state of the solution explored in the next section (listed in Table 10) is shown in 
Table 9.  In general, solutions which have f on the order of 1×10-5 or less are considered 
optimal, and the values of the final state of the classical elements in this table are a good 
measure of the accuracy of all optimal solutions presented in this work. 
 

Table 9: Typical Optimal Final Classical State 
 Goal Sufficiently Optimal 

adesired  42000 (km) 42000 (km) 
edesired 0.001 0.000999677 
idesired  1° 0.99999726° 
Ωdesired 0° 9.76092E-05° 
ωdesired 0° 0.010314043° 
θdesired Free Free 

H 1.0 0.999999 
f 0 4.44×10-6 

 

4.5.2 Constant Acceleration 
 
Within the decision space search ranges of ±10%, ±25%, and ±50% of the known optimal 
solution listed in Table 6, each evolution process converged toward this known solution.  
For the ±500% search range, some evolutions converged toward the solution listed in 
Table 6 and others converged to a solution which the author considers to be clearly 
distinct. This “near optimal” solution and a comparison with the optimal solution found 

(a) (b) (c) 

(d) (e) (f) 
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in Reference [22] are shown in Table 10.  Although only two of the six elements of oλ


 
converge to within 1% of the values listed in Table 6, the time of flight for the near 
optimal solution is only 0.007% greater.  Furthermore, the time history of the classical 
orbital elements and the thrust vector control angles are almost identical when compared 
to corresponding time histories for the solution listed in Table 6, as shown in Figure 27, 
Figure 28, and Figure 29.  Moreover, trends of a, i, e, α, and β with time closely match 
the time history behavior from References [22] and [23].   

 
The assumption that λh,o and λp,o are less sensitive than the other initial adjoint variables 
to the solution quality may be fair, but the idea that these variables are largely insensitive 
is not.  Upon replacing the value of λh,o for the optimal set listed in Table 10 with the 
optimal value from Reference [22], which the author calls λh,o[22], solution quality jumps 
down five orders of magnitude.  Similar behavior is evident when applying this test for 
λp,o, λh,o and λp,o simultaneously, and various randomly chosen values between [λp,o λp,o[22]] 
and [λh,o λh,o[22]].   
 
Table 10: “Near Optimal” Adjoint Variable Initial Conditions for Constant Thrust-

Acceleration LEO to GEO Transfer 

oλ


 Optimal Value % Difference from Reference [22] 

λa,o (sec/km) 1.278695 1.445% 
λh,o (sec) 590.5856 52.779% 
λk,o (sec) -9333.9 -0.579% 
λp,o (sec) -3397.12 -49.184% 
λq,o (sec) -17526.5 -0.552% 

λL,o (sec/rad) 503.6537 2.307% 
TOF (sec) 58628.61 0.007% 

 
Figure 27: Semi-Major Axis and Inclination as a Function of Time for Optimal 

Trajectory found within ±500% of Reference [22] 
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Figure 28: Eccentricity as a Function of Time for Optimal Trajectory found within 

±500% of Reference [22] 

 
 

Figure 29: Yaw α and Pitch β as a Function of Time for Optimal Trajectory found 
within ±500% of Reference [22] 

 
The existence of a near optimal solution is intriguing and implies that there are multiple 
distinct sets of adjoint variable initial conditions which lead to nearly the same behavior 
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of the orbital elements with time.  Accordingly, the concept of “optimality” as referred to 
in this work should be considered near-optimal, and not truly mathematically optimal. 

4.5.3 Constant Thrust 
The goal of the work in this section is to introduce a new design variable, spacecraft 
specific impulse (Isp), by changing the constant acceleration problem formulation to a 
constant thrust formulation and identify optimal trajectories for three values of Isp – 3000, 
1500, and 600 seconds.  These engine specific impulses represent nominal values for ion, 
Hall, and Arcjet thrusters respectively.  Optimal adjoint variable initial conditions for 
engine specific impulses of 3000 and 1500 seconds are listed with the optimal constant 
acceleration solution in Table 11. 
 
Table 11: Optimal Adjoint Variable Initial Conditions for Constant-Thrust LEO to 

GEO Transfers and Comparison with Constant Acceleration Transfer 

 
Constant  

Acceleration 
Constant Thrust 

Isp = 3000 (sec) Isp = 1500 (sec) 
λa,o (sec/km) 1.278695 0.69733703 0.34768197 

λh,o (sec) 590.5856 533.6483 157.534 
λk,o (sec) -9333.9 -8038.6123 -6918.626 
λp,o (sec) -3397.12 -4434.298 -3290.7383 
λq,o (sec) -17526.5 -11725.732 -7789.5884 

λL,o (sec/rad) 503.6537 520.88696 524.09375 
TOF (sec) 58628.61 55108.215 51821.383 

f 4.44×10-6 2.70619×10-6 1.30803×10-6 
 
Corresponding time histories of a, i, e, α, and β for each solution listed in Table 11 are 
shown in Figure 30, Figure 31, and Figure 32 respectively.  As expected, optimal 
trajectory time histories of the constant thrust formulations are similar to the optimal time 
histories of the constant acceleration formulation.  These time histories are merely 
stretched and perturbed between cases in fairly observable patterns.  The zoomed view in 
Figure 30 illustrates the manner in which solutions converge toward local optima for 
different thrusting magnitudes; near the first hour of flight, a(t) seems to switch between 
a constant acceleration “path” and respective constant thrust “paths”.  This is certainly a 
result of the differences between time histories of α between thrusting magnitudes near 
the first hour of flight, as shown in the zoomed view in Figure 32. 

 
The inability to locate a solution for Isp = 600 within the specified search range is a direct 
result of this “switching” behavior.   Although the Isp = 1500 solution is slightly sub-
optimal by observation, it was found within the set integration behavior tolerance for 
da/dt.  Our conclusion that the switching behavior of the Isp = 600 solution stops the 
integration early by tripping the da/dt tolerance was confirmed by temporarily widening 
this tolerance.  In order to find a suitably optimal solution for Isp = 600, the search space 
should be widened. 
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Figure 30: Semi-Major Axis and Inclination as a Function of Time for Different 

Isp’s, Constant Acceleration Case Also Shown 

 
Figure 31: Eccentricity as a Function of Time for Different Isp’s, Constant 

Acceleration Case Also Shown 
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Figure 32: Yaw α and Pitch β Angles as a Function of Time for Different Isp’s, 

Constant Acceleration Case Also Shown 

4.5.4 Constant Thrust Sensitivity Study 
The effect of perturbations of the initial LEO orbit on optimal solution locations and time 
history behaviors of the classical orbital elements is the subject of this section.  Optimal 
solutions for three perturbations of ao are shown in Table 12 and the corresponding time 
histories of a, i, e, α, and β are shown in Figure 33, Figure 34, and Figure 35 respectively. 
 
Table 12: Optimal Adjoint Variable Initial Conditions for Constant Thrust LEO to 

GEO Transfer for Perturbations of ao 

Case 
Reduce ao by 

200 km 
Reduce ao by 

100 km 
LEO  

Baseline 
Increase ao by 

100 km 
ao (km) 6800 6900 7000 7100 

λa,o (sec/km) 1.1291151 0.8583417 0.69733703 0.5512262 
λh,o (sec) 637.88965 434.3169 533.6483 479.97333 
λk,o (sec) -8044.9556 -8073.547 -8038.6123 -8018.0605 
λp,o (sec) -4501.453 -3710.8276 -4434.298 -4372.634 
λq,o (sec) -12532.672 -11907.58 -11725.732 -11443.644 

λL,o (sec/rad) 437.805 492.61642 520.88696 554.9187 
TOF (sec) 55281.285 55173.723 55108.215 55047.832 

f 8.01962×10-6 2.86172×10-5 2.70619×10-6 1.22834×10-5 
 
As shown in the zoomed view of Figure 33, the “switching” behavior observed for a(t) in 
the previous thrust magnitude study is evident for perturbations of ao as well.  Within the 
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first hour of flight, the spacecraft’s semi-major axis “path” is pushed toward a path 
closely shared by all four time histories.  This behavior is reflected in the plot of the 
control angles shown in Figure 35 as well, as time history traces of α clearly deviate from 
each other near the first hour of flight. Once again, the inefficiency associated with da/dt 
< 0 for ao = 7100 is within the integration tolerance; however, upon exploring ao = 7200, 
a solution could not be found without widening this tolerance. 
 

 
Figure 33: Semi-Major Axis and Inclination as a Function of Time for Perturbations 

of ao 
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Figure 34: Eccentricity as a Function of Time for Perturbations of ao 

 
Figure 35:  Yaw α and Pitch β Angles as a Function of Time for Perturbations of ao 
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respectively.  For small perturbations of io, the traces of a and i transition smoothly 
without any observable “path jumping” behavior as seen previously.  In a likely related 
qualitative observation, the optimal solutions listed in Table 13 were significantly easier 
to locate than optimal solutions for perturbations of ao.   
 
Table 13: Optimal Adjoint Variable Initial Conditions for Constant Thrust LEO to 

GEO Transfer for Perturbations of io 

Case 
Decrease io by 

1.5° LEO Baseline 
Increase io by 

1.5° 
Increase io by  

3° 
io° 27 28.5 30 31.5 

λa,o (sec/km) 0.6574024 0.69733703 0.69065297 0.71647274 
λh,o (sec) 511.76782 533.6483 19.841057 -252.63708 
λk,o (sec) -7961.5703 -8038.6123 -8194.975 -8304.928 
λp,o (sec) -4217.71 -4434.298 -1681.8203 240.4904 
λq,o (sec) -10711.217 -11725.732 -12365.268 -13426.1875 

λL,o (sec/rad) 532.33765 520.88696 539.70374 541.8904 
TOF (sec) 54951.48 55108.215 55257.68 55453.97 

f 2.80097×10-6 2.70619×10-6 1.14312×10-6 4.77427×10-6 
 

 
Figure 36: Semi-Major Axis and Inclination as a Function of Time for Perturbations 

of io 
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Figure 37: Eccentricity as a Function of Time for Perturbations of io 

 
Figure 38: Control Angles as a Function of Time for Perturbations of io 
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meet at the correct final inclination of 1°.  This is undoubtedly the effect of the behavior 
of β during the transfer as shown in Figure 38.  The zoomed view shows more precisely 
how β influences the observed “catch up” and “slow down” behavior, where positive 
perturbation transfers have the thrust vector pointed further out of plane for longer than 
the negative perturbation and baseline LEO transfer. 

 
Due to time constraints, only a single perturbation of Ωo was explored.  The optimal 
solution for a +45° perturbation is shown in Table 14 and the time histories of a, i, e, α, 
and β are shown in Figure 39, Figure 40, and Figure 41, respectively.  One would expect 
identical time histories of the classical orbital elements for any Ωo; the lack of constraint 
on θf suggests that the definition of Ω is arbitrary in the context of a specific transfer, and 
this idea is supported by Figure 39.  As shown in Figure 40, the time histories of e are 
identical between cases. 

 
Table 14: Optimal Adjoint Variable Initial Conditions for Constant Thrust LEO to 

GEO Transfer for a Perturbation of Ωo 
Case LEO Baseline Increase Ωo by 45° 
Ωo° 0° 45° 

λa,o (sec/km) 0.69733703 0.64365506 
λh,o (sec) 533.6483 -5324.0854 
λk,o (sec) -8038.6123 -5765.5884 
λp,o (sec) -4434.298 -11343.348 
λq,o (sec) -11725.732 -5093.073 

λL,o (sec/rad) 520.88696 536.1609 
TOF (sec) 55108.215 55152.92 

f 2.70619×10-6 3.49754×10-6 
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Figure 39: Semi-Major Axis and Inclination as a Function of Time for a 

Perturbation of Ωo 

 
Figure 40: Eccentricity as a Function of Time for a Perturbation of Ωo 
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Figure 41: Control Angles as a Function of Time for a Perturbation of Ωo 
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Chapter 5: Conclusions 

5.1 Conclusions 
 
The Applied Research Lab Trade Space Visualizer (ATSV) has been an effective solution 
visualization and exploration tool for the test problems and continuous thrust LEO to 
GEO transfers discussed in this work.  Engineering problems were explored both 
statically and dynamically, and ATSV’s visualization capabilities revealed underlying 
trends that existed within the objective and decision spaces.   
 
For the continuous thrust spacecraft maneuver problem, a clearly distinct near-optimal set 
of adjoint variable initial conditions that result in very similar time histories of the 
classical orbital elements when compared with a known optimal trajectory was located. 
Optimal solutions were acquired for two engine specific impulses for the constant thrust 
problem formulation and the sensitivity of one of these solutions to perturbations in the 
initial LEO orbit was explored.  Semi-major axis time histories exhibit “path jumping” 
behavior early in the transfer for perturbations of ao while inclination and eccentricity 
time histories transition smoothly for small perturbations of ao and io in the explored 
search space.  Optimal time histories of the classical orbital elements appear to be 
independent of perturbations of Ωo. 
 
The “human-in-the-loop” capabilities provided by ATSV’s sampling techniques, the 
guided Pareto sampler in particular, played an integral role in the efficient acquisition of 
optimal Pareto solution sets. The exploration of the large decision space in the continuous 
thrust trajectory optimization problem would not have been temporally feasible without 
the search acceleration capabilities associated with designer-in-the-loop evolutionary 
search.  By integrating the designer into the evolutionary search algorithm, problem-
specific wisdom was gained as information regarding realistic expectations of objective 
and decision spaces became clear.  Through this a posteriori knowledge, the designer 
accelerated search by  

1. Ignoring some or all of the known infeasible decision space,  
2. Locating potentially promising solutions through previously observed 

patterns, 
3. Stopping pre-converging evolutions early, and 
4. Continuing pre-converged evolutions after introducing new promising 

solutions to the population 
ATSV’s visual steering capabilities not only permitted the acquisition of optimal 
solutions more efficiently than a black-box optimizer, but it also became the means for 
the designer to more fully understand the nuances particular to a specific engineering 
problem. 
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5.2 Suggestions for Future Work 
 
Any extended work on the continuous thrust trajectories topic should consider the search 
of an even wider spectrum of decision variables for both the constant acceleration and 
constant thrust problem formulations.  More sensitivity cases might provide further 
insight into the relationship between the adjoint variable initial conditions and the time 
histories of the classical orbital elements and thrust control angles.  The sensitivity of 
optimal trajectories to perturbations in the final desired orbit could be investigated as 
well.  In the interest of model accuracy and actual applicability, the addition of J2 effects 
to the system dynamics as well as constraints on the final true anomaly could be added to 
the problem formulation.   
 
As newer engineering problem models become more and more precise, the computational 
cost of a single function evaluation grows as well.  As shown in this work, when decision 
space search ranges are expanded, often evolutionary search must be supplemented with 
larger population sizes.  In order to effectively locate Pareto solutions for more complex 
engineering problem models in a reasonable time frame, designers would benefit from 
the use of distributed and/or cluster computing.  Parallelization would allow for 
evolutionary search and corresponding real-time visualization of computationally intense 
problems on a reasonable time scale. 
 
 

5.3 Suggested ATSV Improvements, Modifications, and Future Work 
 
Because ATSV is constantly under development, a number of suggestions have been 
compiled regarding possible ATSV modifications and improvements.  These ideas are 
summarized as follows. 

• Integration with distributed computing or cluster computing mechanisms 
• Direct link to MATLAB that would eliminate the need for Spreadsheet Link  
• The ability to export only selected points 
• Some type of solution de-crowding mechanism, e.g., select points and eliminate 

redundant solutions, where redundant solutions are defined to be within a certain 
tolerance of each other 

• Allow non-continuous brushing of variables, i.e., the Brush controls could look 
like  

• Change the “working” animation from the Exploration Engine to a more precise 
progress bar based on the number of runs selected,  i.e., change this  
to this  

• Add a “pause” button which would allow the designer to pause an evolution in 
progress and resume it later 

• Have solution number and generation number automatically added to all dynamic 
datasets 

• Add functionality to the “show only Pareto points” button, so that the designer 
can view various evolutionary metrics as an evolution progresses, including 
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o Only the current population 
o Solutions used in determining scaled vector difference and base vector 

• In the Exploration Engine options, suggest a generation size based on the number 
of inputs and their significant digits 

• The ability to take screenshots at regular temporal or generational intervals for 
video purposes 

 
This thesis includes qualitative justifications for the efficiencies associated with visually 
steering a trade space when compared to a black-box optimizer.  Examining the statistical 
facts regarding solution quality versus time and/or number of function evaluations would 
be useful in illustrating the advantages of visual steering over other optimization 
techniques.  Also, calculable information regarding how much problem specific wisdom 
is gained through the visual steering process versus the black-box optimization process 
would reinforce the goals of trade space visualization.  Quantitative research targeting 
“human-in-the-loop” vs. “black-box” optimization might articulate ATSV’s motivations 
to the black-box optimization engineering community more clearly. 
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Appendix A: Examples of ATSV’s Other Plot Types [16] 
 

 
Figure A-1: Scatter Matrix Example 
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Figure A-2: Parallel Coordinates Example 

 
 

 
Figure A-3: Histogram Example 

 
 



 53 

 
Figure A-4: 2D Histogram Example 
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Appendix B: Definition of [M] as Used in Sections 4.3.1 and 4.3.2 
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where  

( )21 F FX a h c hk s kβ β = − + −   (B.15) 

( )21 F FY a k s hk c hβ β = − + −   (B.16) 
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Appendix C: Partial Derivatives of [M] as Used in Equation (9) 
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Partial derivatives of [M] with respect to h: 
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Partial derivatives of [M] with respect to k: 
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Partial derivatives of [M] with respect to p: 
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Partial derivatives of [M] with respect to q: 
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Partial derivatives of [M] with respect to L: 
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Partial derivatives of dummy variables X and Y used in Equations C.1-C.70: 
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Appendix D: Excel Interfaces used for Continuous Thrust Problem Formulations  
from Sections 4.3.1 and 4.3.2 

 
 

 
Figure D-1: Excel Interface for Constant Acceleration Problem Formulation 

(Section 4.3.1) 
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Figure D-2: Excel Interface for Constant Thrust Problem Formulation (Section 

4.3.2) 
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