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ABSTRACT
Rocket-powered translational Vertical Takeoff Vertical Landing (VTVL) maneuvers are a
promising lander spacecraft mobility method as compared with or in addition to rovers for certain
mission profiles. Such a VTVL vehicle would take off vertically under rocket propulsion,

translate a specified horizontal distance, and vertically return softly to the surface.

Previous literature suggested that the propellant required to perform such a maneuver could be
estimated via an impulsive-ballistic trajectory using the “ideal” rocket equation. This analysis was
found to be inadequate. Any feasible trajectories will always require additional propellant to
compensate for gravity losses while lifting off and landing. Additionally, there is an asymmetry
between the takeoff and landing phases of the maneuver due to the propellant mass used over the
course of the flight. Lastly, various potential spacecraft propulsion system architectures impose a

number of possible constraints on the allowable path and boundary conditions.

An adaptable Optimal Control Problem (OCP) was developed instead to model the basic
dynamics and required propellant consumption of various VTVL spacecraft trajectory profiles for
a range of constraints, spacecraft parameters, and translation distances. The model was
discretized into a Nonlinear Programming (NLP) problem, and a Direct Collocation (DC) method
utilizing implicit Simpson-Hermite integration was used to ensure the feasibility of solutions with

sufficient accuracy.

MATLAB?’s Nonlinear Programming fmincon routine with the sequential quadratic programming
solver was able to converge on the optimal VT VL trajectory in terms of minimizing the required
propellant use within the spacecraft and mission constraints. Trades were performed to determine

the impact of various parameters on the required propellant including thrust to initial weight



v
ratios, propellant specific impulse, the allowable range and angular rate of change of the

spacecraft thrust vector, translation distances, maximum altitude, flight times, and boundary

conditions.

The VTVL trajectory optimization model developed was found to be robust and able to handle a
wide range of various spacecraft and mission parameters. Results were compared against the
required propellant use and nominal time of flight determined via the ballistic-impulse burn-
coast-burn analysis. For the finite model developed herein, the required propellant use and
optimal flight times exceeded the ideal impulsive case by 5-30% depending on the specific
spacecraft and mission parameters and constraints implemented. These results can help guide

future mission planners in deciding whether to utilize VTVL as a mobility method.
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Chapter 1

Introduction to Spacecraft Mobility

1.1 Problem Definition and Objective

This thesis is focused on trajectory optimization for space-based vehicles performing Vertical
Takeoff Vertical Landing (VTVL) translational “hopping” maneuvers over the surface of a body
with significant gravity and minimal air resistance, such as the Moon or Mars. The goal is to
determine the minimal propellant required to accomplish a desired VTVL translation maneuver
for a given distance with an idealized spacecraft propulsion system using direct optimization
methods. The results are intended to guide future mission planning in developing a higher fidelity
yet adaptable model to predict the required propellant mass for a desired mobility capability, e.g.
number and magnitude of desired translation maneuvers (hops). Starting from a simplified
parameterized model, appropriate constraints can be added to capture the limitations of a range of
possible spacecraft propulsion systems and/or mission architectures to increase the solution

fidelity.

1.2 Introduction to Spacecraft Lander Mobility Methods

There has been a rich and interesting variety of spacecraft lander designs and architectures
considered and built since the dawn of the space age as unique and complex as the mission
requirements which spawned them. Despite their differences, almost all of them have employed
vertical high thrust chemical rocket powered maneuvers for their terminal landing, stretching
from the first lunar missions to Curiosity’s “Sky Crane.”' Recently, there has been renewed

interest from the public and private sector in visiting or revisiting the surface of the Moon, Mars,



and Near Earth Objects (NEOs) for science, tourism, resource exploitation, exploration, and

human settlement. Development of the next generation of spacecraft landers is ongoing.

Many of the first landers in the lunar and Martian programs had no secondary mobility
capabilities. Accomplishing the soft landing was arguably the most challenging and important
part of these early missions. These spacecraft were limited in their capabilities and could only
study the area immediately surrounding their landing sites. However, once mission planners were
confident in their ability to accomplish soft landings, they quickly sought to explore a greater area

than possible from a fixed location.

Later lunar missions included rovers and astronauts to explore the surrounding terrain. Staged
spacecraft landers were designed to return human or geological payloads back to Earth. Given
that crewed missions typically cost orders of magnitude more than robotic missions, wheeled

rovers have been the mobility method of choice for recent missions.

13 Mobility through Vertical Takeoff Vertical Landing
It is possible to execute “hopping” maneuver(s) using a spacecraft propulsion system to
Vertically Takeoff, translate a desired distance, and Vertically Land (VTVL). Several reasons
may favor using this mobility method in lieu of or in addition to a wheeled rover such as:
e The ability to cross terrain which would be impassable to most rovers such as craters
and/or boulder fields.
e Decreased mission cost, complexity, and risk by eliminating the development of a
separate roving vehicle with independent subsystems and its own unique failure modes.
o The potential to visit multiple sites of interest (geological or otherwise) which are

significant distances apart within a compressed time span.



e Executing a VTVL hop prior to a rover deployment could decrease the accuracy needed
for the initial entry, descent, and landing.
Short duration hops could be made into or over permanently shadowed craters on the Moon or
large valleys on Mars to quickly cover significant ground. Some Near Earth Objects (NEOs) such
as asteroids could be sampled at multiple locations similar to Hayabusa’s “kiss” method where a
wheeled rover would be impractical due to the low gravity>®. For lunar missions, this could
eliminate the need for the significant power sources required to survive the lunar night if surface

operations could be completed within one lunar day.

If the same guidance and propulsion system that was used to originally land on the surface was
used for the hop, and sufficient margin existed within the propellant tank(s) volume, the mass and
cost could theoretically be as low as the additional propellant required to perform the maneuver.
The required propellant mass, if it were known, could be compared to the mass and complexity of
a separate rover when deciding which mobility method, if any, to use for a particular mission.
Key to deciding whether to further pursue the development of VTVL as a spacecraft mobility
method depends on the creation of sufficiently accurate models to determine how much

propellant is required in order to perform hopping maneuvers.

14 Previous VTVL Vehicles
Surveyor 3 (1967) accidentally hopped due to a fault in the radar interpreting algorithm. The
engines did not cut off when the spacecraft touched the surface — twice. The craft “bounced” until

ground control sent a cut-off signal’. Luckily, the craft survived.

* A wheeled rover would have to move prohibitively slowly in microgravity to prevent slipping since the
available friction for traction is proportional to the weight of the craft. Obstacles could be impassible.



Surveyor 6 (1967) intentionally performed a lateral 2.4 meter hop in order to study the lunar
regolith’s surface mechanical properties. After the hop, the craft used its cameras to inspect the
indentations left from the primary landing and to study the effects of plume impingement with the

surface’. This was done to help determine if the surface was suitable for manned missions.

In the early to mid-1990’s, the McDonnell Douglas DC-X program attempted to develop the
technologies needed for a Single Stage to Orbit (SSTO) VTVL reusable launch vehicle. While the
program never progressed to orbit, it did complete several successful suborbital test flights.
Funding was ultimately canceled after a crash and subsequent fire that destroyed the second

vehicle’.

While not a rocket powered VTVL craft, the Hayabusa Mission also included a hopping robot
MINERVA that was intended to “bounce” along the surface of the asteroid Itokawa. The internal
reaction wheels would have been spun up and down abruptly to create torques so that the entire
rover would tumble along the surface. This would have been the first deployment of such a
technique in space. Unfortunately, in 2005 upon arrival at the asteroid, MINERVA was deployed
faster than Itokawa’s escape velocity by mistake. MINERVA survived for several hours but never

reached the surface’.

15 Current VTVL vehicle development

There are currently several ongoing efforts by NASA, private companies and individuals, and
Penn State University to develop VTVL vehicles as software and hardware testbeds, as spacecraft
for use on the Moon, and reusable VTVL launch vehicles for suborbital and orbital altitudes. A

sample of current vehicles under development is shown in Table 1.1.



For any of these current or future vehicles, (or similar vehicles not listed), a degree of
translational capability is needed for their respective mission profiles including precision landings,
planetary “hopping” maneuvers, or “return-to-pad” launch vehicle stage fly-backs. Naturally, it is
desirable to determine the most propellant efficient trajectories as possible. This thesis addresses

this capability through the use of Direct Collocation and Nonlinear Programming for trajectory

optimization.
Table 1.1 Selected VTVL Vehicles Under Development
Organization Craft name Type Propellant(s)
Penn State Puma® Lunar Lander Software Monopropellant
University Demonstrator hydrogen peroxide
NASA Marshall Mighty Eagle’ Lunar Lander Technology Monopropellant
Spaceflight Center Demonstrator hydrogen peroxide
NASA Johnson Morpheus® Lunar Lander and Green | Liquid oxygen and
Space Center Propellant Technology Methane
Demonstrator
Masten Aerospace Xaero B’ Reusable suborbital Liquid oxygen and
(among others) payload delivery isopropyl alcohol
Blue Origin New Shepard' Technology demonstrator | Hydrogen peroxide
and kerosene
Space Exploration [Grasshopper''/Falcon 9 | Reusable orbital launch Liquid oxygen and
Technologies Reusable First Stage' vehicle first stage kerosene

1.6 Thesis Outline and Scope

In evaluating the use of Direct Collocation and Nonlinear Programming as applied to VITVL
spacecraft, this thesis addresses this topic in several chapters. Chapter 2 details the process of
deciding which control variables and assumptions were appropriate to model a generic VTVL
spacecraft. Chapter 3 develops a state variable dynamic system model to represent the spacecraft
and VTVL translational maneuver as an Optimal Control Problem (OCP). Chapter 4 discusses the
background and implementation of Direct Collocation with Nonlinear Programming (DCNLP), a
direct trajectory optimization method. Chapter 5 presents the results across a variety of various
spacecraft parameters and mission profiles. A summary of the work completed and suggestions

for future work to increase the model fidelity and usefulness are covered in Chapter 6.



Several appendices have been added to assist readers who are new to the concepts of trajectory
optimization. These include:
Appendix A: Notes on Direct Collocation

Appendix B: Time as a Fixed or Free Variable, and Node Distribution



Chapter 2

Dynamic Variables used for Modeling VTVL Spacecraft Propulsion Systems

2.1 Introduction to State Variable Dynamic Modeling

The goal of this chapter is to determine which state and control variables are required to create an
adaptable model of a VT VL trajectory and spacecraft, and what simplifying constraints and
assumptions can be made. As discussed herein, the goal is to produce the most agnostic
propulsion system model as possible while preserving the ability to introduce constraints which

can capture the specific limitations of a particular spacecraft propulsion system design.

2.2 Vertical Takeoff versus Vertical Landing

Compared to vertical landing, vertical takeoff is significantly easier. Constant thrust engines will
quickly accelerate a spacecraft away from the ground, and slight variations of thrust magnitude or
vector usually do not result in a complete loss of vehicle. Vertical landing is intrinsically harder
as determination of the state variables rely on imperfect sensor data and dynamic system models.

Small errors can quickly lead to failures and/or large errors in landing accuracy/location.

If it were possible to perfectly determine the system state variables and model the propulsion
system, as well as eliminate all errors and noise, the most propellant efficient method to vertically
land a spacecraft would be to fire the engines at maximum thrust for the exact duration required
to bring the spacecraft to a halt just at the surface with zero residual velocity. The control law
would be reduced to a switching function of when to start the engines'’. Unfortunately, reality is

more complicated.



2.3 Necessity of Throttling, Thrust Vectoring, and Closed Loop Control

To actually accomplish a soft landing requires complex guidance, navigation, control, and
propulsion subsystems in a feedback loop. While it may be possible to use non-throttleable high
thrust (e.g. typical solid) engines to zero out most of the incoming velocity of a lander spacecraft
during its initial approach to the central body, the terminal descent propulsion system needs to be
capable of thrust vectoring and throttling to account for performance variations, sensor
inaccuracies, and system noise such as propellant sloshing or sensor drift. The degree of throttling

required depends on the specific spacecraft architecture, mass, and engine thrust levels.

Depending on the central body in question, it may be possible and highly preferable to use the
same engines and control systems for the initial terminal descent and landing as for the hopping
maneuver(s). If this is the case, and sufficient margin existed within the propulsion systems
propellant/pressurant tank volumes, the mass penalty to perform the hopping maneuver could be

as low as the extra propellant required.

Figure 2.1 details a theoretical VTVL spacecraft control architecture. The Flight Computer
outputs commands to the Propulsion Subsystem to achieve a desired trajectory, attitude or spin
rate change, etc. The Propulsion Subsystem would consist of all the valves, plumbing, tanks,
propellant, engines, gimbals, etc., that generate the required force vectors to bring the spacecraft
from an initial system state to a desired final system state. Additional hardware could be utilized

as needed.
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Figure 2.1 Possible VTVL Spacecraft Control Architecture
The Complete System Dynamics would be the actual laws of physics that the spacecraft
encounters. The actual dynamics slightly differ from the models used to approximate them due to
unmodeled (or unknown) forces and behaviors, e.g. local variances in gravity due to central body
shape and density irregularities, and/or differences in expected versus achieved propulsion system
performance. Meanwhile the Inertial Measurement Unit (IMU) and sensors would be attempting
to keep track of the spacecraft’s state variables such as position, velocity, acceleration, rotation,
etc., but this data is noisy and only as accurate as the sensors can provide. Some state variables
cannot be directly measured and must rely on imperfect software models, which adds additional

system noise.

The flight software needs to operate in a closed loop to be able to make (hopefully only slight)
adjustments on the fly to compensate for noise and constantly ensure that the spacecraft is
following the desired trajectory. The Flight Computer may need to generate a new control law in
real time to correct for accumulated errors or perhaps change the landing site if an unexpected
obstacle (e.g. boulder) is encountered. The work presented herein focuses on designing the
optimal trajectory before flight, but this effort can guide the development of robust flight software

in the future.
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2.4 Potential Propulsion Architectures

While many possible propulsion system architectures are possible, all of them must be able to

effectively vector their net thrust in order to successfully land because of the noise concerns

discussed earlier. This same thrust vectoring is used to translate horizontally, though specific

propulsion system designs will have unique limitations such as a maximum thrust angle and a

maximum thrust angle angular rate of change.

Figure 2.2 shows several examples with the black lines representing the individual engine forces

and the red line representing the resultant net thrusts and/or torques generated.

4 4

c(1)

R

2)/' 3)7‘

Figure 2.2: Various Possible Propulsion Systems Thrust Vectoring Methods
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Craft A utilizes a main lifting engine and vernier engines for translation. Craft B employs a
gimbaled main engine. Craft C has fixed engines which engage a positive® pitching maneuver,

C(1), a negative pitching maneuver, C(2), and then translates holding a pitch angle, C(3).

Similarly, there are many possible methods to accomplish throttling. Direct proportional control
of the propellant mass flow rate is possible in some engine designs, though there may be some
losses in efficiency and certain throttle ranges that are out of bounds. For example, the Descent
Propulsion System (DPS) for the Apollo missions was only capable of either throttling between
10-60%, or running at full 100% thrust'*. For engines capable of pulsing’, the duty cycle can be
adjusted to effectively lower the time-averaged thrust and achieve a range of effective throttling.

Combinations of proportional, pulsing, and constant thrust control engines are all possible as well.

2.5 Central Body Approximations of Uniform Gravity and Lack of Air Resistance
In this study, the hopping distances and maximum heights reached during any translation
maneuvers are far less than 1% of the central body radius. Modeling gravity as a uniform
constant equal to the nominal surface gravity is considered sufficiently accurate. Similarly, air

resistance was neglected as the key central bodies of interest have little to virtually no atmosphere.

2.6 Reduction to Two Dimensions

The initial landing trajectory to reach the central body is not considered; therefore neither is any
propulsion system specific orientation bias that would favor traveling in a specific direction. Thus,
there exist an infinite number of equipotential possible secondary landing sites that lie along a
circle with radius equal to the translation distance surrounding the primary landing site. The

coordinate system origin is thus chosen such that the origin is centered at the primary spacecraft

® Positive and negative pitching angles are defined as per the convention shown in Figure 2.4
¢ Pulsing is operating an engine at a high frequency instead of continuously.
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landing site, (prior to any hopping maneuver), and the positive X axis extends from the primary

landing site through the secondary landing site

+Z axis
Spacecraft
Zenith

La
a

(

seconda

Circle of all possible

as shown in Figure 2.3.
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Figure 2.3: Two Dimensional Trajectory Representation

The positive Z axis extends from the ground th
perpendicular to the X and Z axis as according

could land, a straight line could be traced from

rough the zenith of the spacecraft. The Y-axis is
to the right-hand rule. Anywhere the spacecraft

its takeoff to landing site; and the coordination

frame could be rotated to align. Any trajectories that laterally deviated out-of-plane in the +/- Y

axis midflight would require a disturbing and restoring force to return within plane. Generating

these forces would require additional propellant with no benefit and would result in a suboptimal

trajectory. It is thus reasoned that optimal trajectories will lie entirely with the X-Z plane and

therefore state variables representing two spatial dimensions are sufficient to model this VTVL

manc€uver.
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2.7 Spacecraft Point-Mass Approximation

Since offsetting the coordination system to compensate for the height of the vehicle would not
change the underlying physics, the initial height is considered to be zero to simplify the results.
To keep the model as propulsion system agnostic as possible, the only spacecraft state variable
tracked is the overall mass — no moment of inertia (MOI) matrix is calculated, and roll, pitch, or
yaw maneuvers are not modeled. The thrust was modeled to act directly on the center-of-mass of

the vehicle. Therefore the spacecraft is essentially modeled as a point mass.

While a point mass does not have a meaningful attitude, the spacecraft’s coordinate system is
assumed to coincide with the central body coordinate system origin. The standard conventions of
spacecraft roll, pitch, and yaw being rotations around the X, Y, and Z axis are made only to

discuss their disuse.

2.8 State Variable Selection

Since the problem is restricted to two spatial dimensions, the only forces acting on the craft are
thrust and gravity, and the thrust is assumed to act on the center-of-mass; only five time
dependent state variables are required to fully represent the spacecraft VTVL trajectory problem,;
the velocity and position along the X and Z axes, and the spacecraft mass. The simulation time
duration, (the Time of Flight for the VTVL maneuver), can also be fixed, or free to float between

an upper and lower bound.

Note that the spacecraft mass determines the magnitude of acceleration that the spacecraft
experiences for a given thrust level, and the acceleration will grow as propellant mass is depleted.
The lower the exhaust velocity/specific impulse of the rocket engines used, the greater the mass

flow rate will be for a given thrust.
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2.9 Control Variable Selection

With the previous simplifications, the control variables can be reduced to a net thrust vector with
a specific magnitude, Thrust, and thrust angle, 8, as shown in Figure 2.4. The thrust angle is
defined so that zero corresponds with the nadir. In this thesis |6,,,,| always equals |6,,;,|, though
this is not strictly required in general. Note the spacecraft is shown with a pitch angle equal to the

thrust angle purely for visualization purposes.

Thrust

ThrUSfmax/

~—

lx‘.
s
~

+7 N

+X
Figure 2.4: Spacecraft Thrust Control Modeling

2.10  Basic Control Law Constraints for Increasing Model Fidelity

The most basic constraints made on the control variables are their maximum and minimum range
of values. Every spacecraft propulsion system has an upper limit to the net thrust it can produce’,
and as previously mentioned, some engines/systems have lower limits and/or restricted throttling
ranges. As discussed herein, introducing additional constraints can reflect a range of spacecraft

propulsion architecture-specific limitations and increase the fidelity of results.

4 A VTVL spacecraft should reserve some of its throttling capability in order to account for system noise,
e.g. create a control law with a planned max throttle limit of 80% of peak thrust for maneuvers, reserving
the remaining 20% in case the spacecraft was accelerating or decelerating slower than anticipated and was
at risk of impacting. This is referred to as control authority and varies by spacecraft design. For this study,
the thrust values given are assumed to be after any control authority margin is reserved.
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For a spacecraft with a gimbaled main engine, (Craft B in Figure 2.2), the gimbal likely has a
restricted range of motion. For a fixed engine spacecraft, (Craft C in Figure 2.2), there may be a
maximum pitch angle allowed due to sensor limitations or to lower risk, etc. These specific
limitations can be captured by setting the appropriate values for the minimum and maximum

allowable thrust angle.

Similarly, constraints on the thrust angle angular rate of change can be implemented in order to
account for the maximum allowable or possible pitch rate of change of a spacecraft or speed at
which the spacecraft can gimbal its main engine. By constraining the allowed thrust angle angular
rate of change to the achievable pitch rate of a spacecraft, higher fidelity results can be realized

without using a spacecraft’s full momentum of inertia in the state equations.

There can also be constraints on the allowable liftoff and landing values of the thrust angle. While
a spacecraft with a gimbaled main engine may be able to take off and land at a slight angle, a
spacecraft with fixed engines would likely need to take off almost vertically, i.e. the thrust angle
must equal zero at the beginning and the end of the flight. Some residual final speed could be
tolerated upon landing, but too much in either the X or Z direction could damage the craft and/or

cause it to dig into the surface and/or flip over.

2.11  Development of State Equations

Once the control variables are chosen, sufficiently accurate equations that model the problem
dynamics are developed. These state equations include functions that predict the motion of the
spacecraft in response to the forces of gravity and thrust, and the change in spacecraft mass as

propellant is expelled to create thrust. Once the trajectory problem is represented mathematically,
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optimization techniques are employed to refine and improve possible flight profiles and control

laws.

2.12  Burn-Coast-Burn Impulsive-Ballistic Minimum Energy Derivation

The lower bound of the minimum propellant use is determined via a “burn-coast-burn” ballistic-
impulsive analysis*® similar to modelling the path of a cannonball as shown in Figure 2.5. Such a
spacecraft would experience an impulsive velocity change, AV;ziq1, (1% burn), that would bring
the spacecraft from a rest state to an initial velocity, Viitiar, at @ flight path/launch angle, @;pnitiais
as measured from the horizon. The spacecraft would “coast” in a parabolic arc according to the
relevant equations of motion, eventually reaching the ground with a final velocity equal to the
initial velocity, Veinar = Vinitiar, and a negative flight path angle, @finai = —@initiar- An
equivalent impulsive velocity change would be required at the end of the flight, AV;,4;, ™

burn), to zero out the final velocity, V4, and bring the spacecraft to a rest".

2Velinit i Max Height
A AV Y AVfinal= Viinal
2 Vinitial ™ Vinitial
\ theIf |
}” xVelipitial Ofingd
Translation Distance -~ |

2Velfinal  Viinal
Figure 2.5: “Burn-Coast-Burn” Impulsive-Ballistic Trajectory

While this method has limitations described herein, several useful formulas were derived to

establish estimates and values for comparison.

¢ There are errata in the formulas listed in this source; the calculations were re-derived.

PIf the central body in question had exceedingly low gravity, e.g. an asteroid, the spacecraft may be robust
enough to survive the impact and save propellant. This could also prevent contamination of the second site
by the spacecraft’s propellant.
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For the most efficient initial flight path angle, a;yitiq; = 45 degrees, the ballistic-impulsive TOF
and required initial velocity can be solved for in terms of the desired horizontal displacement and

the local surface gravity

Vinitial,ballistic = \/xposfinal * Jlocal (2~1)

’2 * XPos¢;
TOFyauistic = e L (2.2)
Yiocal

The maximum height reached is simply one quarter of the targeted distance.

xPosﬁnal

ZPOSmax,ballistic = 4 (2'3)

2.13  Burn-Coast-Burn Impulsive-Ballistic Propellant Mass Derivation
To calculate how much propellant would be required to perform these impulsive AV maneuvers,

the “ideal” rocket equation is used,

MaSSBefore Burn) (2 4)

AV = U *In
exhaust ( MaSSAfter Burn

where the exhaust velocity, Uexnaust = Isp * go- Using the ideal rocket equation iteratively and

using the relation [Viptiqi| = AVinitiat = AViinar = |Vfinal , the required propellant to perform

both burns is found to be

2% Vinitial)) 2.5)

Propellant Mass impyisive = Massinitiar * (1 — exp (—
Uexhaust
By substituting the relation in Eq. (2.1) for finding the required initial velocity to travel a desired

horizontal displacement into Eq. (2.5), the impulsive-ballistic propellant mass can be directly

solved for in terms of the original spacecraft mass, exhaust velocity, and local gravity.



18

2% \/xPOSfinal * Jlocal

Uexhaust

| e

Propellant Massimpyisive = MasSinitiar * |1 — exp(—

Thus Eq. (2.6) places a lower bound on the minimum propellant required in order to perform the
hopping maneuver for a given translation distance. This ideal burn-coast-burn trajectory model
can be used as an efficiency measure for finite thrust maneuvers. The closer the actual required

propellant is to this ideal value, the more efficient the trajectory, but it cannot use less propellant.

2.14  Gravity Losses and Limitations of Impulsive-Ballistic Model

Where the burn-coast-burn model fails is that infinite thrust would be required to accomplish the
desired velocity changes instantaneously'’. Any finite-thrust system needs to fire its engines for a
non-zero amount of time in order to perform the initial take-off and landing AV’s. Because the
spacecraft will be experiencing gravity during this time, the actual propellant use required to

perform a desired AV requires including a gravity losses term to the rocket equation as

Mass thurn
Before Burn) _ J— Jiocal * dt (2.7)
t

av = U *In
exhaust < MaSSAfteT Burn

=0
where tp,,,,, is the length of time the engines are firing. The consequence of gravity losses is that
more propellant is required to accomplish a desired AV than the impulsive rocket equation would
suggest, e.g. the spacecraft Mass,fter purn 10 Eq. (2.7) would be lower than in Eq. (2.4) for the
same AV. However, the spacecraft is also translating while the thrust accelerates and decelerates
the spacecraft at the beginning and end of the flight, so the required coasting distance and initial
velocity before coasting would be less than the initial velocity given by Eq. (2.1). Lastly, the

spacecraft’s propulsion system must compensate in order to achieve a desired flight path angle.

2.15  Free-body diagram of a VTVL hopping spacecraft
While Eq. (2.7) is useful for highlighting the limitations of the impulsive rocket equation, it is

ultimately insufficient for calculating the propellant required for a VT VL translation maneuver.
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Gravity losses not only increase the amount of propellant required to perform maneuvers, they
also change the resultant magnitude and the angle of acceleration of the spacecraft. A free-body
diagram of a hopping spacecraft as shown in Figure 2.6 demonstrates the effect. If a flight path
angle, a, of 45 degrees was desired, the nominal thrust angle, 6,,ominal, Would need to be steeper
in order to compensate for the force of gravity. Additionally, the magnitude of the resultant thrust

is lower due to vector addition.

A
<l

[N
V:,Iocalz Yjocal Mass
~

Resultant

Thrusty o minal

|
gnoﬁfnal
B
+Z « Oresultant ~ Nadir

—
—

+X

Figure 2.6: Free-body analysis of a VTVL hopping spacecraft
Understanding the problem dynamics can assist mission planners in choosing the required thrust
level, throttling capabilities, and thrust vectoring requirement of a VTVL spacecraft propulsion
system. Just to get off the ground, the produced thrust must be greater than the spacecraft’s local
weight. In order to hover and maintain an altitude, the thrust output must continuously decrease to

match the spacecraft’s current weight, which will exponentially decay as propellant is expelled
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from the engines. In order to maintain a specific altitude while translating®, the magnitude and
thrust angle must be balanced such that the vertical component of thrust continuously equals the
vehicles’ current weight. Lastly, if the vehicle is to keep its engines on during the entire flight",

throttling below the spacecraft’s local weight is required to land.

2.16  Solution Hypothesis

The expected unconstrained solution for a high Thrust to Weight ratio (T/W) spacecratft is to
approximate a ballistic trajectory within the limitations of the spacecraft’s ability to accelerate as
rapidly as possible — essentially a finite-burn, coast, finite-burn, where the second burn is slightly
less due to the spacecraft mass decreasing from performing the first burn. From there, various
spacecraft parameters or potential solution constraints can be varied to study their impact on the

required propellant.

2.17  Comparison to Orbital Trajectory Optimization

Developing a model for VT VL spacecraft trajectory optimization was baselined on a classic
optimization problem for a constant thrust' spacecraft'®. For that problem, the objective is finding
the thrust-direction history that transfers a spacecraft from an initial circular orbit to the largest
possible circular orbit for a given TOF. The initial spacecraft mass, orbital radius, thrust-level,

and TOF could all be varied independently.

Modeling a VTVL spacecraft required adding an additional control variable for throttling the

thrust, changing the state equations to reflect surface operations, and adding additional spacecraft

¢ A flight profile commonly seen of Earth-based VTVL test vehicles is a “top hat” trajectory where the
spacecraft vertically ascends, accelerates horizontally, translates, decelerates horizontally, and then
vertically lands.

f‘ This might be required for non-hypergolic bipropellant propellants where restarts are limited.

" These types of trajectories are characteristic of spacecraft utilizing high I5,,, low-thrust electric propulsion.
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parameters and constraints to increase model fidelity. Orbital trajectory optimization techniques

for high-thrust spacecraft that model AV maneuvers as impulsive were not helpful'.

2.18 Developing an Optimal Control Problem

Solving for the optimal VTVL translation trajectory is equivalent to solving for the control law
which produces it. Thus a model is developed to represent both the control law and the resulting
change in state variables over time. This can be referred to as an Optimal Control Problem. Once

a mathematical model is created, optimization techniques can be applied.

J The problem dynamics, key assumptions, and solution formats are very different.
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Chapter 3

Mathematical Representation of VTVL Translation Maneuver

3.1 Mathematical Representation of VTVL Maneuver as an Optimal Control Problem
The following mathematical representation was adapted in part from a succinct description found

1718 and applied to this problem.

in literature describing a typical Optimal Control Problem (OCP)
The VTVL translation maneuver can be readily represented by a system of dynamic variables z,
consisting of a [5 X 1] column vector of time dependent state variable functions s(t) and a

[2 X 1] column vector of time dependent control variable functions u(t) for any time t within the

simulation time range of [tinitiar: tfinal]' Here s;(t) for (j = 1,---,5) refers to any one time

dependent state variable function in particular.*

s1(t)
© [52 ®
s(t :
£ [u(t) = |ss Et% for tinitiat <t < trina (3.1)
uy (t
u, ()

The problem dynamics are defined by a [5 X 1] column vector of parametric differential

equations f; ... f5 called the State equations that can be represented as

p 5:1(15) = f1(s(®),u(t),p, 1)
$(t) = ﬂ = f[s(t),u(t), p, t] = $,(t) = fz(sgt),u(t),p, t) (3.2)

dt :
$5(t) = fs(s(t),u(®), p, t)
where p is a vector of time independent problem parameters. Note that u(t) is also referred to as

the control law, as it gives the values of the control variables over the course of the trajectory.

¥ Note that s and u are later treated as numerical matrices with square bracketsused for indexing.
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The state variable functions s(t) are the integrals of these state equations $, and any one state

equation in particular is $; (¢).

The simulation time start, t;;;+iq;, 1S defined to be zero, so the simulation duration, (the TOF), is
equivalent to, tfinq;. The TOF may be a free variable and allowed to float within an upper and

lower bound by changing tf;pnq,,

tfinal,lower < tfinal < tfinal,upper (3-3)

or a fixed variable set by restricting tf;nq; to a specific time.

There may be simple global bounds on the state and control variables between lower and upper
limits, such as a maximum or minimum allowable altitude, velocity, thrust magnitude, thrust

angle, etc.

Siower < S(t) < Supper (3-4)

Wower < u(t) < uupper (3-5)

The initial boundary condition at the simulation start may be defined as a [8 X 1] column vector

tinitial ]
(3.6)

Winitial = [s(tinitial)
u(tinitial)

and the desired final boundary condition may be defined as a [8 X 1] column vector

tfinal
Uringr = | S(tfinal) (3.7)
u(tfinal)

The boundary conditions can be described in terms of Y., and P,y variables subsets. While

solving for the optimal trajectory, free variables may float between a range of acceptable limits
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given by Weree 1ower and Yrree ypper Such as the final mass, or fixed, such as the initial position,

per VTVL maneuver.

The problem may also be subject to equality constraints of the form
Cequatity: f[s(®),u(®),p,t] =0 (3.8)
which must be driven to zero to be fully satisfied, and inequality constraints of the form
Cinequatity: f[s(t),u(®),p,t] <0 (3.9)

that only need to be less than or equal to zero in order to be satisfied. Either constraint can

introduce path constraints or additional limitations on allowable solutions.

The basic optimal control problem is to determine the control law u(t) that optimizes the fitness

function™, J,

J = fls(®),u(®),p,1] (3.10)

while satisfying all the boundary conditions, upper and lower bounds, and all user-defined
inequality and equality constraints. This fitness function must be capable of transitive comparison

between any possible trajectories that satisfy all conditions.

3.2 State and Control Functions Are Not Closed Form Analytical Expressions

As is generally the case with most nonlinear coupled dynamics problems, the state equations

fi .- fs" cannot be analytically integrated and solved as closed-form analytical expressions®.

" There needs to be sufficient degrees of freedom, i.e. free variables, or else the problem is over constrained.
™ This is also called the penalty function, scalar performance index, or objective function.

" The state equations are given in Egs. (3.23)-(3.27).

°Also note, for the ballistic-impulsive case described in Section 2.12, the state variable functions can be
derived analytically since the state equations are decoupled in the X and Z axes.
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Additionally, the control variable functions are usually not closed-form analytical expressions
either. The state variable functions s; ... sg can still return a value of the state variables for any
time ¢, but doing so usually requires numerically integrating the state equations from an initial

condition while following the control functions.

3.3 Direct Method Overview

The direct method implemented attempts to directly solve for the optimal trajectory by
manipulating the values of the state and control variable functions s(t) and u(t). This method
attempts to simultaneously find the optimal trajectory and the control law which is required to

produce it. This technique is well suited to handle the problem dynamics of the VTVL maneuver.

Upper and lower bounds for all state and control variables can readily be enforced so that
trajectories stay within a “state-space box,” and initial and final conditions can be applied. In this
way, the direct method is similar to a boundary value problem. However, there is no a priori
guarantee that the trajectories found during each iteration are feasible, i.e., does the control law
produce the trajectory given the state equations and additional constraints. The direct method

must determine the optimal trajectory only within the feasible subset within the entire state-space.

Depending on how the problem is formulated and the optimization method(s) implemented, the
solution state space of all possible trajectories that a given implementation can search may be
slightly different, and some solver parameters may require significantly more time and
computational power to run. It is important to understand how the method’s parameters chosen

affect the search space, validity, and usefulness of results.
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3.4 Global Time of Flight Bounds

As per Eq. (3.3) the optimal TOF was expected to be greater than the ballistic TOF due to finite

burns, but lower than twice the ballistic TOF.

’2 * XPoS¢;
f l
tfinal,lower = TOFypauistic = — 7= (3.11)
Ylocal
’2 * XP0oS¢;
f l
tfinal,upper = 2 * TOFpquistic = 2 * — 7= (3.12)
YJiocal

3.5 Global State Variable Bounds

In order to reduce the search space, parameterized time-invariant global assumptions are made on
the maximum and minimum acceptable state variable values that any optimal solution should be
within as per Eq. (3.6). The allowable range of position along the X axis is restricted to be
between zero and the final position since any over or undershoot would require restoring forces

and thus additional propellant.

XPos;pwer =0 (3.13)

XPoSypper = XPOSgina (3.14)

Similarly, the minimum X velocity is required to be greater than or equal to zero. The maximum

X velocity is assumed to be within twice the ballistic X velocity.

xVel,ower =0 (3.15)
xPOSFinal

xvelUPPer = 2% W = [2x xposfinal * Jlocal (3.16)
ballistic

The Z Position, or altitude, is restricted to between zero and half the desired translation distance,

which is twice the maximum altitude reached during a ballistic trajectory as per Eq. (2.3).

zPos;ower = 0 (3.17)

xposFinal

. (3.18)

ZPoSypper =
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The Z velocity was constrained to be within the initial ballistic velocity. Note that this is the

vector total initial ballistic velocity, not only the Z component.

ZvelLower = _Vinitial,ballistic = _prosfinal * Jlocal (3.19)

ZvelUpper = +Vinitial,ba11istic = +\/xposfinal * Giocal (3.20)

The spacecraft’s mass can obviously not exceed the original mass for the upper bound. The lower

bound was set at the original mass less twice the ballistic propellant mass found via Eq. (2.5).

Masspower = Massnitiat — 2 * Fuel Mass impulsive (3.21)

Massypper = Massmitial (3.22)
3.6 Global Control Variable Bounds
The variables used to define the acceptable range of control variable values as per Eq. (3.5) are
listed in Table 3.1, and correspond to Figure 2.4. These are global limitations of the spacecraft’s
propulsion system abilities, though additional constraints can be added to model path constraints

or boundary conditions. The specific values used are presented in the results.

Table 3.1: Spacecraft Control Variable Bounds

Parameter Abbreviation Units Use
Minimum Thrust Magnitude Thrust,in Newtons Lower Bound
Maximum Thrust Magnitude Thrust g Newtons Upper Bound

Minimum Thrust Angle Omin Degrees Lower Bound
Maximum Thrust Angle O max Degrees Upper Bound

3.7 Determining the Validity of Global Bounds

If any of the bounds on the state variables, control variables, and time of flight are less than
needed for the actual optimum trajectory, it is expected that the optimization method should
produce trajectories that lie along one or more of the bounding limits. In this case, relaxing the
bounds should result in an increase in fitness. If the bounds are too restrictive, the simulation may

fail to converge.



3.8 Vector and Matrix Indices
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The specific indices of the state and control variable vector functions and the numerical matrices

are listed in Table 3.2 for clarity. Note the difference between the function and matrix indexing,

further explored in Section 4.2.

Table 3.2: State and Control Variable Function Indices

Function Vector Index | Matrix Indices Variable Abbreviation Units
51(t) s[1,:] X Position xPos meters
S, (t) s[2,:] X Velocity xVel meters/second
s3(t) s[3,:] Z Position zPos meters
s4(t) s[4,:] Z Velocity zVel meters/second
ss(t) s[5,:] Mass Mass kilograms
uq(t) ufl,:] Mzgﬁi de Thrust Newtons
U, (t) ul2,:] Thrust Angle 0 degrees

3.9 State Equations

The problem dynamics are idealized as a vector of parametric differential equations as described

in Egs. (3.23) - (3.27) which correspond to the free body diagram shown in Figure 2.6

P
5.(t) = Pos = PP _ el (3.23)
() = #Vel = dxVel _ hrust = sin 8 (3.24)
dt Mass
P
s5(6) = zPos = PEOS _ Jyel (3.25)
) . dzVel —Thrust *cos@
S4(t) = zVel = T Vs — Giocal (3.26)
. dM —Thrust
$5(t) = Mass =225 ——— (3.27)
Isp * Jo

These equations model the response of the spacecraft to the forces of gravity and thrust under the

assumptions previously stated in Chapter 2. The effective specific impulse of the spacecraft, I,

is assumed to be constant across the entire thrust throttle range. If the specific impulse is expected
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to vary significantly throughout the duration of the flight, additional state variables that could be
used to model the change would have to be included such as the propellant tank pressure,

temperature, etc.

3.10  Optional Constraints

While some VTVL spacecraft may be able to take off at a slight angle, fixed engine crafts such as
Craft C in Figure 2.2 are constrained to a vertical takeoff, i.e. 8 = 0 @ ¢,. If this is the case, then
the initial thrust level should also be at least the craft’s initial weight in the local gravity field in
order to take off, i.e. Thrust = Massg * g1oca1 @ to- When landing, the terminal thrust angle
may need to be vertical as well, 6 = 0 @ tf;,4;, but the thrust may be higher than the spacecraft’s

local gravity at the time since it may be shedding residual velocity. These can be enforced by

setting appropriate upper and lower bounds for the control variables at ¢y and tf;,4; as listed in

Table 3.3.
Table 3.3 Optional VTVL Constraint Properties (e.g. Craft C - Figure 2.2)
Variable Lower Bound @ | Upper Bound @ | Lower Bound @ Upper Bound @
Linitial Linitial trinal trinal
0 0 0 0 0
Thrust | MasSinitial * Giocal Thrust,q. Thrust,n Thrust,q

Additionally, the allowable rate of change of the thrust angle can be restricted to model spacecraft
constraints by enforcing |Z—‘:| < 6,45 A real fixed engine spacecraft has a moment of inertia and

cannot instantaneously pitch to change the thrust angle. A gimbaled craft cannot instantaneously
change the gimbal position. Additionally, there may be restrictions due to controllability/stability
issues, risk reduction concerns, sensor limitations, etc. This is an example of an inequality
constraint, and is satisfied as long as the condition in Eq. (3.28) holds.

do

2| = max =0 (3.28)
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Chapter 4

Direct Collocation and Nonlinear Programming Trajectory Optimization

4.1 Method History and Literature Review
The method of Direct Collocation to solve optimal control problems was developed by

1" in 1974. Hargraves and Paris*® pioneered combining Direct Collocation

Dickmanns and Wel
with Nonlinear Programming (DCNLP) for trajectory optimization. Enright and Conway
modified the equality constraint by a factor of two thirds the time segment so that it used an
implicit Hermite-Simpson integration®'. Further work has resulted in refined discretization
methods to improve algorithm performance for specific cases. These DCNLP methods have been

used successfully to optimize the trajectory of both impulsive and finite thrust maneuvers for

spacecraft as well as many other optimal control problems®.

4.2 Direct Transcription
Direct Transcription of the OCP into a Nonlinear Programming® (NLP) problem begins with

discretizing the simulation time into a numerical monotonic row vector t of length n in the form

t= [tll tz, ey tk’ tk+1' ey tn]
where .1

t <ty < <tp <tpp <<ty
where t; and t,, correspond to the previous terms tin;¢iq; and trinq;. Next, the state and control
variable functions are discretized into numerical matrices consisting of the values of the state and
control variables, respectively, at the discrete simulation time points. The individual time points

and the corresponding values of the state and control variables are referred to as node points. The

vector index of any node point is equivalent to the vector index of the corresponding time.

P The term “programming” in NLP refers to mathematical programming, a historical term for optimization.
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Matrix indexing is used with matrices, and subscripts are used for vectors. For clarity, the
indexing method is s[state variable index, node index] for the state variable matrix, and
u[control variable index,node index] for the control variable matrix. The state variable
matrix S[:,: ] has dimension of [5 X n], and the control variable matrix u[:,: ] is [2 X n], where

n is the number of time discretization nodes.

[s1 (01 [s[1,:]

tos(t) = S"ft) = s[’,':] =s[:,:] 4.2)
[ss()]  Ls[5,:]

t-u(t) = Z;Eg = EBH =u[;,:] (4.3)

An entire solution can be reduced to an [8 X n] dynamic solution matrix Z consisting of the time
vector t and the corresponding state and control variable values. An individual node Zj, is an

[8 X 1] column vector cross-section of the solution matrix.
5%
Z, = [S[:,k]] where k = [1:n] (4.4)

Each node is a unique point within the search space, the space of all values the node variables
can take for a given node. These individual nodes are represented in Figure 4.1 as red dots, and
the solution matrix would be all the nodes from [1: n]. The line connecting the nodes is the
trajectory of the spacecraft in hyper-dimensional dynamic state space, as each node includes the

current velocity, mass, and control variables values.

The trajectory segment between any node Z; and Z,, is referred to as trajectory segment 7,

fork = 1:(n — 1). The segment width At,, for any trajectory segment k is
Aty = tgpr — ty (4.5)

and may or may not be a constant, depending on the node temporal distribution.
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Figure 4.1: Discretization of an Optimal Control Problem into a Nonlinear Programming Problem?

4.3 Simple Global Upper and Lower Bounds

Simple global lower and upper bounds on the allowable values of the dynamic variables can be
set due to physical, spacecraft, or problem constraints, e.g2. minimum and maximum altitudes,
thrust levels, etc. These can be imposed on a per node basis to enforce boundary conditions.

Setting appropriate constraints can decrease the computational effort required to optimize the

1 Figure 4.1 was initially based off of the work of B. Geiger™ Note that the vertical axis
corresponds to node points within the entire state variable space, not any one state variables in

particular.
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trajectory by limiting the search space, though care must be taken to ensure that potential optimal

trajectories are not excluded.

4.4 Enforcing Feasibility through Equality Constraints

A method must be developed to determine whether a given solution matrix Z represents a feasible
trajectory, i.e. if the given control law would produce the trajectory and change in spacecraft state
variables seen in the solution matrix. Using only the values of the time, state, and control values
at the node points bracketing a trajectory segment 7, 5 X (k — 1) equality constraints in the form
of Eq. (3.8) can be developed. If the equality constraint method is valid, when all of the
constraints are driven to zero, the solution matrix should represent a feasible trajectory, (though

there is no guarantee of optimality).

Essentially, to determine if a trajectory is feasible, the value of the state variables at node Zj, 1
are predicted by integrating the state equations $(t) from the values of the state variables at node
Z, fromt = t; = t,,, as per
Lkt

S[: ke +1] = s[:, k] + ftk s(t)dt 4.6)

where the state equations are evaluated as Eq. (3.2) and therefore at the nodes via
$(t) = £(sl:, kl, ul:, kl,p, t) @.7)

Note that the values of the control variables at node Z;,; and Zj, are required to calculate the

values of the state equations as per Eq. (4.7).

Two inequality constraints are discussed. The first uses simple trapezoidal integration between

the nodes. The second utilizes the method of Direct Collocation. As implemented, this results in
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an equality constraint that is equivalent to implicit Hermite-Simpson integration, and should be

higher fidelity.

45 Trapezoidal Feasibility Equality Constraints

Using the notation developed, the trapezoidal approximation of integration is

4 3(ern) + 8

s[:,k+ 1] = s[:, k] >

tr 4.8)

Therefore, if the actual values of the state variables at node Zj, ; in the solution matrix are
different than the values predicted by Eq. (4.8), the solution is not feasible. The differences
between the predicted and actual state variable values at node Z; are referred to as the defects.

This process is repeated on a per-node basis and turned into a [5 X (n — 1)] matrix of trapezoidal

Trap

feasibility equality constraints, Ceq

[:, k], as per

+ $(t+1) + S(tx) A

cIrPl k] =s[:, k + 1] — s[:, k] >

eq t, =0 4.9)

fork=1:(n—1), and C::lap [:, k] is to be driven to zero. Note that this requires that trapezoidal

integration is sufficiently accurate to represent the trajectory between nodes.

4.6 Requirements of Simpson-Hermite Integration

Using the notation developed, the Simpson’s approximation of integration is expressed as

Aty . . AN
sl:,k+1] =s[:, k] + (?) x| $(t) +4+$ (tk + 7) + $(tr41) (4.10)
While the trapezoidal approximation only required the value of the state variables and state
equations at the nodes, Simpson’s method requires the value of the state equations at the midpoint
between the nodes, i.e. $(t) @ t = ¢, + %. However, to calculate the state equations requires

the values of the state and control variables at the midpoint as per Eq. (3.2). Thus methods need

to be developed first to determine the midpoint values before Simpson’s method can be used.
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4.7 Control Law Midpoint Linear Interpolation
A simple linear interpolation” was used to generate the values of the control variable functions,
(the control law), at any simulation time ¢, using only the values of the control variables at the

nodes.

O L bk 711 B @.11)
te+1 — Uk

where k is incremented when t > ¢, 4.

At the midpoints, Eq. (4.11) reduces to

u<tk+42ﬁ>=u[:,k]+l21[:,k+1] (4.12)

4.8 State Variable Midpoint Interpolation via Direct Collocation
Direct Collocation is a method to estimate the values of the state variables at the midpoint of any
trajectory segment 7, from only the values of the state variables and state equations at the

boundary nodes Z;, and Z, ;, and the segment width At;.

Aty

_ ) — f(s[:, k] (80, s, k + 11, $(ter), At (4.13)

S (tk +
The name Direct Collocation derives from the central idea of using fictitious piecewise cubic
polynomial functions juxtaposed or collocated alongside the node points of the form
0(1)=Cy+Cy T+ Cy*T% + Cq x T3 (4.14)
to model the value of the corresponding state variable functions along any trajectory segment 7.
o(ty) = s(t) wheret, = [0 - 1] fort = [t;, > ti41) (4.15)
For clarity, note that the polynomial functions’ independent variable 7 is equivalent to the time

span [t — tj41], but mapped to the range [0 — 1].

" This assumes that the control variables can change as fast as needed. If limitations exist on the allowable
rates of change, these need to be captured through additional constraints, e.g. Eq. (3.28).
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The cubic polynomial coefficients can be solved for in terms of their boundary conditions.

Substitutingt = 0 andt = 1 into Eq. (4.14) and its first derivative, the following relations can

be developed
Colrr o o o7 [o(0)
Cilfo 1 o o] _|e(0)
cllr 1 1 1]‘ o(1) (4.16)
cllo 1 2 31 lsq)

Matrix inversion allows the cubic coefficients Cy through Cj; to be defined in terms of the

boundary conditions of the polynomial function.

Co 1 0 0 o07[c©®

Gi]_l o 1 o 0|60

= [—3 2 3 —1l|le() @17
2 1 2 a(1)

If cubic polynomials can accurately represent the state variable functions along the trajectory

segment as per Eq. (4.15), then the boundary conditions of Eq. (4.14) should be equivalent to the

values of the state variables and state equations as per

o(0) = s[:, k]
6(0) = s(ty)
(1) =s[:, k+1]
(1) = $(tgs1)

(4.18)

Therefore, the cubic coefficients can be solved for in terms of the values of the state variables and

state equations at nodes Z; and Z, ;.

Co 1 0 o0 o] sk.klj
Cﬂ _ [_% 1 0 | S(tk) | (4.19)
2

w o
I
[N

-2 Jk+1]
1 -2 1 S(tk+1) J

. . . At
And therefore, the values of the state variables at the trajectory segment midpoints, (tk + Tk) ,

should be equivalent to Eq. (4.14) evaluated att = 0.5.
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C, C, G, Atk)
5) = A28 —k 4.20
a(0.5) Cot =+, +3 s(tk+ 5 (4.20)

Using the relations shown in Eq. (4.19) substituted into Eq. (4.20); a relation can be developed to
estimate the value of the state variables at the midpoint purely in terms of the boundary

conditions.

s (tk N Aj) _ sk kT + ;[:.k +1] At (S.(tk;_ $(tk+1))

> 4.21)

4.9 Simpson-Hermite Feasibility Equality Constraints
Now that the values of the state and control variables at the trajectory segment midpoints can be
determined purely from the values of the bounding nodes and state equations as per Eqgs. (4.12)

and (4.21), the value of the state equations at the midpoint can be derived as per Eq. (3.2).

At At At At
$(tk+7k)=f(s(tk+7k>,u<tk+Tk>.p,tk+7k) (4.22)

Therefore, using the concept of Direct Collocation, the Simpson approximation of integration

shown in Eq. (4.10) can be used to construct a [5 X (n — 1)] matrix of Simpson-Hermite

Simpson [

feasibility equality constraints, Ceq

., k] as per

Coa™P"[:, k] = s[:, k + 1] — s[:, k] -~

At At (4.23)
+ (7") . <$(tk) +axs (tk + Tk) + s'(tk+1)> 50
where k = 1: (n — 1). As long as the assumption that a cubic polynomial can accurately

Simpson [: , k]

represent the state variable functions along each trajectory segment is valid, then Cgq

should be able to be driven to zero, and if so, the solution matrix should represent a feasible

trajectory. Further notes on Direct Collocation for clarity can be found in Appendix A.
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4.10  NLP Variables, Node Distribution, and Time as a Fixed or Free Variable

Each variable that a NLP solver needs to optimize a trajectory with are referred to as Nonlinear
Programming Variables, (NLPVs). The distinction of NLP_STATE is made for the subset of
NLPVs which are state variables, and NLP_ CONTROL for control variables. Since a trajectory
solution Z is represented by an [8 X n] matrix of the node times, state variables, and control
variables, there are 5 X n NLP_STATE variables and 2 X n NLP_ CONTROL variables. The
NLP solver can freely change the values of any of the NLP_STATE and NLP_ CONTROL
variables in order to optimize the trajectory within the upper and lower bounds and satisfy the

equality and inequality constraints.

The time vector t was treated differently. Instead of allowing the NLP solver to change the node
time value t;, at each node freely, the time vector t was determined using a linear time
distribution from [tinitml: tﬁnal], where tinitriqr = 0 and tfinq; was either fixed, or free to float
between an upper and lower bound. If ¢f;,4; Was fixed, then the time vector in the solution

matrix Z, (the top row), was fixed for the simulation as well.

If trinq, was a free variable, in order to preserve the same relative node distribution, the time
vector t in the solution matrix was remapped each program iteration to the value of one additional
NLPYV variable which represented the simulation duration, tf;yq;. Therefore the number of

NLPVs was reduced to 7 X n if time was fixed, or (7 X n) + 1 if time was free.
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4.11  NLPV Upper Bounds, Lower Bounds, and Enforcing Boundary Conditions

Upper and lower time-invariant bounds for each NLP_STATE variable were calculated as per the

time-invariant Eqs.(3.13)-(3.22) in the form of s[:, : |;per and s[:, : Jpper for all nodes. Bounds

were set per Table 3.1 for all NLP_CONTROL variables as u[:, : [;oyer and ul:, : Jypper as well.

Next, in order to enforce the boundary conditions Pp;tiq; and Y ¢ipq;, the upper and lower
bounds were set equal to the boundary conditions for all fixed variables® at the column indices

corresponding to the first and last nodes.

S[ :1 lower] [S[:'l]upper]
4.24
[u[ '1 lower ll’mltlal JSixed — u[::l]upper ( )
s[:,n lower] s[: :n]upper]
= 4.25
[ll S M ower ll’fmalflxed [u[:;n]upper ( )

Free variables at the boundary conditions are still limited to the global limits already applied. If

the time duration was a free variable, bounds were set according to Egs. (3.11) and (3.12).

4.12  Initial Guess Derivation
In order to improve algorithm performance, an initial guess for the simulation duration/time of

flight was made according to
Lrinal,guess = 1.5 * TOFpquistic (4.26)
The initial guess time vector, tgygs, Was then created using a linear distribution between

[0: tfinal,guess]- Guess values for the state position and velocity variables were developed from a

ballistic trajectory using element-wise multiplication or division along tgyss-

* Note that the colon used in Eq. (4.24) and Eq. (4.25) indicates that multiple row elements are being set,
though not necessarily all, since not every state and/or control variable is a fixed boundary condition.
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XP0Sgyuess =  S[L:lguess = Vinitialballistic * COS(45) * t (4.27)
xVelguess = SI2,:1guess = Vinitialpatlistic * €0S(45) (4.28)
2P0SGuess = 13, Tguess = 5%+ 2 + Vipiatpattstc * SIn(45) « (4.29)
ZVelgyess = SI4 :1guess = Giocar * t+ Vinitialbanistic * Sin(45) (4.30)

For the spacecraft mass, the guess was a simple linear distribution between the initial mass and

the initial mass less the ballistic propellant required.

t
MaSSGueSS = 5[5' : ]guess = Masspitiai — * Fuel Mass impulsive (4‘31)
final,guess

For the control law, a simple guess was made for the thrust to go from Thrust,, 4, to Thrust,,

at the TOF midpoint and then ramp back to Thrust,, .

2xt

te:
(Thrustmax * < 1- >for t< Yinat guess)

tfinal,guess 2
Thrustgyess = U[1,:]gyess = (4.32)

2xt >
—1|)fort>

tfinal,guess

Thrust,q, * < >

final,guess

For the thrust angle, a guess was made equivalent to the negative flight path angle of a ballistic
trajectory, as the control variable 8 and flight path angle a shown in Figure 2.6 would be equal in

magnitude but opposite in sign in the absence of gravity losses.

ZvelGuess 8[3' : ]guess
oo = 002 s = an~t (202) _ s (L2 s 33
Guess uf ]gueSS an xVelgyess an s[1,: ]guess ( )

Before being used, any nodes that might have been outside the bounds were set to be within limits
on a per element basis according to

maximum(s[:,: ]guess: s[:,: ]lower)}
minimum(sl:, : ] guess, S[:»  lupper)

S[: )’ ]guess = { (4.34)
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maximum(ul:,: ] gyess, ul:,: ]lower)}

o 4.35
minimumQul[:,: ] gyess, Ul:, : Jupper) (*3%)

ul:,: ]guess = {

4.13  VTVL and Pitch Rate Constraint Enforcement
If the VTVL constraint is being enforced, then then boundary conditions listed in Table 3.3 are

included in the fixed variables, i.e. Winitial fixea a0d Wrinal, fixea-

For the maximum 8 angular rate of change constraint listed in Eq. (3.28), a discrete inequality
constraint was used in the form

ul2,k+ 1] —ul2,k]| .
Cinequality: tres — tr —Omax <0 (4.36)

4.14  Fitness Function

Since the feasibility constraint ensures that the trajectory obeys the problem dynamics, and
inequality constraints cover additional spacecraft specific limitations, the fitness function is
reduced to maximizing the spacecraft’s final mass, i.e. minimizing the propellant use required for

a VTVL maneuver. Using the established matrix indexing,

J = maximize s[5,n] (4.37)

4.15 Nonlinear Programming Solver

While any number of nonlinear solvers can be utilized, the fmincon.m nonlinear optimization
routine was used from MATLAB 2012b with Version 6.2.1 of the Optimization Toolbox. Any
changes from the default settings are noted in the results. Note that MATLAB’s online

documentation and help are excellent references when working with fmincon and NLP in general.

416  Inherent Error
Note that the Hermite-Simpson feasibility equality constraint is used as it should be more

accurate than the trapezoidal. However, note that the equality constraints cannot be driven all the
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way to zero, but rather to a small tolerance on the order of Tol,,, = 10™* to 10~8. There is
always some error inherent with discretization, similar to representing a circle as an n-sided
polygon. While discretizing the OCP into a greater number of nodes will generally increase the
solution fidelity, it also increases the computational time and resources required to produce the
result, since the number of NLPVs and equality constraints scales by 5 X (n — 1). If a low
number of nodes is used and a better solution exists at a higher node resolution than chosen, the
solver will not be able to find it. The challenge is to determine when a solution is “good enough”
— when the error is sufficiently low — that adding additional nodes is not worth the additional

computational time and resources.



Chapter 5

Direct Collocation Results

Nominal Spacecraft and Solver Parameters

The spacecraft, mission, and solver parameters listed herein were used for all results unless

otherwise noted. The time independent parameters, p, are shown in Table 3.1 and correspond to

Figure 2.3 and Figure

2.4.

Table 5.1: Nominal Spacecraft and Problem Time Independent Parameters

Parameter Abbreviation Value Reasoning
Translation Distance | XPoSgina 500 m Significant distance from initial landing
Initial Mass Masspitial 100 kg Small scale mission range
Minimum Thrust Omin —60° Risk reduction/Spacecraft limit
Maximum Thrust Omax +60° Risk reduction/Spacecraft limit
Effective Specific Igy 150 s Sufficient to demonstrate asymmetry
Local Gravity Jiocal 1.622m Lunar surface
Max Pitch Rate B max oo Initially unconstrained

Table 5.2 Parameterized Nominal Constraints

Abbreviation Calculation Value if all nominal values used
Maximum Thrust | Thrust,g, |3 * MasSmitiat * Jiocal 486.6 N
Minimum Thrust' | Thrust,,;, Thrust,,q,/1000 0.4866 N
Table 5.3 Nonlinear Programming Parameters
Parameter Value
Feasibility Equality Constraint Hermite-Simpson
Number of Discretization Nodes 15

Table 5.4: Parameters used for MATLAB’s fmincon NLP Solver

Parameter Value
‘Solver’ sequential quadratic programming"
‘MaxFunEvals’ 2e5
‘TolCon’ le-6
‘MaxIter’ led

' See Section 5.3 for why the minimum thrust is slightly above zero.
" There is an order of magnitude or more improvement in fmincon’s performance in both speed and
convergence success when using the ‘sqp’ solver compared to the default ‘interior-point’.
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Unconstrained Solution
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Using the nominal spacecraft and problem parameters listed in Section 5.1, the optimal trajectory

profile found and the control law which produced it is shown in Figure 5.1. This is essentially a

finite equivalent of burn-coast-burn. Accelerate at the maximum thrust available, cutoff thrust and

coast, and then perform a similar, though not identical, landing burn.
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Figure 5.1: Nominal Solution Trajectory Profile and Control Law

The control variables are plotted against the X Position so they align with the XZ trajectory

profile. While useful to gain a sense of the flight path of the vehicle, it does not show how the

Angle, Degrees from Zenith

velocity or mass of the vehicle changes over time, and distorts the flight path angle plotline. Note

that the flight path angle shown at the first and last node is extrapolated from the interior nodes as

tan~?! (

zVel
xZel

) is undefined when the velocity is zero for both.
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Figure 5.2 shows the nominal upper bounds, lower bounds, solution values, and guess values for
all NLPVs. For the state and control variables, the actual solution is shown with circular markers,
the guess values as a dashed green line, and the lower and upper bounds are shown in red and

blue, respectively. The Simulation Duration shows the optimal solution’s TOF as a black dot, the

guess TOF in green, and the allowable bounds are shown as triangle markers facing inward.

This gives a much more complete picture of the trajectory. The changes in the state and control
variables are shown with respect to time instead of position. Each node point at a specific time
corresponds to the values of each of the dynamic variables within the solution matrix at the
respective node time. Because a linear time distribution was maintained, the temporal spacing is

identical between each node.

In the beginning of the flight, the spacecraft gradually accelerates in the X and Z directions.
When the thrust cuts off, the spacecraft essentially coasts. The X velocity plateaus and the mass
remains constant, though the Z velocity drops due to gravity. The spacecraft then performs a
landing maneuver. Because of the time required to accelerate and the corresponding gravity
losses, the TOF and propellant use are both greater than the impulsive case. Although difficult to

see here since the spacecraft’s mass only dropped a few percent, the control law is not symmetric.

The upper and lower bounds are shown mapped to the times corresponding to the final time
distribution. It is important to understand that the upper and lower bounds are time-invariant, so
while the initial guess for the simulation duration is longer than the final solution’s TOF, the
bounds are tied to the node points’ indices in the solution matrix and are independent of any

changes to the time vector while the solver is iterating on a solution. This limits the usefulness of
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the simple bounds to enforce additional path constraints as discussed herein. Also note that the
initial guesses for the X and Z velocity were modified to be within the boundary conditions as per

Eq. (4.34).

These eight graphs collectively illustrate the total variable space that the solver was able to search
in as well as the enforcement of the boundary conditions. The solver attempts to optimize the
fitness function and satisfy the feasibility equality constraints by adjusting the value of each
dynamic variable at each node within the upper and lower limits. Because the upper and lower
limits converge for the fixed boundary conditions such as position and velocity, the NLPVs that
correspond to those indices in the solution matrix could not be changed. The solution would fail
to converge if the solver could not find a feasible set of points connecting from the initial to final

conditions.

As previously discussed in Section 4.13, if a solver returns a solution where the NLPVs are only
equivalent to the upper or lower bounds at the boundary conditions, this indicates that the
optimality of the solution is not constrained by those limits. Since the solution trajectory does not
ride along the upper or lower limits for any of the state variables or the thrust angle, the bounds
established by Egs. (3.13)-(3.22) and the 6,4, and 8,,;, limits should not be artificially distorting
the solution under these parameters. However, this does indicate that the optimality of the

solution would increase if the maximum allowable thrust was raised.

5.3 Control Asymmetry
To highlight the lack of symmetry between the liftoff and landing burns, the spacecraft effective
specific impulse was dropped by an order of magnitude, and the liftoff control law thrust values

from the first half of the flight were superimposed over the values of the second half as shown in



Figure 5.3. The area shown in gray is the reduction in total impulse” between the “liftoff” and

“landing” flight segments. While a propellant with an Ig, of 15 seconds is unlikely to ever be

considered for use, it is helpful to highlight the lack of symmetry.
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¥ For clarity, impulse here refers to the integral of thrust over time.
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With the low Iy, the spacecraft uses a significant amount of propellant performing the liftoff

segment, and consequently a smaller impulse is needed for the landing segment. This asymmetry
is clearly seen in a plot of the spacecraft’s mass over time as in Figure 5.4. Roughly 20 kg of
propellant is used for the liftoff burn, while only 15 kg is used for the landing. It is worth noting
that the propellant required is an order of magnitude higher than the nominal case where the I, =

150 seconds.

5.4 Preventing Solver Information Loss

The spacecraft does go up against the minimum thrust bounds in the nominal solution. This is
consistent with expectations of the optimal solution attempting to approximate a ballistic burn-
coast-burn. While coasting, the optimal thrust should be zero to conserve propellant. While
coasting, while the thrust is zero, the thrust angle 6 has no effect of the spacecraft’s trajectory and
therefore fitness. Thus, no information is available to the solver to drive what the optimum 6
should be while the spacecraft is coasting. This information loss is reflected by the more or less
random values of 0 seen in Figure 5.5 between the nodes when the thrust is allowed to go
completely to zero, nodes 5-11. While the rapidly changing 8 values when the thrust is zero have
no effect on the fitness and are not really meaningful in this simulation, it was desired to have the

results match as closely as possible to the behavior of a real spacecraft and prevent this behavior.
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In order to smooth out the observed control law, the thrust angular rate of change, e could be

t,

constrained to be below some maximum value, 6,,,,, through an inequality constraint as

described in Egs. (3.28) and (4.36). A value of 8,4, = 4°/second was found to generate very

smooth thrust angle curves as seen in Figure 5.6 without increasing the required propellant.
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The easiest method found to smooth the thrust angle while the spacecraft is coasting is to prevent
the thrust from actually going to zero which eliminates the need to use the 8,,,4, inequality
constraint. This is essentially a small numerical fix to give the solver enough information to
prevent the random walk"™ seen in in Figure 5.5. Preventing the thrust from going to zero does
require additional propellant, on the order of the Thrust,,;,,: TATUSt g, ratio, 1073, This small

amount is considered to be within the noise.

55 Increasing the Thrust over Weight Ratio

The solver also hit the upper thrust bound in the nominal solution shown in Figure 5.2, indicating
that increasing the T/W” ratio of the spacecraft should result in an increase in solution fitness.
Simulations were run across several T/W ratios to determine the effect of increasing and
decreasing the thrust on the required propellant and optimal TOF, as shown in Figure 5.7 and

Figure 5.8, respectively.

The results are consistent with expectations. Increasing the thrust reduces gravity losses and
reduces the TOF since a smaller amount of time is needed to accelerate and decelerate the
spacecraft prior to the coasting period. With increasing thrust, the required propellant and TOF
both asymptotically approach the theoretical ballistic-impulsive minimum propellant and ballistic
TOF calculated using Egs. (2.2) and (2.6) for this translation distance. Note that the propellant

and TOF ratios over the ballistic quantities are shown on the right axis.

" The path is not technically “random” as NLP is deterministic for a given set of conditions.
* As the spacecraft’s mass and weight decrease over the flight; the T/W ratio is set from the initial weight.
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As discussed in Section 2.3, spacecraft capable of landing typically require a propulsion system
able to not only throttle below the local weight, but also operate in a closed loop system capable
of small adjustments in real-time to account for noise. Thus, the higher the nominal thrust level of
the engine, the higher the required throttle range (minimum thrust level) needs to be in order to
land. The relative throttle sensitivity requirements also increase as well. For example, a
propulsion system with a T/W of 3 might need to throttle between 15-30% to land, but a

spacecraft with a T/W of 9 might need to throttle between 5-10% to land.

Since engine mass and size typically scale with higher peak thrust outputs, eventually the
propellant mass savings from increasing the thrust are offset by the increased engine mass and
support structures. The additional throttling requirements need to be considered as well. This type
of T/W analysis is useful to drive VTVL spacecraft propulsion system design requirements and/or

engine selection.
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Figure 5.9: Selected Solution Trajectories Resulting from Varying T/W Ratios

Changing the T/W ratios also dramatically affects the XZ trajectory profile. Optimum trajectory

profiles generated using selected T/W ratios are shown in Figure 5.9. The profile shape,
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maximum height reached, and initial flight path angle also asymptotically approach the ballistic

case with a higher T/W ratio. For a lower T/W ratio, the spacecraft barely leaves the ground for

the first and last 50 meters.

5.6 Enforcing a Floor Constraint
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Figure 5.10: Initial Flight Paths Resulting from Varying T/W Ratios
A zoomed in view of Figure 5.9 near the origin is shown in Figure 5.10. Note that for the low

T/W profiles, a “floor” constraint may be required to ensure the spacecraft maintains an

acceptable clearance from the surface.

A possible way of doing this, though not optimal, is to raise the Z Position lower bound for all

interior nodes (all nodes except for the first and last). In Figure 5.11, a T/W ratio of 1.5 was used

in all cases, and the Z Position lower bound swept across [0: 1: 2]. Note that the trajectory

profiles are raised significantly for only a small increase in the required solution propellant mass.
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Figure 5.11: Effect of Raising Z Position Lower Bound on Fitness and Initial Flight Path for T/W = 1.5
However, enforcing floor constraints through manipulating the Z Position lower bound can be
problematic since it depends on the number of discretization nodes used and the hopping distance.
With an increased number of nodes, it may not be possible to reach the Z Position lower bound
before the next node point in the time required. With a shorter hopping distance, the optimal
height of the next node may be lower than the constraint. This can lead to an artificially

constrained solution or a failure to converge.

Although enforcing a floor constraint through the node lower bounds was sufficient for the
maneuvers studied herein (in part because of the default number of nodes used), it would be
better to create a position-dependent inequality constraint in the form

Cinequality: ZPOszoor — zPos < 0,

(5.1)

while 0 > xPos < xP0Sginq

to enforce an interior floor constraint.
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5.7 Effects of Increasing the Number of Discretization Nodes

A sweep of changing the number of discretization nodes was done for n = [5: 5: 25]. Figure 5.12
and Figure 5.13 indicate that both the required propellant mass and TOF slightly decrease as the
number of nodes is increased. As contrasted with increasing the T/W ratio, both of these
behaviors result from an increase in the fidelity of the results, not an actual increase in the
potential solution fitness. This is why both graphs asymptotically approach a value greater than
the theoretical ballistic minimum propellant and TOF. Note that the ratios of propellant use and

TOF to the ballistic case are shown on the right axes.
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Figure 5.12: Effect of Increasing Number of Discretization Nodes on Propellant Use
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Figure 5.14: Value of the Optimal Thrust Control Law with Increasing Nodes
Figure 5.14 shows how the optimal thrust control law changes with an increase in nodes. As the

number of discretization nodes increases, the node width decreases. Instead of the thrust slowly

falling off and slowly ramping back up as seen when n =5, the optimal behavior as the number of
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nodes increases is for the thrust to rapidly switch from Thrust,,,, to Thrust,,;, as fast as
possible, ideally over one node width. This indicates that the minimum energy solution and
therefore optimal solution would be for thrust to instantaneously switch off at a specific point in
time as n — oo. This closer approximation to the minimum energy case drives the decrease in

propellant use and TOF seen in Figure 5.12 and Figure 5.13.

This increase in fidelity and fitness comes at a cost. Figure 5.15 highlights the power law
relationship between the number of function evaluations (NFE) the solver performs and the
number of discretization nodes. A default of 15 nodes was chosen to strike a balance between the

computation time and accuracy of results.
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Figure 5.15: Increase in Number of Function Evaluations versus Number of Discretization Nodes

5.8 Demonstration of Optimal Solution Time of Flight
To show that the solver was successfully optimizing the TOF in addition to the propellant mass, a
range of fixed TOFs were used centered on the optimal TOF previously found for the nominal

solution. The trajectory profiles shown in Figure 5.16 and results shown in Figure 5.17 indicate
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that if the fixed TOF is less than the optimal TOF, the spacecraft takes a shallower, faster path,
and uses more propellant. If the fixed TOF is greater than the optimal TOF, the spacecraft goes

higher to essentially “waste” the extra time, using extra propellant in the process to fight gravity.
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Figure 5.16: Trajectory Profiles with Various Fixed TOFs

0 50 100 150

5 — - 1.31
—&— Propellant Use

48} - Ballistic Propellant|11.26 o
0\ e Balllistic TOF ®
D246 121 8
g o
oD 447 1115 &
I 8
T 427 11.10 D
5 5
a 4 11.05 3
o
g
3.5 11.00 &

0.8 0.90.95 1 1.051.1 1.2

Fixed TOF Over Optimal
Figure 5.17: Effect of Increasing TOF on Fitness

The ballistic TOF is shown as a red vertical line in Figure 5.17 to show that while it is possible to

find finite maneuvers that take less time than the ballistic TOF, there is a large propellant penalty.
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5.9 Nominal VTVL Solution

While a spacecraft with a gimbaled main engine such as Craft B in Figure 2.2 may be able to take

off and land at an angle, fixed engine spacecraft such as Craft C are limited to vertical takeoff,

vertical landing. This is expressed through fixing the thrust angle at the boundaries to be zero.

Additionally, a pitch rate constraint of 8,4, = 20°/second was added to account for real

spacecraft having MOls. Lastly, the acceptable lower bounds on the altitude were shifted to 2

meters for all nodes except at the boundary conditions as discussed in Section 5.6.
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Figure 5.18: Nominal VTVL Trajectory and Control Law

The peak height reached with VTVL in Figure 5.18 is slightly higher than the ballistic trajectory.

The control variables are plotted against the X Position, which distorts the first and last nodes.
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It is useful to compare Figure 5.19 with Figure 5.2. Here, the upper and lower bounds on 6 are
constrained to enforce the VI'VL condition as per Eq. (4.35). The optimal TOF is slightly longer
and maximum height slightly higher since the spacecraft cannot start to accelerate along the
optimal unrestricted initial flight path as show in Figure 5.10, and instead must vertically liftoff
and gradually start turning to accelerate horizontally. The additional gravity losses explain why
more propellant is needed for the VTVL trajectory as compared to the unconstrained take off

angle solution.

5.10 VTVL Max Thrust Angular Rate Inequality Constraint Enforcement
If only the initial thrust angle is constrained for the VT VL trajectory, the solver will return a
solution where 0 changes very rapidly. An inequality constraint in the form of Eq. (4.36) where

Omax = 20°/second was included as a rough model to account for real spacecraft attitude rate

constraints.

This type of constraint is not visualized through simple global upper and lower bounds on the
search space. Instead, the control law for 8 and its piecewise derivative are shown in Figure 5.20.
Note that there are n — 1 inequality constraints, one for each trajectory segment t as shown in

Figure 4.1.
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511 VTVL with Ceiling (Top Hat Trajectory)

For a variety of mission profiles or spacecraft limitations, it may be desirable to limit the
maximum allowing height. For example, a spacecraft’s range altimeter may only be sufficiently
accurate within a specific distance. Alternatively, the spacecraft may be recording video or be

utilizing scientific instruments while translating.
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The parameterized tophat ceiling height was set as simply

ZPOSUpper,Tophat = ’xposfinal (5.2)

As opposed to setting “floors,” (minimum altitudes), altitude ceilings can be readily enforced
through global simple upper and lower bounds, as increasing the number of discretization nodes

does not required a minimum altitude to be reached by the second or penultimate node.
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Figure 5.21: Nominal VTVL + Ceiling Profile and Control Law
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Looking at the XZ trajectory profile and control law in Figure 5.21, the finite “burn-coast-burn”
equivalent no longer holds. The spacecraft cannot coast because of the altitude limits and must

use additional thrust to essentially hover at the ceiling altitude.
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This is referred to a “Top hat” trajectory because of the shape, and most closely resembles the
trajectories flown during the DC-X program’. Flying this sort of trajectory might be done because
of the relative ease of developing closed-loop flight software for it. However, this ease comes at a
cost. Looking through the graphs in Figure 5.22, the propellant mass required and TOF is greater

than the unconstrained and simple VTVL trajectories.

5.12  Effect of Changing Specific Impulsive

Using the nominal, VTVL, and top hat parameters, the effect of changing the propellant specific
impulse was varied through [150: 75: 450] seconds. All of the data points and best fit curves with
R? > 0.99 are shown in Figure 5.23. Since all of the best fit curves are roughly proportional to
the inverse of the specific impulse, once the required propellant mass is known for one potential
trajectory in particular, the propellant required with a different propellant can be estimated by a

simple ratio:

Isp2
Required Propellant Mass;g,, * ﬁ ~Required Propellant Masssy, (5.3)
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Figure 5.23: Effect of changing Isp on Propellant Use for Unconstrained, VTVL, and Top Hat Trajectories
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5.13  Propellant Required for Various Hopping Distances on the Moon and Mars
The required propellant to perform each type of maneuver was determined for a range of hopping
distances ranging from 100 meters to 10 km for the Moon and Mars as shown in Figure 5.24 and
Figure 5.25. Since the spacecraft original mass was 100 kg, the required propellant use is

equivalent to the propellant mass ratio.
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Chapter 6

Conclusions

6.1 Direct Optimization of VTVL Trajectories

The ballistic-impulsive “burn-coast-burn” method found in literature to estimate the propellant
required to perform a desired VT VL translation maneuver was found to be inadequate and
ultimately too inaccurate to be useful for mission planning. Any real trajectories will necessarily
require additional propellant to compensate for gravity losses, and various spacecraft propulsion

system architectures place additional constraints on the allowable solution space.

Nonlinear Programming as a direct optimization method is very well suited to handle the problem
dynamics and constraints of a VTVL maneuver. Parameterized global upper and lower bounds on
all of the state, control, and TOF variables allowed straightforward implementation of initial and
final boundary conditions, and were useful in increasing the solver performance by framing a
search space without distorting the optimal trajectories found. Equality constraints developed via
Direct Collocation were successfully used to enforce feasibility and inequality constraints created

to enforce spacecraft potential limitations or additional path constraints.

In conclusion, a robust, direct trajectory optimization method was successfully developed to
model VTVL spacecraft dynamics. The required propellant mass to perform a range of possible
hopping maneuvers across a variety of mission and spacecraft parameters was explored. The
trajectories found were asymmetric in varying degrees due to propellant loss over the course of
the flights. The work performed within can provide a higher fidelity model for future mission

planners in deciding whether to utilize VTVL as a spacecraft mobility method.
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Recommendations for Future Work

While the VTVL trajectory optimization model developed can be a useful initial tool for space

mission planning, further work could extend the robustness and usefulness.

Using a separate NLPV for each node time value and allowing the node distribution to
shift as needed. This should result in the greatest fidelity for a given number of nodes.
Additional boundary conditions to better model realistic takeoff and landing behaviors.
Developing additional inequality constraints to handle X position dependent path
constraints instead of relying on simple bounds to enforce minimum altitudes.
Updating the coordinate system and state equations with a two-body gravity model
and/or extending into the third dimension.

Including additional state variables to model blow-down versus pressure regulated
systems such as propellant tank pressures. This could enable modeling the effective real-
time specific impulse.

Including attitude control systems and modeling a dynamic Moment of Inertia as the
propellant is expended from the craft instead of making a point-mass approximation.
Explore translation maneuvers where the secondary landing is significantly lower or
higher in altitude than the takeoff trajectory. This could potentially be used to make
quick hops into or out of craters such as Shackleton near the lunar South Pole.

Include the ability to model gaps in the throttle ranges of the propulsion system. This
could be done as readily as overriding the commanded thrust value to zero in the state

equations if the value is within the non-throttleable range.

The state equations could be modified so that the spacecraft cannot move until the T/W

ratio is greater than unity to account for the spacecraft weight on the surface.
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Appendix A

Notes on Direct Collocation

For clarity for any future readers trying to implement Direct Collocation:

Direct Collocation enables the creation of the equality constraint shown in Eq. (4.23), but
creating the cubic polynomials and solving for their coefficients is not needed to
implement the equality constraint in code. This is why they are referred to as fictitious
functions in Section 4.8.

In Eq.(4.14) the coefficients for only a single polynomial function are shown
corresponding to a single state variable function. In reality, separate polynomial functions
could be created for each state variable function along each trajectory segment 7, for a
total of [5 X (n — 1)] cubic polynomials and [5 X (n — 1) X 4] coefficents. This is not
required for the reason listed above.

When deriving Eq. (4.21) by substituting the relations found in (4.19) into (4.20), the At

do (1)

term comes from the implicit A7 in the cubic polynomial’s derivative, i.e. 6(7) = =

The original method pioneered by Hargraves and Paris® did not use Simpson-Hermite
integration but rather constructed a defect equality constraint by comparing the value of
Eq. (4.22) to the derivative of Eq. (4.14) evaluated at T = 0.5 (the midpoint).

Direct Collocation is distinct from Nonlinear Programming. Other methods exist for

developing feasibility equality constraints.
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Appendix B

Time as a Fixed or Free Variable, and Node Distribution

Temporal discretization of an OCP presents an interesting challenge. If the simulation duration is
fixed for a specific maneuver, the spacing between any two nodes does not have to be constant At,
i.e. the time vector t in Eq. (4.1) does not have to be linearly distributed. Increased performance
may potentially be gained through discretization methods that shift the relative density of nodes

to locations of the trajectory where the greatest rate of change in state and control variables is
found. Shifting the node spacing usually requires some prior knowledge of the likely regions
where increasing the node density would be most beneficial, and conversely, where decreasing

the density would matter least.

A potential alternative is the method of Chebyshev-Gauss-Lobatto (CGL) which distributes node
points along the interval ¢ € [—1: 1] according to the formula

m*(k—1)
n—1

O = —cos( ) fork = [1:n] (B.1)

where K is a vector of the node indices and n is the number of nodes as per

k=12 ..,n (B.2)

The actual node times are mapped between the initial and final time according to
1
be = (5) * [0 * (trinar = tintiar) + (tinitial + trinar)] for k = [1:n] (B.3)

The CGL method has a greater density of points near the beginning and end of the time interval,
at the expense of a decreased number of points towards the middle. Figure B.1 shows an example
CGL distribution of 41 nodes from the time span [0:40] against a linear distribution. Note that

only the time span of [0:20] is shown since both the linear and CGL distribution are symmetric.
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In this example, in the range of (0:3] there are only three nodes in the linear distribution, but
seven in the CGL. Conversely in the range of [17:20) there is one node in the CGL distribution,
but three in the linear distribution. If the state variables rapidly change in the beginning and end

of the flight, CGL may give better performance for a reduced number of nodes.
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Figure B.1: CGL versus Linear Node Distribution for Half of Time Array

Alternatively, even for a fixed TOF the node times do not need to be fixed. For example, for an
initial linear distribution of 11 nodes from [0: 10] seconds, there would initially be a node at each
second, i.e.ty = 0s,t, = 1s5,--t;; = 10 s. While the initial and final node times would need to
be fixed if the TOF was fixed, nodes 2: 10 could be allowed to shift to automatically find the
optimal distribution of nodes. If implemented successfully, this could significantly increase

algorithm performance in terms of a reduced number of function evaluations (NFEs).
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