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ABSTRACT 

Rocket-powered translational Vertical Takeoff Vertical Landing (VTVL) maneuvers are a 

promising lander spacecraft mobility method as compared with or in addition to rovers for certain 

mission profiles. Such a VTVL vehicle would take off vertically under rocket propulsion, 

translate a specified horizontal distance, and vertically return softly to the surface.  

 

Previous literature suggested that the propellant required to perform such a maneuver could be 

estimated via an impulsive-ballistic trajectory using the “ideal” rocket equation. This analysis was 

found to be inadequate. Any feasible trajectories will always require additional propellant to 

compensate for gravity losses while lifting off and landing. Additionally, there is an asymmetry 

between the takeoff and landing phases of the maneuver due to the propellant mass used over the 

course of the flight. Lastly, various potential spacecraft propulsion system architectures impose a 

number of possible constraints on the allowable path and boundary conditions.  

 

An adaptable Optimal Control Problem (OCP) was developed instead to model the basic 

dynamics and required propellant consumption of various VTVL spacecraft trajectory profiles for 

a range of constraints, spacecraft parameters, and translation distances. The model was 

discretized into a Nonlinear Programming (NLP) problem, and a Direct Collocation (DC) method 

utilizing implicit Simpson-Hermite integration was used to ensure the feasibility of solutions with 

sufficient accuracy.  

 

MATLAB’s Nonlinear Programming fmincon routine with the sequential quadratic programming 

solver was able to converge on the optimal VTVL trajectory in terms of minimizing the required 

propellant use within the spacecraft and mission constraints. Trades were performed to determine 

the impact of various parameters on the required propellant including thrust to initial weight 
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ratios, propellant specific impulse, the allowable range and angular rate of change of the 

spacecraft thrust vector, translation distances, maximum altitude, flight times, and boundary 

conditions.  

 

The VTVL trajectory optimization model developed was found to be robust and able to handle a 

wide range of various spacecraft and mission parameters. Results were compared against the 

required propellant use and nominal time of flight determined via the ballistic-impulse burn-

coast-burn analysis. For the finite model developed herein, the required propellant use and 

optimal flight times exceeded the ideal impulsive case by 5-30% depending on the specific 

spacecraft and mission parameters and constraints implemented. These results can help guide 

future mission planners in deciding whether to utilize VTVL as a mobility method. 
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Mathematical Notation 

Bold font is used to identify the state and control function vectors and all matrices. Subscripts 

refer to a particular index of a vector or matrix, or to differentiate between variables at specific 

times or conditions. Colons are used with matrices or vectors to indicate multiple members along 

a dimension are being referred to simultaneously.  
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and Near Earth Objects (NEOs) for science, tourism, resource exploitation, exploration, and 

human settlement. Development of the next generation of spacecraft landers is ongoing.  

 

Many of the first landers in the lunar and Martian programs had no secondary mobility 

capabilities. Accomplishing the soft landing was arguably the most challenging and important 

part of these early missions. These spacecraft were limited in their capabilities and could only 

study the area immediately surrounding their landing sites.  However, once mission planners were 

confident in their ability to accomplish soft landings, they quickly sought to explore a greater area 

than possible from a fixed location. 

 

Later lunar missions included rovers and astronauts to explore the surrounding terrain. Staged 

spacecraft landers were designed to return human or geological payloads back to Earth. Given 

that crewed missions typically cost orders of magnitude more than robotic missions, wheeled 

rovers have been the mobility method of choice for recent missions.  

1.3 Mobility through Vertical Takeoff Vertical Landing  

It is possible to execute “hopping” maneuver(s) using a spacecraft propulsion system to 

Vertically Takeoff, translate a desired distance, and Vertically Land (VTVL). Several reasons 

may favor using this mobility method in lieu of or in addition to a wheeled rover such as:  

 The ability to cross terrain which would be impassable to most rovers such as craters 

and/or boulder fields. 

 Decreased mission cost, complexity, and risk by eliminating the development of a 

separate roving vehicle with independent subsystems and its own unique failure modes. 

 The potential to visit multiple sites of interest (geological or otherwise) which are 

significant distances apart within a compressed time span.  
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 Executing a VTVL hop prior to a rover deployment could decrease the accuracy needed 

for the initial entry, descent, and landing. 

Short duration hops could be made into or over permanently shadowed craters on the Moon or 

large valleys on Mars to quickly cover significant ground. Some Near Earth Objects (NEOs) such 

as asteroids could be sampled at multiple locations similar to Hayabusa’s “kiss” method where a 

wheeled rover would be impractical due to the low gravity2,a. For lunar missions, this could 

eliminate the need for the significant power sources required to survive the lunar night if surface 

operations could be completed within one lunar day.  

 

If the same guidance and propulsion system that was used to originally land on the surface was 

used for the hop, and sufficient margin existed within the propellant tank(s) volume, the mass and 

cost could theoretically be as low as the additional propellant required to perform the maneuver. 

The required propellant mass, if it were known, could be compared to the mass and complexity of 

a separate rover when deciding which mobility method, if any, to use for a particular mission. 

Key to deciding whether to further pursue the development of VTVL as a spacecraft mobility 

method depends on the creation of sufficiently accurate models to determine how much 

propellant is required in order to perform hopping maneuvers.  

1.4 Previous VTVL Vehicles 

Surveyor 3 (1967) accidentally hopped due to a fault in the radar interpreting algorithm. The 

engines did not cut off when the spacecraft touched the surface – twice. The craft “bounced” until 

ground control sent a cut-off signal3. Luckily, the craft survived.  

 

                                                      

a A wheeled rover would have to move prohibitively slowly in microgravity to prevent slipping since the 
available friction for traction is proportional to the weight of the craft. Obstacles could be impassible.  
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Surveyor 6 (1967) intentionally performed a lateral 2.4 meter hop in order to study the lunar 

regolith’s surface mechanical properties. After the hop, the craft used its cameras to inspect the 

indentations left from the primary landing and to study the effects of plume impingement with the 

surface4. This was done to help determine if the surface was suitable for manned missions.  

 

In the early to mid-1990’s, the McDonnell Douglas DC-X program attempted to develop the 

technologies needed for a Single Stage to Orbit (SSTO) VTVL reusable launch vehicle. While the 

program never progressed to orbit, it did complete several successful suborbital test flights. 

Funding was ultimately canceled after a crash and subsequent fire that destroyed the second 

vehicle5.  

  

While not a rocket powered VTVL craft, the Hayabusa Mission also included a hopping robot 

MINERVA that was intended to “bounce” along the surface of the asteroid Itokawa. The internal 

reaction wheels would have been spun up and down abruptly to create torques so that the entire 

rover would tumble along the surface. This would have been the first deployment of such a 

technique in space. Unfortunately, in 2005 upon arrival at the asteroid, MINERVA was deployed 

faster than Itokawa’s escape velocity by mistake. MINERVA survived for several hours but never 

reached the surface2.  

1.5 Current VTVL vehicle development  

There are currently several ongoing efforts by NASA, private companies and individuals, and 

Penn State University to develop VTVL vehicles as software and hardware testbeds, as spacecraft 

for use on the Moon, and reusable VTVL launch vehicles for suborbital and orbital altitudes. A 

sample of current vehicles under development is shown in Table 1.1.  

 



  5 

 

For any of these current or future vehicles, (or similar vehicles not listed), a degree of 

translational capability is needed for their respective mission profiles including precision landings, 

planetary “hopping” maneuvers, or “return-to-pad” launch vehicle stage fly-backs. Naturally, it is 

desirable to determine the most propellant efficient trajectories as possible. This thesis addresses 

this capability through the use of Direct Collocation and Nonlinear Programming for trajectory 

optimization.  

Table 1.1 Selected VTVL Vehicles Under Development 

Organization Craft name Type Propellant(s) 
Penn State 
University 

Puma6 Lunar Lander Software 
Demonstrator 

Monopropellant 
hydrogen peroxide 

NASA Marshall 
Spaceflight Center 

Mighty Eagle7 Lunar Lander Technology 
Demonstrator 

Monopropellant 
hydrogen peroxide 

NASA Johnson 
Space Center 

Morpheus8 Lunar Lander and Green 
Propellant Technology 

Demonstrator 

Liquid oxygen and 
Methane 

Masten Aerospace Xaero B9 
(among others) 

Reusable suborbital 
payload delivery 

Liquid oxygen and 
isopropyl alcohol 

Blue Origin New Shepard10 Technology demonstrator Hydrogen peroxide 
and kerosene 

Space Exploration 
Technologies 

Grasshopper11/Falcon 9 
Reusable First Stage12 

Reusable orbital launch 
vehicle first stage 

Liquid oxygen and 
kerosene 

1.6 Thesis Outline and Scope 

In evaluating the use of Direct Collocation and Nonlinear Programming as applied to VTVL 

spacecraft, this thesis addresses this topic in several chapters. Chapter 2 details the process of 

deciding which control variables and assumptions were appropriate to model a generic VTVL 

spacecraft. Chapter 3 develops a state variable dynamic system model to represent the spacecraft 

and VTVL translational maneuver as an Optimal Control Problem (OCP). Chapter 4 discusses the 

background and implementation of Direct Collocation with Nonlinear Programming (DCNLP), a 

direct trajectory optimization method. Chapter 5 presents the results across a variety of various 

spacecraft parameters and mission profiles. A summary of the work completed and suggestions 

for future work to increase the model fidelity and usefulness are covered in Chapter 6. 
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Several appendices have been added to assist readers who are new to the concepts of trajectory 

optimization. These include: 

Appendix A: Notes on Direct Collocation 

Appendix B: Time as a Fixed or Free Variable, and Node Distribution  
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2.3  Necessity of Throttling, Thrust Vectoring, and Closed Loop Control 

To actually accomplish a soft landing requires complex guidance, navigation, control, and 

propulsion subsystems in a feedback loop. While it may be possible to use non-throttleable high 

thrust (e.g. typical solid) engines to zero out most of the incoming velocity of a lander spacecraft 

during its initial approach to the central body, the terminal descent propulsion system needs to be 

capable of thrust vectoring and throttling to account for performance variations, sensor 

inaccuracies, and system noise such as propellant sloshing or sensor drift. The degree of throttling 

required depends on the specific spacecraft architecture, mass, and engine thrust levels.  

 

Depending on the central body in question, it may be possible and highly preferable to use the 

same engines and control systems for the initial terminal descent and landing as for the hopping 

maneuver(s). If this is the case, and sufficient margin existed within the propulsion systems 

propellant/pressurant tank volumes, the mass penalty to perform the hopping maneuver could be 

as low as the extra propellant required.  

 

Figure 2.1 details a theoretical VTVL spacecraft control architecture. The Flight Computer 

outputs commands to the Propulsion Subsystem to achieve a desired trajectory, attitude or spin 

rate change, etc. The Propulsion Subsystem would consist of all the valves, plumbing, tanks, 

propellant, engines, gimbals, etc., that generate the required force vectors to bring the spacecraft 

from an initial system state to a desired final system state. Additional hardware could be utilized 

as needed.  
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Figure 2.1 Possible VTVL Spacecraft Control Architecture 

 
The Complete System Dynamics would be the actual laws of physics that the spacecraft 

encounters. The actual dynamics slightly differ from the models used to approximate them due to 

unmodeled (or unknown) forces and behaviors, e.g. local variances in gravity due to central body 

shape and density irregularities, and/or differences in expected versus achieved propulsion system 

performance. Meanwhile the Inertial Measurement Unit (IMU) and sensors would be attempting 

to keep track of the spacecraft’s state variables such as position, velocity, acceleration, rotation, 

etc., but this data is noisy and only as accurate as the sensors can provide. Some state variables 

cannot be directly measured and must rely on imperfect software models, which adds additional 

system noise.  

 

The flight software needs to operate in a closed loop to be able to make (hopefully only slight) 

adjustments on the fly to compensate for noise and constantly ensure that the spacecraft is 

following the desired trajectory. The Flight Computer may need to generate a new control law in 

real time to correct for accumulated errors or perhaps change the landing site if an unexpected 

obstacle (e.g. boulder) is encountered. The work presented herein focuses on designing the 

optimal trajectory before flight, but this effort can guide the development of robust flight software 

in the future.   
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2.4  Potential Propulsion Architectures 

While many possible propulsion system architectures are possible, all of them must be able to 

effectively vector their net thrust in order to successfully land because of the noise concerns 

discussed earlier. This same thrust vectoring is used to translate horizontally, though specific 

propulsion system designs will have unique limitations such as a maximum thrust angle and a 

maximum thrust angle angular rate of change.  

 

Figure 2.2 shows several examples with the black lines representing the individual engine forces 

and the red line representing the resultant net thrusts and/or torques generated.  

 

Figure 2.2: Various Possible Propulsion Systems Thrust Vectoring Methods 
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Craft A utilizes a main lifting engine and vernier engines for translation. Craft B employs a 

gimbaled main engine. Craft C has fixed engines which engage a positiveb pitching maneuver, 

C(1), a negative pitching maneuver, C(2), and then translates holding a pitch angle, C(3).  

 

Similarly, there are many possible methods to accomplish throttling. Direct proportional control 

of the propellant mass flow rate is possible in some engine designs, though there may be some 

losses in efficiency and certain throttle ranges that are out of bounds. For example, the Descent 

Propulsion System (DPS) for the Apollo missions was only capable of either throttling between 

10-60%, or running at full 100% thrust14. For engines capable of pulsingc, the duty cycle can be 

adjusted to effectively lower the time-averaged thrust and achieve a range of effective throttling. 

Combinations of proportional, pulsing, and constant thrust control engines are all possible as well.  

2.5  Central Body Approximations of Uniform Gravity and Lack of Air Resistance 

In this study, the hopping distances and maximum heights reached during any translation 

maneuvers are far less than 1% of the central body radius.  Modeling gravity as a uniform 

constant equal to the nominal surface gravity is considered sufficiently accurate. Similarly, air 

resistance was neglected as the key central bodies of interest have little to virtually no atmosphere.  

2.6  Reduction to Two Dimensions 

The initial landing trajectory to reach the central body is not considered; therefore neither is any 

propulsion system specific orientation bias that would favor traveling in a specific direction. Thus, 

there exist an infinite number of equipotential possible secondary landing sites that lie along a 

circle with radius equal to the translation distance surrounding the primary landing site. The 

coordinate system origin is thus chosen such that the origin is centered at the primary spacecraft 

                                                      

b Positive and negative pitching angles are defined as per the convention shown in Figure 2.4 
c Pulsing is operating an engine at a high frequency instead of continuously. 
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landing site, (prior to any hopping maneuver), and the positive X axis extends from the primary 

landing site through the secondary landing site as shown in Figure 2.3. 

 
Figure 2.3: Two Dimensional Trajectory Representation 

 
The positive Z axis extends from the ground through the zenith of the spacecraft. The Y-axis is 

perpendicular to the X and Z axis as according to the right-hand rule.  Anywhere the spacecraft 

could land, a straight line could be traced from its takeoff to landing site; and the coordination 

frame could be rotated to align. Any trajectories that laterally deviated out-of-plane in the +/- Y 

axis midflight would require a disturbing and restoring force to return within plane. Generating 

these forces would require additional propellant with no benefit and would result in a suboptimal 

trajectory. It is thus reasoned that optimal trajectories will lie entirely with the X-Z plane and 

therefore state variables representing two spatial dimensions are sufficient to model this VTVL 

maneuver.  
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2.7  Spacecraft Point-Mass Approximation 

Since offsetting the coordination system to compensate for the height of the vehicle would not 

change the underlying physics, the initial height is considered to be zero to simplify the results. 

To keep the model as propulsion system agnostic as possible, the only spacecraft state variable 

tracked is the overall mass – no moment of inertia (MOI) matrix is calculated, and roll, pitch, or 

yaw maneuvers are not modeled. The thrust was modeled to act directly on the center-of-mass of 

the vehicle. Therefore the spacecraft is essentially modeled as a point mass.  

 

While a point mass does not have a meaningful attitude, the spacecraft’s coordinate system is 

assumed to coincide with the central body coordinate system origin. The standard conventions of 

spacecraft roll, pitch, and yaw being rotations around the X, Y, and Z axis are made only to 

discuss their disuse. 

2.8  State Variable Selection 

Since the problem is restricted to two spatial dimensions, the only forces acting on the craft are 

thrust and gravity, and the thrust is assumed to act on the center-of-mass; only five time 

dependent state variables are required to fully represent the spacecraft VTVL trajectory problem; 

the velocity and position along the X and Z axes, and the spacecraft mass. The simulation time 

duration, (the Time of Flight for the VTVL maneuver), can also be fixed, or free to float between 

an upper and lower bound.  

 

Note that the spacecraft mass determines the magnitude of acceleration that the spacecraft 

experiences for a given thrust level, and the acceleration will grow as propellant mass is depleted. 

The lower the exhaust velocity/specific impulse of the rocket engines used, the greater the mass 

flow rate will be for a given thrust. 
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2.9  Control Variable Selection 

With the previous simplifications, the control variables can be reduced to a net thrust vector with 

a specific magnitude, ݄ܶݐݏݑݎ, and thrust angle, ߠ, as shown in Figure 2.4. The thrust angle is 

defined so that zero corresponds with the nadir. In this thesis	|ߠ௠௔௫| always equals	|ߠ௠௜௡|, though 

this is not strictly required in general. Note the spacecraft is shown with a pitch angle equal to the 

thrust angle purely for visualization purposes.  

 
Figure 2.4: Spacecraft Thrust Control Modeling 

 

2.10  Basic Control Law Constraints for Increasing Model Fidelity 

The most basic constraints made on the control variables are their maximum and minimum range 

of values. Every spacecraft propulsion system has an upper limit to the net thrust it can produced, 

and as previously mentioned, some engines/systems have lower limits and/or restricted throttling 

ranges. As discussed herein, introducing additional constraints can reflect a range of spacecraft 

propulsion architecture-specific limitations and increase the fidelity of results.  

                                                      

d A VTVL spacecraft should reserve some of its throttling capability in order to account for system noise, 
e.g. create a control law with a planned max throttle limit of 80% of peak thrust for maneuvers, reserving 
the remaining 20% in case the spacecraft was accelerating or decelerating slower than anticipated and was 
at risk of impacting. This is referred to as control authority and varies by spacecraft design. For this study, 
the thrust values given are assumed to be after any control authority margin is reserved.  
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For a spacecraft with a gimbaled main engine, (Craft B in Figure 2.2), the gimbal likely has a 

restricted range of motion. For a fixed engine spacecraft, (Craft C in Figure 2.2), there may be a 

maximum pitch angle allowed due to sensor limitations or to lower risk, etc. These specific 

limitations can be captured by setting the appropriate values for the minimum and maximum 

allowable thrust angle. 

 

Similarly, constraints on the thrust angle angular rate of change can be implemented in order to 

account for the maximum allowable or possible pitch rate of change of a spacecraft or speed at 

which the spacecraft can gimbal its main engine. By constraining the allowed thrust angle angular 

rate of change to the achievable pitch rate of a spacecraft, higher fidelity results can be realized 

without using a spacecraft’s full momentum of inertia in the state equations. 

 

There can also be constraints on the allowable liftoff and landing values of the thrust angle. While 

a spacecraft with a gimbaled main engine may be able to take off and land at a slight angle, a 

spacecraft with fixed engines would likely need to take off almost vertically, i.e. the thrust angle 

must equal zero at the beginning and the end of the flight. Some residual final speed could be 

tolerated upon landing, but too much in either the X or Z direction could damage the craft and/or 

cause it to dig into the surface and/or flip over.  

2.11  Development of State Equations 

Once the control variables are chosen, sufficiently accurate equations that model the problem 

dynamics are developed. These state equations include functions that predict the motion of the 

spacecraft in response to the forces of gravity and thrust, and the change in spacecraft mass as 

propellant is expelled to create thrust. Once the trajectory problem is represented mathematically, 
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optimization techniques are employed to refine and improve possible flight profiles and control 

laws. 

2.12  Burn-Coast-Burn Impulsive-Ballistic Minimum Energy Derivation 

The lower bound of the minimum propellant use is determined via a “burn-coast-burn” ballistic-

impulsive analysis4,e similar to modelling the path of a cannonball as shown in Figure 2.5. Such a 

spacecraft would experience an impulsive velocity change, ߂ ௜ܸ௡௜௧௜௔௟, (1
st burn), that would bring 

the spacecraft from a rest state to an initial velocity, ௜ܸ௡௜௧௜௔௟, at a flight path/launch angle, ߙ௜௡௜௧௜௔௟, 

as measured from the horizon. The spacecraft would “coast” in a parabolic arc according to the 

relevant equations of motion, eventually reaching the ground with a final velocity equal to the 

initial velocity, ௙ܸ௜௡௔௟ ൌ ௜ܸ௡௜௧௜௔௟, and a negative flight path angle, ߙ௙௜௡௔௟ ൌ 	െߙ௜௡௜௧௜௔௟. An 

equivalent impulsive velocity change would be required at the end of the flight, ܸ߂௙௜௡௔௟, (2
nd 

burn), to zero out the final velocity, ௙ܸ௜௡௔௟,	and bring the spacecraft to a restf. 

 
Figure 2.5: “Burn-Coast-Burn” Impulsive-Ballistic Trajectory 

 
While this method has limitations described herein, several useful formulas were derived to 

establish estimates and values for comparison.  

                                                      

e There are errata in the formulas listed in this source; the calculations were re-derived. 
f If the central body in question had exceedingly low gravity, e.g. an asteroid, the spacecraft may be robust 
enough to survive the impact and save propellant. This could also prevent contamination of the second site 
by the spacecraft’s propellant.  
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For the most efficient initial flight path angle, ߙ௜௡௜௧௜௔௟ = 45 degrees, the ballistic-impulsive TOF 

and required initial velocity can be solved for in terms of the desired horizontal displacement and 

the local surface gravity 

 ௜ܸ௡௜௧௜௔௟,௕௔௟௟௜௦௧௜௖ ൌ ටݏ݋ܲݔ௙௜௡௔௟ ∗ ݃௟௢௖௔௟ (2.1)

௕௔௟௟௜௦௧௜௖ܨܱܶ  ൌ ඨ
2 ∗ ௙௜௡௔௟ݏ݋ܲݔ

݃௟௢௖௔௟
 (2.2)

 
The maximum height reached is simply one quarter of the targeted distance.  

௠௔௫,௕௔௟௟௜௦௧௜௖ݏ݋ܲݖ  ൌ
௙௜௡௔௟ݏ݋ܲݔ

4
 (2.3)

 

2.13  Burn-Coast-Burn Impulsive-Ballistic Propellant Mass Derivation 

To calculate how much propellant would be required to perform these impulsive ΔV maneuvers, 

the “ideal” rocket equation is used,	

ܸ߂  ൌ ௘ܷ௫௛௔௨௦௧ ∗ ln ቆ
஻௘௙௢௥௘ݏݏܽܯ ஻௨௥௡
஺௙௧௘௥ݏݏܽܯ ஻௨௥௡

ቇ (2.4)

 

where the exhaust velocity, ௘ܷ௫௛௔௨௦௧ ൌ 	 ୱ୮ܫ ∗ ݃. Using the ideal rocket equation iteratively and 

using the relation	| ௜ܸ௡௧௜௔௟| ൌ ߂ ௜ܸ௡௜௧௜௔௟ ൌ ߂	 ௙ܸ௜௡௔௟ ൌ ห ௙ܸ௜௡௔௟ห, the required propellant to perform 

both burns is found to be 

ݏݏܽܯ	ݐ݈݈݊ܽ݁݌݋ݎܲ  ௜௠௣௨௟௦௜௩௘ ൌ ௜௡௜௧௜௔௟ݏݏܽܯ ∗ ൬1 െ exp ൬െ
2 ∗ ௜ܸ௡௜௧௜௔௟

௘ܷ௫௛௔௨௦௧
൰൰ (2.5)

 
By substituting the relation in Eq. (2.1) for finding the required initial velocity to travel a desired 

horizontal displacement into Eq. (2.5), the impulsive-ballistic propellant mass can be directly 

solved for in terms of the original spacecraft mass, exhaust velocity, and local gravity.  
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௜௠௣௨௟௦௜௩௘ݏݏܽܯ	ݐ݈݈݊ܽ݁݌݋ݎܲ  ൌ ௜௡௜௧௜௔௟ݏݏܽܯ ∗ ቈ1 െ expሺെ
2 ∗ ඥݏ݋ܲݔ௙௜௡௔௟ ∗ ݃௟௢௖௔௟

௘ܷ௫௛௔௨௦௧
ሻ቉ (2.6)

 
Thus Eq. (2.6) places a lower bound on the minimum propellant required in order to perform the 

hopping maneuver for a given translation distance. This ideal burn-coast-burn trajectory model 

can be used as an efficiency measure for finite thrust maneuvers. The closer the actual required 

propellant is to this ideal value, the more efficient the trajectory, but it cannot use less propellant. 

2.14  Gravity Losses and Limitations of Impulsive-Ballistic Model  

Where the burn-coast-burn model fails is that infinite thrust would be required to accomplish the 

desired velocity changes instantaneously15. Any finite-thrust system needs to fire its engines for a 

non-zero amount of time in order to perform the initial take-off and landing ΔV’s. Because the 

spacecraft will be experiencing gravity during this time, the actual propellant use required to 

perform a desired ΔV requires including a gravity losses term to the rocket equation as 

	ܸ߂  ൌ 	 ௘ܷ௫௛௔௨௦௧ ∗ ln ቆ
஻௘௙௢௥௘ݏݏܽܯ ஻௨௥௡
஺௙௧௘௥ݏݏܽܯ ஻௨௥௡

ቇ െ න ݃௟௢௖௔௟ ∗ ݐ݀
௧್ೠೝ೙

௧ୀ଴
 (2.7)

 
where ݐ௕௨௥௡ is the length of time the engines are firing. The consequence of gravity losses is that 

more propellant is required to accomplish a desired ΔV than the impulsive rocket equation would 

suggest, e.g. the spacecraft ݏݏܽܯ஺௙௧௘௥	஻௨௥௡ in Eq. (2.7) would be lower than in Eq. (2.4) for the 

same	ܸ߂. However, the spacecraft is also translating while the thrust accelerates and decelerates 

the spacecraft at the beginning and end of the flight, so the required coasting distance and initial 

velocity before coasting would be less than the initial velocity given by Eq. (2.1). Lastly, the 

spacecraft’s propulsion system must compensate in order to achieve a desired flight path angle. 

2.15  Free-body diagram of a VTVL hopping spacecraft 

While Eq. (2.7) is useful for highlighting the limitations of the impulsive rocket equation, it is 

ultimately insufficient for calculating the propellant required for a VTVL translation maneuver. 
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Gravity losses not only increase the amount of propellant required to perform maneuvers, they 

also change the resultant magnitude and the angle of acceleration of the spacecraft. A free-body 

diagram of a hopping spacecraft as shown in Figure 2.6 demonstrates the effect. If a flight path 

angle, α, of 45 degrees was desired, the nominal thrust angle,	θ୬୭୫୧୬ୟ୪, would need to be steeper 

in order to compensate for the force of gravity. Additionally, the magnitude of the resultant thrust 

is lower due to vector addition.  

 
Figure 2.6: Free-body analysis of a VTVL hopping spacecraft 

 
Understanding the problem dynamics can assist mission planners in choosing the required thrust 

level, throttling capabilities, and thrust vectoring requirement of a VTVL spacecraft propulsion 

system. Just to get off the ground, the produced thrust must be greater than the spacecraft’s local 

weight. In order to hover and maintain an altitude, the thrust output must continuously decrease to 

match the spacecraft’s current weight, which will exponentially decay as propellant is expelled 
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from the engines. In order to maintain a specific altitude while translatingg, the magnitude and 

thrust angle must be balanced such that the vertical component of thrust continuously equals the 

vehicles’ current weight. Lastly, if the vehicle is to keep its engines on during the entire flighth, 

throttling below the spacecraft’s local weight is required to land.  

2.16  Solution Hypothesis 

The expected unconstrained solution for a high Thrust to Weight ratio (T/W) spacecraft is to 

approximate a ballistic trajectory within the limitations of the spacecraft’s ability to accelerate as 

rapidly as possible – essentially a finite-burn, coast, finite-burn, where the second burn is slightly 

less due to the spacecraft mass decreasing from performing the first burn. From there, various 

spacecraft parameters or potential solution constraints can be varied to study their impact on the 

required propellant. 

2.17  Comparison to Orbital Trajectory Optimization 

Developing a model for VTVL spacecraft trajectory optimization was baselined on a classic 

optimization problem for a constant thrusti spacecraft16. For that problem, the objective is finding 

the thrust-direction history that transfers a spacecraft from an initial circular orbit to the largest 

possible circular orbit for a given TOF. The initial spacecraft mass, orbital radius, thrust-level, 

and TOF could all be varied independently. 

 

Modeling a VTVL spacecraft required adding an additional control variable for throttling the 

thrust, changing the state equations to reflect surface operations, and adding additional spacecraft 

                                                      

g A flight profile commonly seen of Earth-based VTVL test vehicles is a “top hat” trajectory where the 
spacecraft vertically ascends, accelerates horizontally, translates, decelerates horizontally, and then 
vertically lands. 
h This might be required for non-hypergolic bipropellant propellants where restarts are limited.  
i These types of trajectories are characteristic of spacecraft utilizing high	ܫ௦௣, low-thrust electric propulsion.  
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parameters and constraints to increase model fidelity. Orbital trajectory optimization techniques 

for high-thrust spacecraft that model ΔV maneuvers as impulsive were not helpfulj.  

2.18  Developing an Optimal Control Problem 

Solving for the optimal VTVL translation trajectory is equivalent to solving for the control law 

which produces it. Thus a model is developed to represent both the control law and the resulting 

change in state variables over time. This can be referred to as an Optimal Control Problem. Once 

a mathematical model is created, optimization techniques can be applied.  

  

                                                      

j The problem dynamics, key assumptions, and solution formats are very different. 
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The state variable functions ܛሺݐሻ are the integrals of these state equations	ܛሶ, and any one state 

equation in particular is	ݏሶ௝ሺݐሻ. 

 

The simulation time start,	ݐ௜௡௜௧௜௔௟, is defined to be zero, so the simulation duration, (the ܱܶܨ), is 

equivalent to,	ݐ௙௜௡௔௟ . The ܱܶܨ may be a free variable and allowed to float within an upper and 

lower bound by changing	ݐ௙௜௡௔௟ ,  

௙௜௡௔௟,௟௢௪௘௥ݐ  ൑ ௙௜௡௔௟ݐ ൑ ௙௜௡௔௟,௨௣௣௘௥ (3.3)ݐ

 
or a fixed variable set by restricting ݐ௙௜௡௔௟	to a specific time.  

There may be simple global bounds on the state and control variables between lower and upper 

limits, such as a maximum or minimum allowable altitude, velocity, thrust magnitude, thrust 

angle, etc.  

௟௢௪௘௥ܛ  ൑ ሻݐሺܛ ൑ ௨௣௣௘௥ (3.4)ܛ

௟௢௪௘௥ܝ  ൑ ሻݐሺܝ ൑ ௨௣௣௘௥ (3.5)ܝ

 
The initial boundary condition at the simulation start may be defined as a ሾ8 ൈ 1ሿ column vector 

 ૐ௜௡௜௧௜௔௟ ൌ ൥
௜௡௜௧௜௔௟ݐ
୧୬୧୲୧ୟ୪ሻݐሺܛ
୧୬୧୲୧ୟ୪ሻݐሺܝ

൩ (3.6)

 
and the desired final boundary condition may be defined as a ሾ8 ൈ 1ሿ column vector 

 ૐ௙௜௡௔௟ ൌ ቎
௙௜௡௔௟ݐ
୤୧୬ୟ୪ሻݐሺܛ
୤୧୬ୟ୪ሻݐሺܝ

቏ (3.7)

 
The boundary conditions can be described in terms of ૐ௙௥௘௘ and ૐ௙௜௫௘ௗ variables subsets. While 

solving for the optimal trajectory, free variables may float between a range of acceptable limits 
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given by ૐ௙௥௘௘,௟௢௪௘௥ and ૐ௙௥௘௘,௨௣௣௘௥ such as the final mass, or fixed, such as the initial positionl, 

per VTVL maneuver.  

 

The problem may also be subject to equality constraints of the form 

:࢚࢟࢏࢒ࢇ࢛ࢗࢋ࡯  ,ሻݐሺܛሾ܎ ,ሻݐሺܝ ,ܘ ሿݐ ൌ 0 (3.8)

 
which must be driven to zero to be fully satisfied, and inequality constraints of the form 

:࢚࢟࢏࢒ࢇ࢛ࢗࢋ࢔࢏࡯  ,ሻݐሺܛሾ܎ ,ሻݐሺܝ ,ܘ ሿݐ ൑ 0 (3.9)

 
that only need to be less than or equal to zero in order to be satisfied. Either constraint can 

introduce path constraints or additional limitations on allowable solutions.  

 

The basic optimal control problem is to determine the control law ܝሺݐሻ that optimizes the fitness 

functionm, ܬ,   

ܬ  ൌ ݂ሾܛሺݐሻ, ,ሺtሻܝ ,ܘ ሿ (3.10)ݐ

 
while satisfying all the boundary conditions, upper and lower bounds, and all user-defined 

inequality and equality constraints. This fitness function must be capable of transitive comparison 

between any possible trajectories that satisfy all conditions. 

3.2  State and Control Functions Are Not Closed Form Analytical Expressions 

As is generally the case with most nonlinear coupled dynamics problems, the state equations 

ଵ݂ … ହ݂
n cannot be analytically integrated and solved as closed-form analytical expressionso. 

                                                      

l There needs to be sufficient degrees of freedom, i.e. free variables, or else the problem is over constrained. 
m This is also called the penalty function, scalar performance index, or objective function.  
n The state equations are given in Eqs. (3.23)-(3.27). 
oAlso note, for the ballistic-impulsive case described in Section 2.12, the state variable functions can be 
derived analytically since the state equations are decoupled in the X and Z axes. 
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Additionally, the control variable functions are usually not closed-form analytical expressions 

either. The state variable functions ݏଵ …  ହ can still return a value of the state variables for anyݏ

time	ݐ, but doing so usually requires numerically integrating the state equations from an initial 

condition while following the control functions. 

3.3  Direct Method Overview 

The direct method implemented attempts to directly solve for the optimal trajectory by 

manipulating the values of the state and control variable functions ܛሺݐሻ and	ܝሺݐሻ. This method 

attempts to simultaneously find the optimal trajectory and the control law which is required to 

produce it. This technique is well suited to handle the problem dynamics of the VTVL maneuver.  

 

Upper and lower bounds for all state and control variables can readily be enforced so that 

trajectories stay within a “state-space box,” and initial and final conditions can be applied. In this 

way, the direct method is similar to a boundary value problem. However, there is no a priori 

guarantee that the trajectories found during each iteration are feasible, i.e., does the control law 

produce the trajectory given the state equations and additional constraints. The direct method 

must determine the optimal trajectory only within the feasible subset within the entire state-space. 

 

Depending on how the problem is formulated and the optimization method(s) implemented, the 

solution state space of all possible trajectories that a given implementation can search may be 

slightly different, and some solver parameters may require significantly more time and 

computational power to run. It is important to understand how the method’s parameters chosen 

affect the search space, validity, and usefulness of results. 
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3.4  Global Time of Flight Bounds 

As per Eq. (3.3) the optimal TOF was expected to be greater than the ballistic TOF due to finite 

burns, but lower than twice the ballistic TOF. 

௙௜௡௔௟,௟௢௪௘௥ݐ  ൌ ௕௔௟௟௜௦௧௜௖ܨܱܶ ൌ ඨ
2 ∗ ௙௜௡௔௟ݏ݋ܲݔ

݃௟௢௖௔௟
 (3.11)

௙௜௡௔௟,௨௣௣௘௥ݐ  ൌ 2 ∗ ௕௔௟௟௜௦௧௜௖ܨܱܶ ൌ 2 ∗ ඨ
2 ∗ ௙௜௡௔௟ݏ݋ܲݔ

݃௟௢௖௔௟
 (3.12)

3.5  Global State Variable Bounds 

In order to reduce the search space, parameterized time-invariant global assumptions are made on 

the maximum and minimum acceptable state variable values that any optimal solution should be 

within as per Eq. (3.6). The allowable range of position along the X axis is restricted to be 

between zero and the final position since any over or undershoot would require restoring forces 

and thus additional propellant. 

௅௢௪௘௥ݏ݋ܲݔ  ൌ 0 (3.13)

௎௣௣௘௥ݏ݋ܲݔ  ൌ ி௜௡௔௟ (3.14)ݏ݋ܲݔ

 
Similarly, the minimum X velocity is required to be greater than or equal to zero. The maximum 

X velocity is assumed to be within twice the ballistic X velocity.  

௅௢௪௘௥݈ܸ݁ݔ  ൌ 0 (3.15)

௎௣௣௘௥݈ܸ݁ݔ  ൌ 2 ∗
ி௜௡௔௟ݏ݋ܲݔ
௕௔௟௟௜௦௧௜௖ܨܱܶ

ൌ ට2 ∗ ௙௜௡௔௟ݏ݋ܲݔ ∗ ݃௟௢௖௔௟ (3.16)

 
The Z Position, or altitude, is restricted to between zero and half the desired translation distance, 

which is twice the maximum altitude reached during a ballistic trajectory as per Eq. (2.3). 

௅௢௪௘௥ݏ݋ܲݖ  ൌ 0 (3.17)

௎௣௣௘௥ݏ݋ܲݖ  ൌ
ி௜௡௔௟ݏ݋ܲݔ

2
 (3.18)
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The Z velocity was constrained to be within the initial ballistic velocity. Note that this is the 

vector total initial ballistic velocity, not only the Z component.  

௅௢௪௘௥݈ܸ݁ݖ  ൌ െ ୧ܸ୬୧୲୧ୟ୪,ୠୟ୪୪୧ୱ୲୧ୡ ൌ െටݏ݋ܲݔ௙௜௡௔௟ ∗ ݃௟௢௖௔௟ (3.19)

௎௣௣௘௥݈ܸ݁ݖ  ൌ ൅ ୧ܸ୬୧୲୧ୟ୪,ୠୟ୪୪୧ୱ୲୧ୡ ൌ ൅ටݏ݋ܲݔ௙௜௡௔௟ ∗ ݃௟௢௖௔௟ (3.20)

 
The spacecraft’s mass can obviously not exceed the original mass for the upper bound. The lower 

bound was set at the original mass less twice the ballistic propellant mass found via Eq. (2.5). 

௅௢௪௘௥ݏݏܽܯ  ൌ ூ௡௜௧௜௔௟ݏݏܽܯ െ 2 ∗ ݈݁ݑܨ ݏݏܽܯ ௜௠௣௨௟௦௜௩௘ (3.21)

௎௣௣௘௥ݏݏܽܯ  ൌ ூ௡௜௧௜௔௟ (3.22)ݏݏܽܯ

3.6  Global Control Variable Bounds  

The variables used to define the acceptable range of control variable values as per Eq. (3.5) are 

listed in Table 3.1, and correspond to Figure 2.4. These are global limitations of the spacecraft’s 

propulsion system abilities, though additional constraints can be added to model path constraints 

or boundary conditions. The specific values used are presented in the results.  

Table 3.1: Spacecraft Control Variable Bounds 

Parameter Abbreviation Units Use 

Minimum Thrust Magnitude ݄ܶݐݏݑݎ௠௜௡ Newtons Lower Bound 

Maximum Thrust Magnitude ݄ܶݐݏݑݎ௠௔௫ Newtons Upper Bound 

Minimum Thrust Angle ߠ௠௜௡ ݏ݁݁ݎ݃݁ܦ Lower Bound 

Maximum Thrust Angle ߠ௠௔௫ ݏ݁݁ݎ݃݁ܦ Upper Bound 

3.7  Determining the Validity of Global Bounds 

If any of the bounds on the state variables, control variables, and time of flight are less than 

needed for the actual optimum trajectory, it is expected that the optimization method should 

produce trajectories that lie along one or more of the bounding limits. In this case, relaxing the 

bounds should result in an increase in fitness. If the bounds are too restrictive, the simulation may 

fail to converge.  
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3.8  Vector and Matrix Indices 

The specific indices of the state and control variable vector functions and the numerical matrices 

are listed in Table 3.2 for clarity. Note the difference between the function and matrix indexing, 

further explored in Section 4.2. 

Table 3.2: State and Control Variable Function Indices 

Function Vector Index Matrix Indices Variable Abbreviation Units 

,ሾ1ܛ ሻݐଵሺݏ : ሿ X Position ݏݎ݁ݐ݁݉ ݏ݋ܲݔ 

,ሾ2ܛ ሻݐଶሺݏ : ሿ X Velocity ݀݊݋ܿ݁ݏ/ݏݎ݁ݐ݁݉ ݈ܸ݁ݔ 

,ሾ3ܛ ሻݐଷሺݏ : ሿ Z Position ݏ݋ܲݖ meters 

,ሾ4ܛ ሻݐସሺݏ : ሿ Z Velocity ݏݎ݁ݐ݁݉ ݈ܸ݁ݖ ⁄݀݊݋ܿ݁ݏ  

,ሾ5ܛ ሻݐହሺݏ : ሿ Mass ݏ݉ܽݎ݃݋݈݅݇ ݏݏܽܯ 

,ሾ1ܝ ሻݐଵሺݑ : ሿ 
Thrust 

Magnitude 
 ݏ݊݋ݐݓ݁ܰ ݐݏݑݎ݄ܶ

,ሾ2ܝ ሻݐଶሺݑ : ሿ Thrust Angle ݏ݁݁ݎ݃݁݀ ߠ 

3.9  State Equations 

The problem dynamics are idealized as a vector of parametric differential equations as described 

in Eqs. (3.23) - (3.27) which correspond to the free body diagram shown in Figure 2.6 

ሻݐሶଵሺݏ ൌ ݏ݋ሶܲݔ ൌ
ݏ݋ܲݔ݀
ݐ݀

ൌ (3.23) ݈ܸ݁ݔ

ሻݐሶଶሺݏ ൌ ሶܸ݈݁ݔ ൌ
݈ܸ݁ݔ݀
ݐ݀

ൌ
െ݄ܶݐݏݑݎ ∗ sin ߠ

ݏݏܽܯ
 (3.24)

ሻݐሶଷሺݏ ൌ ݏ݋ሶܲݖ ൌ
ݏ݋ܲݖ݀
ݐ݀

ൌ (3.25) ݈ܸ݁ݖ

ሻݐሶସሺݏ ൌ ሶܸ݈݁ݖ ൌ
݈ܸ݁ݖ݀
ݐ݀

ൌ
െ݄ܶݐݏݑݎ ∗ cos ߠ

ݏݏܽܯ
െ ݃௟௢௖௔௟ (3.26)

ሻݐሶହሺݏ ൌ ሶܯ ݏݏܽ ൌ
ݏݏܽܯ݀
ݐ݀

ൌ
െ݄ܶݐݏݑݎ
௦௣ܫ ∗ ݃

 (3.27)

 
These equations model the response of the spacecraft to the forces of gravity and thrust under the 

assumptions previously stated in Chapter 2. The effective specific impulse of the spacecraft, ܫ௦௣, 

is assumed to be constant across the entire thrust throttle range. If the specific impulse is expected 
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Matrix indexing is used with matrices, and subscripts are used for vectors. For clarity, the 

indexing method is ܛሾ݁ݐܽݐݏ	݈ܾ݁ܽ݅ݎܽݒ	ݔ݁݀݊݅,  ሿ for the state variable matrix, andݔ݁݀݊݅	݁݀݋݊

,ݔ݁݀݊݅	݈ܾ݁ܽ݅ݎܽݒ	݈݋ݎݐ݊݋ሾܿܝ  ሿ for the control variable matrix.  The state variableݔ݁݀݊݅	݁݀݋݊

matrix ܛሾ: , : ሿ	has dimension of	ሾ5	 ൈ 	݊ሿ, and the control variable matrix	ܝሾ: , : ሿ is	ሾ2	 ൈ 	݊ሿ, where 

݊ is the number of time discretization nodes.  

ܜ  → ሻݐሺܛ ൌ

ۏ
ێ
ێ
ۍ
ሻܜଵሺݏ
ሻܜ௝ሺݏ
⋮

ےሻܜହሺݏ
ۑ
ۑ
ې
≅ ൦

,ሾ1ܛ : ሿ
,ሾ݆ܛ : ሿ
⋮

,ሾ5ܛ : ሿ

൪ ൌ :ሾܛ , : ሿ (4.2)

ܜ  → ሻݐሺܝ ൌ ൤
ሻܜଵሺݑ
ሻܜଶሺݑ

൨ ≅ ൤
,ሾ1ܝ : ሿ
,ሾ2ܝ : ሿ

൨ ൌ :ሾܝ , : ሿ (4.3)

 
An entire solution can be reduced to an	ሾ8	 ൈ 	݊ሿ dynamic solution matrix ܈ consisting of the time 

vector ܜ and the corresponding state and control variable values. An individual node ܈௞ is an 

ሾ8	 ൈ 	1ሿ column vector cross-section of the solution matrix.  

௞܈  ൌ ൥
௞ݐ

:ሾܛ , ݇ሿ
:ሾܝ , ݇ሿ

൩ ݁ݎ݄݁ݓ ݇ ൌ ሾ1: ݊ሿ (4.4)

 
Each node is a unique point within the search space, the space of all values the node variables 

can take for a given node. These individual nodes are represented in Figure 4.1 as red dots, and 

the solution matrix would be all the nodes from	ሾ1: ݊ሿ. The line connecting the nodes is the 

trajectory of the spacecraft in hyper-dimensional dynamic state space, as each node includes the 

current velocity, mass, and control variables values.  

 

The trajectory segment between any node ܈௞ and ܈௞ାଵ is referred to as trajectory segment	߬௞ 

for	݇ ൌ 	1: ሺ݊ െ 1ሻ. The segment width ݐ߂௞ for any trajectory segment	݇ is 

௞ݐ߂  ൌ ௞ାଵݐ െ ௞ (4.5)ݐ

 
and may or may not be a constant, depending on the node temporal distribution. 
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Figure 4.1: Discretization of an Optimal Control Problem into a Nonlinear Programming Problemq 

4.3    Simple Global Upper and Lower Bounds 

Simple global lower and upper bounds on the allowable values of the dynamic variables can be 

set due to physical, spacecraft, or problem constraints, e.g. minimum and maximum altitudes, 

thrust levels, etc. These can be imposed on a per node basis to enforce boundary conditions. 

Setting appropriate constraints can decrease the computational effort required to optimize the 

                                                      

q Figure 4.1 was initially based off of the work of B. Geiger23 Note that the vertical axis 

corresponds to node points within the entire state variable space, not any one state variables in 

particular. 
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trajectory by limiting the search space, though care must be taken to ensure that potential optimal 

trajectories are not excluded.   

4.4    Enforcing Feasibility through Equality Constraints 

A method must be developed to determine whether a given solution matrix ܈ represents a feasible 

trajectory, i.e. if the given control law would produce the trajectory and change in spacecraft state 

variables seen in the solution matrix. Using only the values of the time, state, and control values 

at the node points bracketing a trajectory segment	߬௞, 5 ൈ ሺ݇ െ 1ሻ equality constraints in the form 

of Eq. (3.8) can be developed. If the equality constraint method is valid, when all of the 

constraints are driven to zero, the solution matrix should represent a feasible trajectory, (though 

there is no guarantee of optimality).  

 

Essentially, to determine if a trajectory is feasible, the value of the state variables at node ܈௞ାଵ 

are predicted by integrating the state equations ܛሶሺݐሻ from the values of the state variables at node 

ݐ ௞ from܈ ൌ ௞ݐ →  ௞ାଵ as perݐ

:ሾܛ  , ݇ ൅ 1ሿ ൌ :ሾܛ , ݇ሿ ൅ න ݐሻ݀ݐሶሺܛ
௧ೖశభ

௧ೖ

 (4.6)

 
where the state equations are evaluated as Eq. (3.2) and therefore at the nodes via 

௞ሻݐሶሺܛ  ൌ :ሾܛሺ܎ , ݇ሿ, :ሾܝ , ݇ሿ, ,ܘ ௞ሻ (4.7)ݐ
 
Note that the values of the control variables at node ܈௞ାଵ and ܈௞ are required to calculate the 

values of the state equations as per Eq. (4.7). 

 

Two inequality constraints are discussed. The first uses simple trapezoidal integration between 

the nodes. The second utilizes the method of Direct Collocation. As implemented, this results in 
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an equality constraint that is equivalent to implicit Hermite-Simpson integration, and should be 

higher fidelity.  

4.5    Trapezoidal Feasibility Equality Constraints 

Using the notation developed, the trapezoidal approximation of integration is   

:ሾܛ  , ݇ ൅ 1ሿ ≅ :ሾܛ , ݇ሿ ൅
௞ାଵሻݐሶሺܛ ൅ ௞ሻݐሶሺܛ

2
௞ (4.8)ݐ߂

 
Therefore, if the actual values of the state variables at node ܈௞ାଵ in the solution matrix are 

different than the values predicted by Eq. (4.8), the solution is not feasible. The differences 

between the predicted and actual state variable values at node ܈௞ାଵ are referred to as the defects. 

This process is repeated on a per-node basis and turned into a ሾ5 ൈ ሺ݊ െ 1ሻሿ matrix of trapezoidal 

feasibility equality constraints, ܙ܍۱
்௥௔௣ሾ: , ݇ሿ, as per 

ܙ܍۱ 
்௥௔௣ሾ: , ݇ሿ ൌ :ሾܛ , ݇ ൅ 1ሿ െ :ሾܛ , ݇ሿ ൅

௞ାଵሻݐሶሺܛ ൅ ௞ሻݐሶሺܛ

2
௞ݐ߂ → 0 (4.9)

 
for ݇ ൌ 1: ሺ݊ െ 1ሻ, and ۱ܙ܍

்௥௔௣ሾ: , ݇ሿ is to be driven to zero. Note that this requires that trapezoidal 

integration is sufficiently accurate to represent the trajectory between nodes.  

4.6    Requirements of Simpson-Hermite Integration  

Using the notation developed, the Simpson’s approximation of integration is expressed as  

:ሾܛ  , ݇ ൅ 1ሿ ≅ :ሾܛ , ݇ሿ ൅ ൬
௞ݐ߂
6
൰ ∗ ቆܛሶሺݐ௞ሻ ൅ 4 ∗ ሶܛ ൬ݐ௞ ൅

௞ݐ߂
2
൰ ൅ ௞ାଵሻቇ (4.10)ݐሶሺܛ

 
While the trapezoidal approximation only required the value of the state variables and state 

equations at the nodes, Simpson’s method requires the value of the state equations at the midpoint 

between the nodes, i.e.	ܛሶሺݐሻ	@	ݐ ൌ 	 ௞ݐ ൅
௱௧ೖ
ଶ

. However, to calculate the state equations requires 

the values of the state and control variables at the midpoint as per Eq. (3.2). Thus methods need 

to be developed first to determine the midpoint values before Simpson’s method can be used. 
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4.7    Control Law Midpoint Linear Interpolation 

A simple linear interpolationr was used to generate the values of the control variable functions, 

(the control law), at any simulation time	ݐ, using only the values of the control variables at the 

nodes.  

ሻݐሺܝ  ൌ
:ሾܝ , ݇ ൅ 1ሿ െ :ሾܝ , ݇ሿ

௞ାଵݐ െ ௞ݐ
∗ ሺݐ െ ௞ݐ ሻ ൅ :ሾܝ , ݇ሿ (4.11)

 
where ݇ is incremented when ݐ	 ൐ 	  .௞ାଵݐ

At the midpoints, Eq. (4.11) reduces to  

ܝ  ൬ݐ௞ ൅
௞ݐ߂
2
൰ ൌ

:ሾܝ , ݇ሿ ൅ :ሾܝ , ݇ ൅ 1ሿ

2
 (4.12)

4.8    State Variable Midpoint Interpolation via Direct Collocation 

Direct Collocation is a method to estimate the values of the state variables at the midpoint of any 

trajectory segment	߬௞ from only the values of the state variables and state equations at the 

boundary nodes	܈௞ and ܈௞ାଵ, and the segment width ݐ߂௞.  

ܛ  ൬ݐ௞ ൅
௞ݐ߂
2
൰ ൌ :ሾܛሺࢌ , ݇ሿ, ,௞ሻݐሶሺܛ :ሾܛ , ݇ ൅ 1ሿ, ,௞ାଵሻݐሶሺܛ ௞ሻ (4.13)ݐ߂

 
The name Direct Collocation derives from the central idea of using fictitious piecewise cubic 

polynomial functions juxtaposed or collocated alongside the node points of the form 

 ࣌ሺ߬ሻ ൌ ଴ܥ ൅ ଵܥ ∗ ߬ ൅ ଶܥ ∗ ߬ଶ ൅ ଷܥ ∗ ߬ଷ (4.14)
 
to model the value of the corresponding state variable functions along any trajectory segment	߬௞. 

 ࣌ሺ߬௞ሻ ≅ ሻݐሺܛ ݁ݎ݄݁ݓ ߬௞ ൌ ሾ0 → 1ሿ ݎ݋݂ ݐ ൌ ሾݐ௞ → ௞ାଵሿ (4.15)ݐ

 
For clarity, note that the polynomial functions’ independent variable ߬ is equivalent to the time 

span ሾݐ௞ → ௞ାଵሿ, but mapped to the range ሾ0ݐ → 1ሿ.  

                                                      

r This assumes that the control variables can change as fast as needed. If limitations exist on the allowable 
rates of change, these need to be captured through additional constraints, e.g. Eq. (3.28). 
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The cubic polynomial coefficients can be solved for in terms of their boundary conditions. 

Substituting	߬	 ൌ 	0 and	߬	 ൌ 	1 into Eq. (4.14) and its first derivative, the following relations can 

be developed 

 ൦

଴ܥ
ଵܥ
ଶܥ
ଷܥ

൪ ቎

1 0
0 1

0 0
0 0

1 1
0 1

1 1
2 3

቏ ൌ ൦

࣌ሺ0ሻ
ሶ࣌ ሺ0ሻ
࣌ሺ1ሻ
ሶ࣌ ሺ1ሻ

൪ (4.16)

 
Matrix inversion allows the cubic coefficients C0 through C3 to be defined in terms of the 

boundary conditions of the polynomial function. 

 ൦

଴ܥ
ଵܥ
ଶܥ
ଷܥ

൪ ൌ ቎

1 0
0 1

0 0
0 0

െ3 െ2
2 1

3 െ1
െ2 1

቏ ൦

࣌ሺ0ሻ
ሶ࣌ ሺ0ሻ
࣌ሺ1ሻ
ሶ࣌ ሺ1ሻ

൪ (4.17)

 
If cubic polynomials can accurately represent the state variable functions along the trajectory 

segment as per Eq. (4.15), then the boundary conditions of Eq. (4.14) should be equivalent to the 

values of the state variables and state equations as per 

 

࣌ሺ0ሻ ൌ :ሾܛ , ݇ሿ 
ሶ࣌ ሺ0ሻ ൌ  ௞ሻݐሶሺܛ
࣌ሺ1ሻ ൌ :ሾܛ , ݇ ൅ 1ሿ 
ሶ࣌ ሺ1ሻ ൌ  ௞ାଵሻݐሶሺܛ

(4.18)

 
Therefore, the cubic coefficients can be solved for in terms of the values of the state variables and 

state equations at nodes ܈௞ and ܈௞ାଵ. 

 ൦

଴ܥ
ଵܥ
ଶܥ
ଷܥ

൪ ൌ ቎

1 0
0 1

0 0
0 0

െ3 െ2
2 1

3 െ1
െ2 1

቏

ۏ
ێ
ێ
ۍ
:ሾܛ , ݇ሿ
௞ሻݐሶሺܛ

:ሾܛ , ݇ ൅ 1ሿ
௞ାଵሻݐሶሺܛ ے

ۑ
ۑ
ې
 (4.19)

 

And therefore, the values of the state variables at the trajectory segment midpoints, ቀݐ௞ ൅
௱௧ೖ
ଶ
ቁ , 

should be equivalent to Eq. (4.14) evaluated at	߬	 ൌ 	0.5. 
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 ࣌ሺ0.5ሻ ൌ ଴ܥ ൅
ଵܥ
2
൅
ଶܥ
4
൅
ଷܥ
8
≅ ܛ ൬ݐ௞ ൅

௞ݐ߂
2
൰ (4.20)

 
Using the relations shown in Eq. (4.19) substituted into Eq. (4.20); a relation can be developed to 

estimate the value of the state variables at the midpoint purely in terms of the boundary 

conditions. 

ܛ  ൬ݐ௞ ൅
௞ݐ߂
2
൰ ൌ

:ሾܛ , ݇ሿ ൅ :ሾܛ , ݇ ൅ 1ሿ

2
൅
௞ݐ߂ ∗ ሺܛሶሺݐ௞ሻ െ ௞ାଵሻሻݐሶሺܛ

8
 (4.21)

 

4.9    Simpson-Hermite Feasibility Equality Constraints 

Now that the values of the state and control variables at the trajectory segment midpoints can be 

determined purely from the values of the bounding nodes and state equations as per Eqs. (4.12) 

and (4.21), the value of the state equations at the midpoint can be derived as per Eq. (3.2). 

ሶܛ  ൬ݐ௞ ൅
௞ݐ߂
2
൰ ൌ ܎ ൬ܛ ൬ݐ௞ ൅

௞ݐ߂
2
൰ , ܝ ൬ݐ௞ ൅

௞ݐ߂
2
൰ , ,ܘ ௞ݐ ൅

௞ݐ߂
2
൰ (4.22)

 

Therefore, using the concept of Direct Collocation, the Simpson approximation of integration 

shown in Eq. (4.10) can be used to construct a ሾ5 ൈ ሺ݊ െ 1ሻሿ matrix of Simpson-Hermite 

feasibility equality constraints, ܙ܍۱
ௌ௜௠௣௦௢௡ሾ: , ݇ሿ	as per 

 

ܙ܍۱
ௌ௜௠௣௦௢௡ሾ: , ݇ሿ ൌ :ሾܛ , ݇ ൅ 1ሿ െ :ሾܛ , ݇ሿ⋯ 

൅൬
௞ݐ߂
6
൰ ∗ ቆܛሶሺݐ௞ሻ ൅ 4 ∗ ሶܛ ൬ݐ௞ ൅

௞ݐ߂
2
൰ ൅ ௞ାଵሻቇݐሶሺܛ → 0 

(4.23)

 
where ݇ ൌ 1: ሺ݊ െ 1ሻ. As long as the assumption that a cubic polynomial can accurately 

represent the state variable functions along each trajectory segment is valid, then ۱ܙ܍
ௌ௜௠௣௦௢௡ሾ: , ݇ሿ 

should be able to be driven to zero, and if so, the solution matrix should represent a feasible 

trajectory. Further notes on Direct Collocation for clarity can be found in Appendix A.  
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4.10    NLP Variables, Node Distribution, and Time as a Fixed or Free Variable 

Each variable that a NLP solver needs to optimize a trajectory with are referred to as Nonlinear 

Programming Variables, (NLPVs). The distinction of NLP_STATE is made for the subset of 

NLPVs which are state variables, and NLP_CONTROL for control variables. Since a trajectory 

solution ܈ is represented by an	ሾ8 ൈ ݊ሿ matrix of the node times, state variables, and control 

variables, there are 5 ൈ ݊ NLP_STATE variables and 2 ൈ ݊ NLP_CONTROL variables. The 

NLP solver can freely change the values of any of the NLP_STATE and NLP_CONTROL 

variables in order to optimize the trajectory within the upper and lower bounds and satisfy the 

equality and inequality constraints.  

 

The time vector ܜ was treated differently. Instead of allowing the NLP solver to change the node 

time value ݐ௞	at each node freely, the time vector ܜ was determined using a linear time 

distribution from ൣݐ௜௡௜௧௜௔௟: ௜௡௜௧௜௔௟ݐ ௙௜௡௔௟൧, whereݐ ൌ 0 and ݐ௙௜௡௔௟ was either fixed, or free to float 

between an upper and lower bound. If ݐ௙௜௡௔௟ was fixed, then the time vector in the solution 

matrix	܈, (the top row), was fixed for the simulation as well.  

 

If ݐ௙௜௡௔௟ was a free variable, in order to preserve the same relative node distribution, the time 

vector ܜ in the solution matrix was remapped each program iteration to the value of one additional 

NLPV variable	which represented the simulation duration, ݐ௙௜௡௔௟. Therefore the number of 

NLPVs was reduced to 7 ൈ ݊ if time was fixed, or ሺ7 ൈ ݊ሻ ൅ 1 if time was free. 
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4.11    NLPV Upper Bounds, Lower Bounds, and Enforcing Boundary Conditions 

Upper and lower time-invariant bounds for each NLP_STATE variable were calculated as per the 

time-invariant Eqs.(3.13)-(3.22) in the form of	ܛሾ: , : ሿ௟௢௪௘௥ and ܛሾ: , : ሿ௨௣௣௘௥ for all nodes. Bounds 

were set per Table 3.1 for all NLP_CONTROL variables as ܝሾ: , : ሿ௟௢௪௘௥ and ܝሾ: , : ሿ௨௣௣௘௥ as well.  

 

Next, in order to enforce the boundary conditions ૐ௜௡௜௧௜௔௟ and	ૐ௙௜௡௔௟ , the upper and lower 

bounds were set equal to the boundary conditions for all fixed variabless at the column indices 

corresponding to the first and last nodes. 

 ൤
:ሾܛ ,1ሿ௟௢௪௘௥
:ሾܝ ,1ሿ௟௢௪௘௥

൨ ൌ ૐ௜௡௜௧௜௔௟,௙௜௫௘ௗ ൌ ቈ
:ሾܛ ,1ሿ௨௣௣௘௥
:ሾܝ ,1ሿ௨௣௣௘௥

቉ (4.24)

 ൤
:ሾܛ , ݊ሿ௟௢௪௘௥
:ሾܝ , ݊ሿ௟௢௪௘௥

൨ ൌ ૐ௙௜௡௔௟,௙௜௫௘ௗ ൌ ቈ
:ሾܛ , ݊ሿ௨௣௣௘௥
:ሾܝ , ݊ሿ௨௣௣௘௥

቉ (4.25)

 
Free variables at the boundary conditions are still limited to the global limits already applied. If 

the time duration was a free variable, bounds were set according to Eqs. (3.11) and (3.12). 

4.12    Initial Guess Derivation 

In order to improve algorithm performance, an initial guess for the simulation duration/time of 

flight was made according to 

௙௜௡௔௟,௚௨௘௦௦ݐ  ൌ 1.5 ∗ ௕௔௟௟௜௦௧௜௖ (4.26)ܨܱܶ

 
The initial guess time vector,	ܜ௚௨௘௦௦, was then created using a linear distribution between 

ൣ0:  ௙௜௡௔௟,௚௨௘௦௦൧. Guess values for the state position and velocity variables were developed from aݐ

ballistic trajectory using element-wise multiplication or division along	ܜ௚௨௘௦௦.  

                                                      

s Note that the colon used in Eq. (4.24) and Eq. (4.25) indicates that multiple row elements are being set, 
though not necessarily all, since not every state and/or control variable is a fixed boundary condition. 
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௨௘௦௦ீݏ݋ܲݔ ൌ 	ܛሾ1, : ሿ௚௨௘௦௦ ൌ ୧ܸ୬୧୲୧ୟ୪,ୠୟ୪୪୧ୱ୲୧ୡ ∗ cosሺ45ሻ ∗ (4.27) ܜ

௨௘௦௦ீ݈ܸ݁ݔ ൌ 	ܛሾ2, : ሿ௚௨௘௦௦ ൌ ୧ܸ୬୧୲୧ୟ୪,ୠୟ୪୪୧ୱ୲୧ୡ ∗ cosሺ45ሻ (4.28)

௨௘௦௦ீݏ݋ܲݖ ൌ 	ܛሾ3, : ሿ௚௨௘௦௦ ൌ
݃௟௢௖௔௟
2

∗ ଶܜ ൅ ୧ܸ୬୧୲୧ୟ୪,ୠୟ୪୪୧ୱ୲୧ୡ ∗ sinሺ45ሻ ∗ (4.29) ܜ

௨௘௦௦ீ݈ܸ݁ݖ ൌ 	ܛሾ4, : ሿ௚௨௘௦௦ ൌ ݃௟௢௖௔௟ ∗ ܜ ൅ ୧ܸ୬୧୲୧ୟ୪,ୠୟ୪୪୧ୱ୲୧ୡ ∗ sinሺ45ሻ (4.30)

 
For the spacecraft mass, the guess was a simple linear distribution between the initial mass and 

the initial mass less the ballistic propellant required.  

௨௘௦௦ீݏݏܽܯ ൌ 	ܛሾ5, : ሿ௚௨௘௦௦ ൌ ௜௡௜௧௜௔௟ݏݏܽܯ െ
ܜ

௙௜௡௔௟,௚௨௘௦௦ݐ
∗ ݈݁ݑܨ ௜௠௣௨௟௦௜௩௘ (4.31)	ݏݏܽܯ

 
For the control law, a simple guess was made for the thrust to go from ݄ܶݐݏݑݎ௠௔௫ to ݄ܶݐݏݑݎ௠௜௡ 

at the TOF midpoint and then ramp back to	݄ܶݐݏݑݎ௠௔௫. 

௨௘௦௦ீݐݏݑݎ݄ܶ ൌ 	ܝሾ1, : ሿ௚௨௘௦௦ ൌ

ە
ۖ
۔

ۖ
௠௔௫ݐݏݑݎ݄ܶۓ ∗ ቆ 1 െ

2 ∗ ܜ
௙௜௡௔௟,௚௨௘௦௦ݐ

ቇ ݎ݋݂ ܜ ൑
௙௜௡௔௟,௚௨௘௦௦ݐ

2
|

௠௔௫ݐݏݑݎ݄ܶ ∗ ቆ
2 ∗ ܜ

௙௜௡௔௟,௚௨௘௦௦ݐ
െ 1ቇ ݎ݋݂ ܜ ൒

௙௜௡௔௟,௚௨௘௦௦ݐ
2 ۙ

ۖ
ۘ

ۖ
ۗ

(4.32)

 
For the thrust angle, a guess was made equivalent to the negative flight path angle of a ballistic 

trajectory, as the control variable ߠ and flight path angle ߙ shown in Figure 2.6 would be equal in 

magnitude but opposite in sign in the absence of gravity losses.  

௨௘௦௦ீߠ ൌ 	ܝሾ2, : ሿ௚௨௘௦௦ ൌ tanିଵ ൬
௨௘௦௦ீ݈ܸ݁ݖ
௨௘௦௦ீ݈ܸ݁ݔ

൰ ൌ tanିଵ ቆ
,ሾ3ܛ : ሿ௚௨௘௦௦
,ሾ1ܛ : ሿ௚௨௘௦௦

ቇ (4.33)

 
 

Before being used, any nodes that might have been outside the bounds were set to be within limits 

on a per element basis according to 

:ሾܛ  , : ሿ௚௨௘௦௦ ൌ ቊ
:ሾܛሺ݉ݑ݉݅ݔܽ݉ , : ሿ௚௨௘௦௦, :ሾܛ , : ሿ௟௢௪௘௥ሻ
:ሾܛሺ݉ݑ݉݅݊݅݉ , : ሿ௚௨௘௦௦, :ሾܛ , : ሿ௨௣௣௘௥ሻ

ቋ (4.34)
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:ሾܝ  , : ሿ௚௨௘௦௦ ൌ ቊ
:ሾܝሺ݉ݑ݉݅ݔܽ݉ , : ሿ௚௨௘௦௦, :ሾܝ , : ሿ௟௢௪௘௥ሻ
:ሾܝሺ݉ݑ݉݅݊݅݉ , : ሿ௚௨௘௦௦, :ሾܝ , : ሿ௨௣௣௘௥ሻ

ቋ (4.35)

4.13    VTVL and Pitch Rate Constraint Enforcement 

If the VTVL constraint is being enforced, then then boundary conditions listed in Table 3.3 are 

included in the fixed variables, i.e. ૐ௜௡௜௧௜௔௟,௙௜௫௘ௗ and	ૐ௙௜௡௔௟,௙௜௫௘ௗ. 

 

For the maximum ߠ	angular rate of change constraint listed in Eq. (3.28), a discrete inequality 

constraint was used in the form 

࢚࢟࢏࢒ࢇ࢛ࢗࢋ࢔࢏࡯  : ቤ
,ሾ2ܝ ݇ ൅ 1ሿ െ ,ሾ2ܝ ݇ሿ

௞ାଵݐ െ ௞ݐ
ቤെߠሶ௠௔௫ ൑ 0 (4.36)

4.14    Fitness Function 

Since the feasibility constraint ensures that the trajectory obeys the problem dynamics, and 

inequality constraints cover additional spacecraft specific limitations, the fitness function is 

reduced to maximizing the spacecraft’s final mass, i.e. minimizing the propellant use required for 

a VTVL maneuver. Using the established matrix indexing, 

ܬ    ൌ ݁ݖ݅݉݅ݔܽ݉ ,ሾ5ܛ ݊ሿ (4.37)

4.15    Nonlinear Programming Solver 

While any number of nonlinear solvers can be utilized, the fmincon.m nonlinear optimization 

routine was used from MATLAB 2012b with Version 6.2.1 of the Optimization Toolbox. Any 

changes from the default settings are noted in the results. Note that MATLAB’s online 

documentation and help are excellent references when working with fmincon and NLP in general. 

4.16    Inherent Error 

Note that the Hermite-Simpson feasibility equality constraint is used as it should be more 

accurate than the trapezoidal. However, note that the equality constraints cannot be driven all the 
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way to zero, but rather to a small tolerance on the order of	݈ܶ݋௖௢௡ ൌ 10ିସ	to	10ି଼. There is 

always some error inherent with discretization, similar to representing a circle as an ݊-sided 

polygon. While discretizing the OCP into a greater number of nodes will generally increase the 

solution fidelity, it also increases the computational time and resources required to produce the 

result, since the number of NLPVs and equality constraints scales by	5	 ൈ ሺ݊ െ 1ሻ. If a low 

number of nodes is used and a better solution exists at a higher node resolution than chosen, the 

solver will not be able to find it. The challenge is to determine when a solution is “good enough” 

– when the error is sufficiently low – that adding additional nodes is not worth the additional 

computational time and resources.  
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5.2  Unconstrained Solution 

Using the nominal spacecraft and problem parameters listed in Section 5.1, the optimal trajectory 

profile found and the control law which produced it is shown in Figure 5.1. This is essentially a 

finite equivalent of burn-coast-burn. Accelerate at the maximum thrust available, cutoff thrust and 

coast, and then perform a similar, though not identical, landing burn.  

Figure 5.1: Nominal Solution Trajectory Profile and Control Law 
 
The control variables are plotted against the X Position so they align with the XZ trajectory 

profile. While useful to gain a sense of the flight path of the vehicle, it does not show how the 

velocity or mass of the vehicle changes over time, and distorts the flight path angle plotline. Note 

that the flight path angle shown at the first and last node is extrapolated from the interior nodes as 

tanିଵ ቀ
௭௏௘௟

௫௓௘௟
ቁ is undefined when the velocity is zero for both.  



  45 

 

 
Figure 5.2: Bounded Search Space with Guess and Final Trajectories 
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Figure 5.2 shows the nominal upper bounds, lower bounds, solution values, and guess values for 

all NLPVs. For the state and control variables, the actual solution is shown with circular markers, 

the guess values as a dashed green line, and the lower and upper bounds are shown in red and 

blue, respectively. The Simulation Duration shows the optimal solution’s TOF as a black dot, the 

guess TOF in green, and the allowable bounds are shown as triangle markers facing inward.  

 

This gives a much more complete picture of the trajectory. The changes in the state and control 

variables are shown with respect to time instead of position. Each node point at a specific time 

corresponds to the values of each of the dynamic variables within the solution matrix at the 

respective node time. Because a linear time distribution was maintained, the temporal spacing is 

identical between each node. 

 

In the beginning of the flight, the spacecraft gradually accelerates in the X and Z directions. 

When the thrust cuts off, the spacecraft essentially coasts. The X velocity plateaus and the mass 

remains constant, though the Z velocity drops due to gravity. The spacecraft then performs a 

landing maneuver. Because of the time required to accelerate and the corresponding gravity 

losses, the TOF and propellant use are both greater than the impulsive case. Although difficult to 

see here since the spacecraft’s mass only dropped a few percent, the control law is not symmetric. 

 

The upper and lower bounds are shown mapped to the times corresponding to the final time 

distribution. It is important to understand that the upper and lower bounds are time-invariant, so 

while the initial guess for the simulation duration is longer than the final solution’s TOF, the 

bounds are tied to the node points’ indices in the solution matrix and are independent of any 

changes to the time vector while the solver is iterating on a solution. This limits the usefulness of 
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the simple bounds to enforce additional path constraints as discussed herein. Also note that the 

initial guesses for the X and Z velocity were modified to be within the boundary conditions as per 

Eq. (4.34). 

 

These eight graphs collectively illustrate the total variable space that the solver was able to search 

in as well as the enforcement of the boundary conditions. The solver attempts to optimize the 

fitness function and satisfy the feasibility equality constraints by adjusting the value of each 

dynamic variable at each node within the upper and lower limits. Because the upper and lower 

limits converge for the fixed boundary conditions such as position and velocity, the NLPVs that 

correspond to those indices in the solution matrix could not be changed. The solution would fail 

to converge if the solver could not find a feasible set of points connecting from the initial to final 

conditions.  

 

As previously discussed in Section 4.13, if a solver returns a solution where the NLPVs are only 

equivalent to the upper or lower bounds at the boundary conditions, this indicates that the 

optimality of the solution is not constrained by those limits. Since the solution trajectory does not 

ride along the upper or lower limits for any of the state variables or the thrust angle, the bounds 

established by Eqs. (3.13)-(3.22) and the ߠ௠௔௫	and ߠ௠௜௡	limits should not be artificially distorting 

the solution under these parameters. However, this does indicate that the optimality of the 

solution would increase if the maximum allowable thrust was raised.  

5.3  Control Asymmetry  

To highlight the lack of symmetry between the liftoff and landing burns, the spacecraft effective 

specific impulse was dropped by an order of magnitude, and the liftoff control law thrust values 

from the first half of the flight were superimposed over the values of the second half as shown in 
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With the low ܫ௦௣, the spacecraft uses a significant amount of propellant performing the liftoff 

segment, and consequently a smaller impulse is needed for the landing segment. This asymmetry 

is clearly seen in a plot of the spacecraft’s mass over time as in Figure 5.4. Roughly 20 kg of 

propellant is used for the liftoff burn, while only 15 kg is used for the landing. It is worth noting 

that the propellant required is an order of magnitude higher than the nominal case where the ܫ௦௣ = 

150 seconds. 

5.4  Preventing Solver Information Loss 

The spacecraft does go up against the minimum thrust bounds in the nominal solution. This is 

consistent with expectations of the optimal solution attempting to approximate a ballistic burn-

coast-burn. While coasting, the optimal thrust should be zero to conserve propellant. While 

coasting, while the thrust is zero, the thrust angle	ߠ has no effect of the spacecraft’s trajectory and 

therefore fitness. Thus, no information is available to the solver to drive what the optimum	ߠ 

should be while the spacecraft is coasting. This information loss is reflected by the more or less 

random values of θ seen in Figure 5.5 between the nodes when the thrust is allowed to go 

completely to zero, nodes 5-11. While the rapidly changing ߠ values when the thrust is zero have 

no effect on the fitness and are not really meaningful in this simulation, it was desired to have the 

results match as closely as possible to the behavior of a real spacecraft and prevent this behavior. 
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Figure 5.5: Control Law with ࢔࢏࢓࢚࢙࢛࢘ࢎࢀ ൌ ૙ 

 

In order to smooth out the observed control law, the thrust angular rate of change, 
ௗ஘

ௗ௧
, could be 

constrained to be below some maximum value, ߠሶ௠௔௫, through an inequality constraint as 

described in Eqs. (3.28) and (4.36). A value of ߠሶ௠௔௫ ൌ  was found to generate very ݀݊݋ܿ݁ݏ/4°

smooth thrust angle curves as seen in Figure 5.6 without increasing the required propellant.  

 
Figure 5.6: Control Law with ࢔࢏࢓࢚࢙࢛࢘ࢎࢀ ൌ ૙ and ࣂሶ ࢞ࢇ࢓ ൌ ૝°/࢙ࢊ࢔࢕ࢉࢋ 

 



  51 

 

The easiest method found to smooth the thrust angle while the spacecraft is coasting is to prevent 

the thrust from actually going to zero which eliminates the need to use the ߠሶ௠௔௫ inequality 

constraint. This is essentially a small numerical fix to give the solver enough information to 

prevent the random walkw seen in in Figure 5.5. Preventing the thrust from going to zero does 

require additional propellant, on the order of the ݄ܶݐݏݑݎ௠௜௡:  ௠௔௫ ratio, 10ିଷ. This smallݐݏݑݎ݄ܶ

amount is considered to be within the noise. 

5.5  Increasing the Thrust over Weight Ratio 

The solver also hit the upper thrust bound in the nominal solution shown in Figure 5.2, indicating 

that increasing the T/Wx ratio of the spacecraft should result in an increase in solution fitness. 

Simulations were run across several T/W ratios to determine the effect of increasing and 

decreasing the thrust on the required propellant and optimal TOF, as shown in Figure 5.7 and 

Figure 5.8, respectively.  

 

The results are consistent with expectations. Increasing the thrust reduces gravity losses and 

reduces the TOF since a smaller amount of time is needed to accelerate and decelerate the 

spacecraft prior to the coasting period. With increasing thrust, the required propellant and TOF 

both asymptotically approach the theoretical ballistic-impulsive minimum propellant and ballistic 

TOF calculated using Eqs. (2.2) and (2.6) for this translation distance. Note that the propellant 

and TOF ratios over the ballistic quantities are shown on the right axis. 

                                                      

w The path is not technically “random” as NLP is deterministic for a given set of conditions.  
x As the spacecraft’s mass and weight decrease over the flight; the T/W ratio is set from the initial weight. 
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Figure 5.7: Effect of Increasing T/W Ratio on Fitness 

 
Figure 5.8: Effect of Increasing T/W Ratio on TOF 
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As discussed in Section 2.3, spacecraft capable of landing typically require a propulsion system 

able to not only throttle below the local weight, but also operate in a closed loop system capable 

of small adjustments in real-time to account for noise. Thus, the higher the nominal thrust level of 

the engine, the higher the required throttle range (minimum thrust level) needs to be in order to 

land. The relative throttle sensitivity requirements also increase as well. For example, a 

propulsion system with a T/W of 3 might need to throttle between 15-30% to land, but a 

spacecraft with a T/W of 9 might need to throttle between 5-10% to land.  

 

Since engine mass and size typically scale with higher peak thrust outputs, eventually the 

propellant mass savings from increasing the thrust are offset by the increased engine mass and 

support structures. The additional throttling requirements need to be considered as well. This type 

of T/W analysis is useful to drive VTVL spacecraft propulsion system design requirements and/or 

engine selection.

 

Figure 5.9: Selected Solution Trajectories Resulting from Varying T/W Ratios 
 
Changing the T/W ratios also dramatically affects the XZ trajectory profile. Optimum trajectory 

profiles generated using selected T/W ratios are shown in Figure 5.9. The profile shape, 
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maximum height reached, and initial flight path angle also asymptotically approach the ballistic 

case with a higher T/W ratio. For a lower T/W ratio, the spacecraft barely leaves the ground for 

the first and last 50 meters.  

5.6  Enforcing a Floor Constraint 

 
Figure 5.10: Initial Flight Paths Resulting from Varying T/W Ratios 

 
A zoomed in view of Figure 5.9 near the origin is shown in Figure 5.10. Note that for the low 

T/W profiles, a “floor” constraint may be required to ensure the spacecraft maintains an 

acceptable clearance from the surface.  

 

A possible way of doing this, though not optimal, is to raise the Z Position lower bound for all 

interior nodes (all nodes except for the first and last). In Figure 5.11, a T/W ratio of 1.5 was used 

in all cases, and the Z Position lower bound swept across ሾ0: 1: 2ሿ. Note that the trajectory 

profiles are raised significantly for only a small increase in the required solution propellant mass. 
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Figure 5.11: Effect of Raising Z Position Lower Bound on Fitness and Initial Flight Path for T/W = 1.5 
 
However, enforcing floor constraints through manipulating the Z Position lower bound can be 

problematic since it depends on the number of discretization nodes used and the hopping distance. 

With an increased number of nodes, it may not be possible to reach the Z Position lower bound 

before the next node point in the time required. With a shorter hopping distance, the optimal 

height of the next node may be lower than the constraint. This can lead to an artificially 

constrained solution or a failure to converge. 

 

Although enforcing a floor constraint through the node lower bounds was sufficient for the 

maneuvers studied herein (in part because of the default number of nodes used), it would be 

better to create a position-dependent inequality constraint in the form 

 
:࢚࢟࢏࢒ࢇ࢛ࢗࢋ࢔࢏࡯ ௙௟௢௢௥ݏ݋ܲݖ െ ݏ݋ܲݖ ൑ 0,  

݈݄݁݅ݓ 0 ൐ ݏ݋ܲݔ ൏  ௙௜௡௔௟ݏ݋ܲݔ
(5.1)

 
to enforce an interior floor constraint. 
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5.7  Effects of Increasing the Number of Discretization Nodes 

A sweep of changing the number of discretization nodes was done for ݊ ൌ ሾ5: 5: 25ሿ. Figure 5.12 

and Figure 5.13 indicate that both the required propellant mass and TOF slightly decrease as the 

number of nodes is increased. As contrasted with increasing the T/W ratio, both of these 

behaviors result from an increase in the fidelity of the results, not an actual increase in the 

potential solution fitness. This is why both graphs asymptotically approach a value greater than 

the theoretical ballistic minimum propellant and TOF. Note that the ratios of propellant use and 

TOF to the ballistic case are shown on the right axes.  

 
Figure 5.12: Effect of Increasing Number of Discretization Nodes on Propellant Use 
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Figure 5.13: Effect of Increasing Number of Nodes on Fitness and the Optimal TOF 

 

 
Figure 5.14: Value of the Optimal Thrust Control Law with Increasing Nodes 

 
Figure 5.14 shows how the optimal thrust control law changes with an increase in nodes. As the 

number of discretization nodes increases, the node width decreases. Instead of the thrust slowly 

falling off and slowly ramping back up as seen when ݊ = 5, the optimal behavior as the number of 
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nodes increases is for the thrust to rapidly switch from ݄ܶݐݏݑݎ௠௔௫ to	݄ܶݐݏݑݎ௠௜௡ as fast as 

possible, ideally over one node width. This indicates that the minimum energy solution and 

therefore optimal solution would be for thrust to instantaneously switch off at a specific point in 

time as	݊ → ∞. This closer approximation to the minimum energy case drives the decrease in 

propellant use and TOF seen in Figure 5.12 and Figure 5.13. 

 

This increase in fidelity and fitness comes at a cost. Figure 5.15 highlights the power law 

relationship between the number of function evaluations (NFE) the solver performs and the 

number of discretization nodes. A default of 15 nodes was chosen to strike a balance between the 

computation time and accuracy of results.  

 
Figure 5.15: Increase in Number of Function Evaluations versus Number of Discretization Nodes 

5.8  Demonstration of Optimal Solution Time of Flight 

To show that the solver was successfully optimizing the TOF in addition to the propellant mass, a 

range of fixed TOFs were used centered on the optimal TOF previously found for the nominal 

solution. The trajectory profiles shown in Figure 5.16 and results shown in Figure 5.17 indicate 
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that if the fixed TOF is less than the optimal TOF, the spacecraft takes a shallower, faster path, 

and uses more propellant. If the fixed TOF is greater than the optimal TOF, the spacecraft goes 

higher to essentially “waste” the extra time, using extra propellant in the process to fight gravity.  

 
Figure 5.16: Trajectory Profiles with Various Fixed TOFs 

 
Figure 5.17: Effect of Increasing TOF on Fitness 

 

The ballistic TOF is shown as a red vertical line in Figure 5.17 to show that while it is possible to 

find finite maneuvers that take less time than the ballistic TOF, there is a large propellant penalty. 
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5.9  Nominal VTVL Solution  

While a spacecraft with a gimbaled main engine such as Craft B in Figure 2.2 may be able to take 

off and land at an angle, fixed engine spacecraft such as Craft C are limited to vertical takeoff, 

vertical landing. This is expressed through fixing the thrust angle at the boundaries to be zero. 

Additionally, a pitch rate constraint of ߠሶ௠௔௫ ൌ  was added to account for real ݀݊݋ܿ݁ݏ/20°

spacecraft having MOIs. Lastly, the acceptable lower bounds on the altitude were shifted to 2 

meters for all nodes except at the boundary conditions as discussed in Section 5.6. 

 

 
Figure 5.18: Nominal VTVL Trajectory and Control Law 

 
The peak height reached with VTVL in Figure 5.18 is slightly higher than the ballistic trajectory. 

The control variables are plotted against the X Position, which distorts the first and last nodes. 
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Figure 5.19: VTVL Bounded Search Space with Guess and Final Trajectories 
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It is useful to compare Figure 5.19 with Figure 5.2. Here, the upper and lower bounds on	ߠ are 

constrained to enforce the VTVL condition as per Eq. (4.35). The optimal TOF is slightly longer 

and maximum height slightly higher since the spacecraft cannot start to accelerate along the 

optimal unrestricted initial flight path as show in Figure 5.10, and instead must vertically liftoff 

and gradually start turning to accelerate horizontally. The additional gravity losses explain why 

more propellant is needed for the VTVL trajectory as compared to the unconstrained take off 

angle solution.  

5.10  VTVL Max Thrust Angular Rate Inequality Constraint Enforcement 

If only the initial thrust angle is constrained for the VTVL trajectory, the solver will return a 

solution where θ changes very rapidly. An inequality constraint in the form of Eq. (4.36) where 

ሶ௠௔௫ߠ ൌ ૛૙°/݀݊݋ܿ݁ݏ was included as a rough model to account for real spacecraft attitude rate 

constraints.  

 

This type of constraint is not visualized through simple global upper and lower bounds on the 

search space. Instead, the control law for ߠ and its piecewise derivative are shown in Figure 5.20. 

Note that there are ݊ െ 1 inequality constraints, one for each trajectory segment ߬ as shown in 

Figure 4.1.  
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Figure 5.20: VTVL		ࣂሶ ሶࣂ Inequality Constraint Enforcement ࢞ࢇ࢓ ࢞ࢇ࢓ ൌ ૛૙°/࢙ࢊ࢔࢕ࢉࢋ 

5.11  VTVL with Ceiling (Top Hat Trajectory) 

For a variety of mission profiles or spacecraft limitations, it may be desirable to limit the 

maximum allowing height. For example, a spacecraft’s range altimeter may only be sufficiently 

accurate within a specific distance. Alternatively, the spacecraft may be recording video or be 

utilizing scientific instruments while translating.  
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The parameterized tophat ceiling height was set as simply 

௎௣௣௘௥,்௢௣௛௔௧ݏ݋ܲݖ  ൌ ටݏ݋ܲݔ௙௜௡௔௟ (5.2)

 
As opposed to setting “floors,” (minimum altitudes), altitude ceilings can be readily enforced 

through global simple upper and lower bounds, as increasing the number of discretization nodes 

does not required a minimum altitude to be reached by the second or penultimate node.  

 

 
Figure 5.21: Nominal VTVL + Ceiling Profile and Control Law 

 
Looking at the XZ trajectory profile and control law in Figure 5.21, the finite “burn-coast-burn” 

equivalent no longer holds. The spacecraft cannot coast because of the altitude limits and must 

use additional thrust to essentially hover at the ceiling altitude.  
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Figure 5.22: Bounds for VTVL + Ceiling (Top Hat) 
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This is referred to a “Top hat” trajectory because of the shape, and most closely resembles the 

trajectories flown during the DC-X program5. Flying this sort of trajectory might be done because 

of the relative ease of developing closed-loop flight software for it. However, this ease comes at a 

cost. Looking through the graphs in Figure 5.22, the propellant mass required and TOF is greater 

than the unconstrained and simple VTVL trajectories.  

5.12  Effect of Changing Specific Impulsive 

Using the nominal, VTVL, and top hat parameters, the effect of changing the propellant specific 

impulse was varied through ሾ150: 75: 450ሿ seconds. All of the data points and best fit curves with 

ܴଶ ൐ 	0.99 are shown in Figure 5.23. Since all of the best fit curves are roughly proportional to 

the inverse of the specific impulse, once the required propellant mass is known for one potential 

trajectory in particular, the propellant required with a different propellant can be estimated by a 

simple ratio: 

ݐ݈݈݊ܽ݁݌݋ݎܲ	݀݁ݎ݅ݑݍܴ݁    ூ௦௣ଵݏݏܽܯ ∗
2݌ݏܫ
1݌ݏܫ

݀݁ݎ݅ݑݍܴ݁~ ூ௦௣ଶ (5.3)ݏݏܽܯ	ݐ݈݈݊ܽ݁݌݋ݎܲ

 
Figure 5.23: Effect of changing Isp on Propellant Use for Unconstrained, VTVL, and Top Hat Trajectories 



 

 

5.

T

di

F

eq

.13  Prope

The required p

istances rangi

igure 5.25. Si

quivalent to th

Figure 5.24

Figure 5.

ellant Requir

propellant to p

ing from 100 

ince the space

he propellant 

4: Propellant Re

.25: Propellant 

red for Vario

perform each 

meters to 10 

ecraft origina

mass ratio. 

equired for Hop

Required for H

ous Hopping 

type of mane

km for the M

l mass was 10

ps of Various D

Hops of Various

Distances on

euver was det

Moon and Mar

00 kg, the req

Distances and T

s Distances and 

n the Moon a

termined for a

rs as shown in

quired propell

rajectory Profi

Trajectory Pro

and Mars 

a range of hop

n Figure 5.24

lant use is 

les on the Moon

ofiles on Mars

67 

pping 

4 and 

 
n 

 



 

 

6.

T

re

ul

re

sy

 

N

dy

al

fi

se

D

to

 

In

m

ho

tr

th

pl

.1  Direct

The ballistic-im

equired to per

ltimately too 

equire additio

ystem archite

Nonlinear Prog

ynamics and 

ll of the state,

inal boundary

earch space w

Direct Colloca

o enforce spac

n conclusion, 

model VTVL s

opping maneu

rajectories fou

he flights. The

lanners in dec

t Optimizatio

mpulsive “bur

rform a desire

inaccurate to 

onal propellan

ctures place a

gramming as 

constraints of

, control, and 

y conditions, a

without distort

ation were suc

cecraft potent

a robust, dire

spacecraft dyn

uvers across a

und were asym

e work perfor

ciding whethe

on of VTVL 

rn-coast-burn

ed VTVL tran

be useful for

nt to compens

additional con

a direct optim

f a VTVL ma

TOF variable

and were usef

ting the optim

ccessfully use

tial limitation

ect trajectory 

namics. The r

a variety of m

mmetric in va

rmed within c

er to utilize V

Chapter 6

Conclusio

Trajectories

n” method fou

nslation mane

r mission plan

ate for gravity

nstraints on th

mization meth

aneuver. Param

es allowed str

ful in increasi

mal trajectorie

ed to enforce 

ns or additiona

optimization 

required prop

mission and sp

arying degree

can provide a 

VTVL as a spa

 6             

ns  

s  

und in literatu

euver was fou

nning. Any re

ty losses, and 

he allowable s

hod is very we

meterized glo

raightforward

ing the solver

es found. Equ

feasibility an

al path constr

method was 

pellant mass to

pacecraft para

s due to prop

higher fidelit

acecraft mobi

                 

ure to estimate

und to be inad

eal trajectories

various space

solution space

ell suited to h

obal upper and

d implementat

r performance

uality constrai

nd inequality c

raints.  

successfully 

o perform a r

ameters was e

pellant loss ov

ty model for f

ility method. 

                  

e the propella

dequate and 

s will necessa

ecraft propuls

e.  

handle the pro

d lower boun

tion of initial

e by framing a

ints developed

constraints cr

developed to

range of possi

explored. The

ver the course

future mission

 

68 

                  

ant 

arily 

sion 

oblem 

nds on 

 and 

a 

d via 

eated 

ible 

e 

e of 

n 

            



 

 

6.

W

m

 

.2  Recom

While the VTV

mission planni

 Using

shift a

 Addit

 Devel

constr

 Updat

and/o

 Includ

system

time s

 Includ

prope

 Explo

highe

quick 

 Includ

could 

equati

 The st

ratio i

mmendations

VL trajectory 

ing, further w

g a separate N

as needed. Th

tional bounda

loping additio

raints instead 

ting the coord

r extending in

ding additiona

ms such as pr

specific impu

ding attitude c

ellant is expen

ore translation

r in altitude th

hops into or 

de the ability 

be done as re

ions if the val

tate equations

is greater than

s for Future W

optimization

work could ext

NLPV for each

his should resu

ary conditions

onal inequalit

of relying on

dinate system

nto the third d

al state variab

opellant tank 

lse.  

control system

nded from the

n maneuvers w

han the takeo

out of craters

to model gap

eadily as over

lue is within t

s could be mo

n unity to acc

 

Work 

n model devel

tend the robus

h node time v

ult in the grea

s to better mod

ty constraints 

n simple boun

m and state equ

dimension.  

bles to model 

pressures. Th

ms and model

e craft instead

where the sec

off trajectory. 

s such as Shac

ps in the thrott

rriding the co

the non-thrott

odified so tha

ount for the s

oped can be a

stness and us

value and allo

atest fidelity f

del realistic ta

to handle X p

nds to enforce

uations with a

blow-down v

his could enab

ling a dynami

d of making a 

condary landin

 This could p

ckleton near t

tle ranges of t

ommanded thr

tleable range.

at the spacecra

spacecraft we

a useful initia

efulness. 

owing the nod

for a given nu

akeoff and la

position depe

e minimum al

a two-body gr

versus pressu

ble modeling

ic Moment of

point-mass a

ng is significa

potentially be 

the lunar Sou

the propulsio

rust value to z

.  

aft cannot mo

eight on the su

al tool for spa

de distribution

umber of node

nding behavi

endent path 

ltitudes. 

ravity model 

ure regulated 

g the effective

f Inertia as th

approximation

antly lower o

used to make

uth Pole.  

n system. Thi

zero in the sta

ove until the T

urface.  

69 

ace 

n to 

es.  

ors. 

e real-

e 

n.  

r 

e 

is 

ate 

T/W 



 

 

 
F

 

 

 

or clarity for 

 Direct 

creatin

implem

functio

 In Eq.(

corresp

could b

total o

require

 When 

term c

 The or

integra

Eq. (4

 Direct 

develo

any future re

Collocation e

ng the cubic p

ment the equa

ons in Section

(4.14) the coe

ponding to a 

be created for

f ሾ5 ൈ ሺ݊ െ 1

ed for the rea

deriving Eq. 

omes from th

riginal method

ation but rathe

.22) to the de

Collocation i

oping feasibili

Notes o

aders trying t

enables the cr

polynomials a

ality constrain

n 4.8. 

efficients for 

single state v

r each state va

1ሻሿ	cubic poly

son listed abo

(4.21) by sub

he implicit ߬߂

d pioneered b

er constructed

rivative of Eq

is distinct fro

ity equality co

 

Appendix 

on Direct C

to implement 

reation of the

and solving fo

nt in code. Th

only a single 

ariable functi

ariable functi

ynomials and 

ove. 

bstituting the 

߬ in the cubic 

by Hargraves 

d a defect equ

q. (4.14) evalu

m Nonlinear 

onstraints.  

 A             

Collocation

Direct Colloc

e equality con

or their coeffi

his is why they

polynomial f

ion. In reality

ion along each

ሾ5 ൈ ሺ݊ െ 1ሻ

relations foun

polynomial’s

and Paris20 d

uality constra

uated at ߬ ൌ 0

Programming

                 

n 

cation: 

nstraint shown

cients is not n

y are referred

function are s

y, separate pol

h trajectory s

ሻ ൈ 4ሿ	coeffic

nd in (4.19) in

s derivative, i

did not use Sim

aint by compa

0.5 (the midp

g. Other meth

                  

n in Eq. (4.23

needed to 

d to as fictitiou

shown 

lynomial func

egment	߬௞, fo

cents. This is n

nto (4.20), the

.e. ሶ࣌ ሺ߬ሻ ൌ
ௗ࣌

ௗ

mpson-Hermi

aring the valu

point). 

hods exist for

70 

                  

), but 

us 

ctions 

or a 

not 

e ݐ߂௞ 

࣌ሺఛሻ

ௗఛ
 

ite 

e of 

r 

            



 

 

T

fi

i.e

m

to

fo

w

th

 

A

po

 

 
w

 
 
T

 

 
T

at

C

on

T

Temporal discr

ixed for a spe

e. the time ve

may potentially

o locations of 

ound. Shifting

where increasi

he density wo

A potential alte

oints along th

where k is a ve

The actual nod

௞ݐ

The CGL meth

t the expense 

CGL distributi

nly the time s

Time as a F

retization of a

cific maneuv

ector ܜ in Eq. 

y be gained th

f the trajectory

g the node spa

ng the node d

ould matter lea

ernative is the

he interval ߮

߮௞

ector of the no

de times are m

ൌ ൬
1
2
൰ ∗ ൣ߮௞

hod has a grea

of a decrease

ion of 41 node

span of [0:20]

Fixed or Fr

an OCP prese

er, the spacin

(4.1) does no

hrough discre

y where the g

acing usually 

density would

ast.  

e method of C

∈ ሾെ1: 1ሿ acc

௞ ൌ െ cos ൬
ߨ

ode indices an

ܓ

mapped betwe

∗ ൫ݐ௙௜௡௔௟ െ ୧ݐ

ater density o

ed number of 

es from the ti

] is shown sin

Appendix 

ree Variabl

ents an interes

ng between an

ot have to be l

etization meth

reatest rate of

requires som

d be most ben

Chebyshev-G

cording to the

ߨ ∗ ሺܓ െ 1ሻ
݊ െ 1

൰ ݂

nd n is the nu

ܓ ൌ 1,2, … , ݊

een the initial 

୬୲୧ୟ୪൯ ൅ ൫ݐ୧୬୧୲

of points near 

points toward

ime span [0:4

nce both the li

 B             

le, and Nod

sting challeng

ny two nodes 

linearly distrib

hods that shift

f change in st

me prior know

neficial, and c

Gauss-Lobatto

e formula 

ݎ݋݂ ݇ ൌ ሾ1: ݊

umber of node

݊  

and final tim

୲୧ୟ୪ ൅ ௙௜௡௔௟൯൧ݐ

the beginning

ds the middle

40] against a l

inear and CG

                 

de Distribu

ge. If the simu

does not hav

buted. Increa

ft the relative 

tate and contr

wledge of the l

conversely, wh

 (CGL) which

݊ሿ 

es as per 

me according t

൧ ݎ݋݂ ݇ ൌ 	 ሾ1

g and end of t

e. Figure B.1 s

inear distribu

GL distribution

                 

ution 

ulation durati

ve to be consta

sed performa

density of no

rol variables i

likely regions

here decreasi

h distributes n

(

(

to 

: ݊ሿ (

the time inter

shows an exa

ution. Note tha

n are symmet

71 

                 

ion is 

ant	ݐ߂, 

ance 

odes 

is 

s 

ng 

node 

(B.1) 

(B.2) 

(B.3) 

rval, 

ample 

at 

tric.  

            



  72 

 

In this example, in the range of (0:3] there are only three nodes in the linear distribution, but 

seven in the CGL. Conversely in the range of [17:20) there is one node in the CGL distribution, 

but three in the linear distribution. If the state variables rapidly change in the beginning and end 

of the flight, CGL may give better performance for a reduced number of nodes.  

 

Figure B.1: CGL versus Linear Node Distribution for Half of Time Array 
 

Alternatively, even for a fixed TOF the node times do not need to be fixed. For example, for an 

initial linear distribution of 11 nodes from ሾ0: 10ሿ seconds, there would initially be a node at each 

second, i.e.	ݐଵ ൌ ,ݏ	0 ଶݐ ൌ ⋯,ݏ	1 ଵଵݐ ൌ  While the initial and final node times would need to .ݏ	10

be fixed if the TOF was fixed, nodes 2: 10 could be allowed to shift to automatically find the 

optimal distribution of nodes. If implemented successfully, this could significantly increase 

algorithm performance in terms of a reduced number of function evaluations (NFEs). 
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