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ABSTRACT

Studying an asteroid up close has been up until more recently nothing more than wishful
thinking. With NASA’s Asteroid Redirect Mission in the planning stages, the prospect of
bringing an asteroid back to the vicinity of the Earth is tantalizing. Once an asteroid has been
retrieved and brought back to the Earth—Moon system and placed into orbit for study, human
crews will visit it and study it up close. This thesis explores the orbital dynamics of an asteroid in
orbit around the Earth-Moon libration point, EML1. The dynamics of the motions for a
spacecraft in close proximity to an asteroid are found using the circular restricted four-body
problem (CR4BP). Treating the problem as the superposition of two circular restricted three-
body problems (CR3BP), the asteroid becomes an additional gravitational perturbation to a
spacecraft close to the asteroid. Two sets of coupled equations of motion, one for the asteroid
and one for the spacecraft are derived and solved simultaneously. A trade study to examine the
near-term behavior of a spacecraft’s orbit relative to the asteroid is conducted via a series of
simulations utilizing a variety of variables such as the asteroid’s location and mass relative to the
spacecraft, the size of orbit, and the varying of initial conditions. The characteristics being
studied are the stability of the spacecraft’s orbit over a short duration as well as the range between
the spacecraft and its target asteroid over the mission duration. In addition, the minimum safe
stand-off distance between both objects is determined to ensure no collisions or orbital instability.
The ultimate goal is to obtain various datasets to deduce the most stable conditions for placing an
asteroid and to determine where to fly a spacecraft in formation with the asteroid in orbit about
the EML1 libration point. The results show the viability of a couple orbits as well as the

prevalence of impacts. How the data can be utilized for future missions was also studied.
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Chapter 1

Introduction

The desire to study an asteroid has long been a aspiration of scientists in many different
disciplines. Questions ranging from determining the early formation of the solar system to the
potential for future mining of vital mineral elements have all been posed as rationale for
retrieving a complete asteroid. NASA has been planning for several years now to capture an
asteroid for study under their Asteroid Redirect Mission.” While the design of the capture device
and overall mission design is still in the planning phases, one of the basic ideas is to place the
asteroid in a lunar distant retrograde orbit once the asteroid has been brought back. This thesis
seeks to look at alternative prospects around the Earth — Moon libration point L1, hereafter
referred to as EML1. The location of the aforementioned libration point may be viewed in Figure
1.1.

To examine the dynamics of both an asteroid and a spacecraft in the Earth—-Moon system,
one needs to take into account the gravitational effects from all sources. However, this can be
difficult and it can easily be stated that the gravitational perturbations resulting from the asteroid
and spacecraft are negligible. As such, it is useful to utilize the classical restricted three-body
problem similar to Bando [1] et al. and Gurfil et al. [2]. It is a widely studied problem in
astrodynamics in which three bodies move about a common center-of-mass (henceforth referred
to as the barycenter) where the third smaller mass moves relative to the other larger masses. This

smaller body has negligible gravitational effects on the motion of the other more massive objects.

* http://www.nasa.gov/sites/default/files/atoms/files/nasa-tm-2016-219011-arm-fast-final-report_0.pdf
March 20, 2016



http://www.nasa.gov/sites/default/files/atoms/files/nasa-tm-2016-219011-arm-fast-final-report_0.pdf

The system that this thesis examines, however, is considering four masses in which two

of the masses are much more massive than the remaining two.
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Figure 1.1. Graphical representation of the location of the libration points

Thus, the restricted four-body problem model will be used. This can be achieved by starting with
the restricted three-body problem and adding an additional gravitational perturbation. In this

scenario, where the spacecraft is moving relative to the asteroid, the effects of the asteroid’s



gravity on the spacecraft is the additional gravitational source within the restricted three-body
problem wherein the Earth and Moon are the major sources of gravity. The masses are
considered to be point masses though other models are viable as outlined in Wang et al. [3],
wherein the spacecraft is treated as a rigid body. The model being used here is the circular
restricted four body-problem (CR4BP) as circular orbits will be assumed for the Earth—-Moon
system. This is a good mathematical approximation to study the general behavior of the smaller
mass (the spacecraft) relative to the larger bodies.

In effect, two coupled circular restricted three-body problems (CR3BP) are solved
simultaneously. The first problem considers the asteroid in the Earth—-Moon system and the
second problem considers the spacecraft in the same system except with the addition of an extra
term containing the gravitational effects of the asteroid onto the spacecraft’s orbit. Both of these
systems of equations are coupled and solved simultaneously. A more rigorous explanation and
derivation of these equations is discussed in Chapter 2.

Once the governing equations of motion are obtained, the idea is to then conduct a trade
study in which a variety of orbits and other scenarios are simulated to determine the safest
optimal standoff distance between the spacecraft and asteroid. Stability of the orbits is also a key
factor, though long-term stability of the spacecraft’s orbit is not an issue as the mission would
take place over a short duration. Stability is defined as how much the spacecraft drifts closer or
further from the asteroid. For larger bodies like 433 Eros, stable orbits are viable roughly 31 km
from the surface [4]. The only perturbation being considered in this thesis is the effect of gravity.
Other sources of perturbations such as gravity-gradient torques produced by the Sun and Earth [5]
solar radiation pressure, solar tides, as well as other variables as seen in Scheeres [6] are factors
in this problem but are not considered here. When in close proximity to the asteroid, the effect

from the gravity is the largest perturbation as mentioned by Scheeres [7].



Other variables being examined in this thesis include the initial proximity of the
spacecraft to the asteroid as well as the mass of the asteroid itself. The Moon’s orbit around the
Earth is not circular so the position of the libration point will oscillate back and forth as the Moon
completes its revolution around the Earth. A more rigorous overview of the stability of libration
points can be viewed in texts such as Szebeheley [8] and Curtis [9]. Generating this type of data
is important as it can be used to develop better control laws for spacecraft operation close to
asteroids. Guelman [10], Mok et al. [11], and Broschart et al. [12] all describe various methods
of control schemes near small bodies such as asteroids. The need to develop control laws for
spacecraft is vital and thus the need to understand the underlying dynamics is a first step. Other
applications of this data involve designing a trajectory to land on an asteroid as per Tardivel et al.
[13] or to operate around an asteroid using solar sails as detailed by Morrow [14].

The various scenarios of the trade study are discussed in more detail in Chapter 3,
whereas the results are presented and analyzed in Chapter 4. Lastly, the conclusions and

proposed future work are discussed in Chapter 5.



Chapter 2

Astrodynamics of the N-Body Problem

The astrodynamics of the circular restricted four-body problem can be broken up into
several sections. To begin the derivation of the equations of motion, it is first necessary to define
the reference frames used as seen in Section 2.1. As there are four bodies, the model will be
broken up into two coupled circular restricted three-body-problems. The dynamics of the CR3BP
are discussed in Section 2.2. Treating the asteroid has an additional gravitational source, Section
2.3 will explore the second CR3BP with that extra term coupled with the equations of motion for
the Earth, Moon, and spacecraft. The N-Body problem can be studied in more detail in

Szebeheley [8].

2.1 Inertial and Rotational Reference Frames

2

Within the inertial reference frame ( I, J K ), one can define a rotating reference frame as I ],
K as seen in Figure 2.1. As can be seen from the figure, inertial and rotating reference frames are
coplanar in the ( I, J ) and (f, j) planes. The rotating frame being initially aligned rotates

relative to the inertial frame at a rate c over a time interval t —t;where t, is the time where both
frames are initially aligned. The resulting angle @(t—t,) is swept out over the interval. Masses

m, and m, are positioned relative to the smaller mass by their respective vectors r,and r,. The

equations of motion for the restricted three-body-problem will be found in the rotating frame.



Figure 2.1. Geometry of the Inertial and Rotational Reference Frames

2.2 The Circular Restricted Three-Body Problem (CR3BP)

It is common in orbital mechanics problems such as this to non-dimensionalize the
physical parameters to determine a clear relationship between the properties being examined,
within the scope of this problem, this would be between the masses. In astrodynamical terms,

these are called canonical units. The following derivations are done in a similar manner to
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Prussing et al. [15] and Curtis [9]. By letting the sum of the major masses (m, and m, ) equal one,

the smaller mass (m, >>m, ) becomes defined proportionally to the larger mass, i.e.,

H= m,+m, (2.1)
The smaller mass becomes
m,=u. (2.2)
The masses being normalized results in the larger mass being
m,=1—u. (2.3)

Within the scope of the CR3BP, it is necessary to begin with Newton’s second law which
relates the force to the mass of an object and its rate of change in velocity. In the restricted three-
body problem, the equations-of-motion are

" m,m, _ m.m, _
m,F :G(%QJ+G£%QZJ. (2.4)
31

The meaning of the variables can be seen from Figure 2.2.

msz ¢

J

- a; D-Iﬂ;ﬂj—bl

Figure 2.2. Geometry of the CR3BP



It is now necessary to introduce the position vector of the third mass in the rotational frame and

its corresponding velocity and acceleration vectors as

F=xi+yj+zK. (2.5)

The velocity in the rotating frame is

@=ﬁf+ﬂj+%2 (2.6)
dt dt dt dt

and the acceleration is

d’r d*x. d’y. d’z.
= I k. 2.7
dt?  dt? " dt? I+ dt? @7

From examining Figure 2.2, the relative positions between the smallest mass and both the

larger ones are determined. These vectors are found to be
h=(x—a)i +yj+ 2K, 2.8)

= (X=a)i + Y]+ 2K, (29)

where a; and a, are the locations of m; and m,, respectively.
The motion of the Earth and Moon around their barycenter has an acceleration in the

rotational reference (Figure 2.1) frame of

o dZX d o d2 dX 2 dZZ n
r(R):[F_Zd_}tl_XJl+(FZ+Za_yJJ+_k (2.10)

This acceleration is equivalent to the gravitational acceleration



- 1-p) ~
r =_( 3IU) r31_%"?52- (2.11)
fa1 32

Equating Equations (2.10) and (2.11) and substituting the relative position vectors from Equations

(2.8) and (2.9), the rotational acceleration (F® ) becomes

RS

po (=) Fal[(x—y)h yj+zl2}—

3
r31

G|+ l-mi+yi+2k | (212)

w

I3

N

Finally, equating Equation (2.12 ) with (2.10) while also separating the 1 , I Izcomponents yields

three non-linear differential equations.

2 [— f— —
d_i_zy_xz_(l ﬂ)gx ,U)_,U(X+3 1 (2.13)
dt dt Iy o

2
d y+2d><_y:_(l—ﬂ)y_uy

- —,and 2.14

dt> dt ry r (214)
d’z  (Q-w)z uz

=— = (2.15)

dt’ ry r,
Equations (2.12) through (2.14) describe the motion of the asteroid relative to both the Earth and
Moon in three dimensions. These equations do not take into account the spacecraft (the fourth
body) in our system. Expanding upon the restricted three-body problem and considering the

asteroid as an additional gravitational source is the fundamental model used in this research.
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2.3 The Circular Restricted Four-Body Problem (CR4BP)

Consider the system described in the previous section. In this section, a fourth body will
be added: the spacecraft. As mentioned in Chapter 1, the problem will be treated as two coupled
circular restricted three-body problems. To accomplish this task, the moon is treated as an
additional term in the equations of motion providing the additional gravitational acceleration.

The analysis begins in the same manner as the previous section. Equations (2.1) — (2.7)
are derived in the same way. An additional normalized mass parameter is needed for the third
body as the previous Equations (2.1) — (2.3) relate 1 to m; and m,. The expression for the third

body (the asteroid) is

_ Gm,
Mt

2 (2.16)

where G is the gravitational constant and Y, and 1, are the gravitational parameters for the Earth
and Moon, respectively.

The derivation deviates from this point as Figure 2.3 is considered. Similar to the
previous section, the relative position vectors are taken between the smallest mass (this time the

spacecraft) and the larger two masses m; and mj.



ey

n
- a; e a; >

Figure 2.3. Geometry of the CR4BP

However, an additional vector is derived (7,3) in a similar manner to Huang [16], which is the

position vector between the spacecraft (m4) and the moon (ms).

F,=(x —a)i+Yy,]+2k, (2.17)
F,=(x —a,)i+Y,]+zk,and (2.18)
s = (6 =X+ (Y, = ¥a) T+ (2, - 2,)K, (2.19)

where X, Ys, and z; are the coordinates of the satellite and x,, ya, and z, are the coordinates of the
asteroid. The acceleration of the Earth and Moon around the barycenter is the same as the one in

Equation (2.10). The acceleration due to the gravity differs from Equation (2.11) as it now has an

extra term

11
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- 1—u) _ _
r=- ( 3,Ll) F— /; M — ‘uj M4 (2.20)
4 I P

Equating Equations (2.10) and (2.20) and substituting the relative position vectors (2.17-

2.19) yields the rotational acceleration

0= [y, 2K 2 r [ 1o 4y 2]
0 N2
o= | [CSEO R A AIEY A ALY 2.21)

43

& A n
1

Finally, relating Equations (2.10) and (2.21) with each other and separating the 1, J ,k

components yields three non-linear differential equations for the spacecraft

2 —_— —_— —_ —_—
d )2(5 _ 2%_ Xs - _ (l /u)(sxs :u) _ /u(xs +31 :u) _ /u3(X53 Xa) (222)
dt dt r4l r42 r43
d? dx 1- —
gs +2_s_ys :_( él)ys _ILIZS _IUS(ys3 ya) (223)
dt dt r41 r42 r43

d’z, _ -z pzy p(z-17,)
3 3

2.24
dt* r431 Fa2 a3 (224

Equations (2.22) — (2.24) show the governing equations of motion for the spacecraft in
three dimensions. These equations are coupled with the asteroid via the x,, y,, and z, terms.
These relations along with Equations (2.13) — (2.15) are the governing equations for the very
restricted four-body problem [16]. The parameters for the trade study will be examined in the

following chapter.
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Chapter 3

Trade Study Parameters

This chapter discusses the various scenarios and metrics of the trade study. These
include the libration point orbits, the relative positions of the spacecraft with respect to the

asteroid, and both the size and mass of the asteroid itself.

3.1 Libration Point Orbits

The trade study begins by looking at two halo orbits of different sizes; Figures 3.1 and
3.2 show the generated large halo orbit where Figures 3.3 and 3.4 show the small halo orbit. It
should be noted that the small halo orbit has a slight discontinuity that is viewable in Figure 3.4;
this will be explored in Chapter 4. Both orbits have roughly the same orbital period. Halo orbits
of different sizes were chosen over roughly the same orbital period to determine if the size of the
given orbit has any effect on the stability or prevalence of impacts. The initial conditions for each
starting position in the orbits are supplied in Table 3.1 for the large and small halo orbits.
Subsequent starting positions were obtained from the original initial conditions by integrating

over a very small time step.
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Figure 3.3. Small halo orbit generated from initial conditions
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Table 3.1. Initial conditions for halo orbits (1 = 0.01215058162343)

Large Halo Orbit ~ Small Halo Orbit
(DU) (DU)
X -0.84225833074 -0.823445341829
y 0 0
z 0.163024589129 0.030939510780
X 0 0
y -0.263218103238 -0.140698846709
z 0 0

As can be seen from Table 3.2, the initial ranges are listed from the spacecraft to the
center of the asteroid. The initial range is defined as the initial separation distance between the
spacecraft and the center of the asteroid at the beginning of the orbit. These ranges were chosen
for each sized halo orbit due to the effects that occur through those initial distances. The specific
numbers are arbitrary as there would not be much difference between 506 meters versus 500
meters. The differences in the initial ranges between the large and small halo orbits are explained

in Chapter 4.



Table 3.2. Initial ranges between spacecraft and asteroid

Case Initial Separation Distance
(m)
1 910"
2 811t
3 506
4 303
5 270°
6 202
7 172
8 151
9 101
10 71
11 50
12 38

Lastly, whether the spacecraft is trailing or leading the asteroid will be examined. This

was done to see if that has any effect on the stability or impacts.

" Range conducted for the two revolution case only
* Range conducted for small halo orbit case only
5 Range conducted for small halo orbit case only
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3.2 The Asteroid

The size and masses of the asteroids were chosen based on NASA’s mission documents
for the Asteroid Redirect Mission.” The asteroid masses and diameters seen in Table 3.3 were
chosen within the range of mission parameters. It will be assumed that the asteroids are spherical
objects with diameters of the upper bound of the values seen in Table 3.3. The diameters were

determined based on the densities of granite and pumice.

Table 3.3. Asteroid masses being examined in all cases’”

Mass | Diameter
(tons) (m)

25 3-4
75 4 -7
130 5-10
200 55-13

These diameters will be used in determining whether or not the spacecraft collides with the
asteroid. If the minimum distance between the spacecraft and the asteroid drops below the radius
of the asteroid, then it is assumed an impact has occurred. Near-misses will also be noted as the
spacecraft passing within 25 meters of the surface of the asteroid. While not directly impacting
the asteroid, the spacecraft will be too close based on numerical accuracy. Anything beyond the
25-meter range will be considered safe formation flying. The results of these scenarios are

examined in Chapter 4.

™ http://www.nasa.gov/feature/asteroid-redirect-mission-documents March 30, 2016
™ http://www.nasa.govi/sites/default/files/files/Chodas-ARRM-Obs-Status-Dec-2013.pptx.pdf April 3,
2016



http://www.nasa.gov/feature/asteroid-redirect-mission-documents
http://www.nasa.gov/sites/default/files/files/Chodas-ARRM-Obs-Status-Dec-2013.pptx.pdf
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Chapter 4

Results and Discussion

This chapter focuses on the results based off the scenarios elaborated upon in the
previous chapter. The first test case involves the large halo orbit previously shown in Figures 3.1
and 3.2. Within this orbit, several cases are examined at different initial conditions where the
spacecraft trails the asteroid initially over several different ranges. Then the spacecraft is
positioned so that it leads the asteroid over the same initial ranges. Furthermore, the dynamics of
the situations are examined over both one and two revolutions of the orbit. The second case
imposes a similar set-up except the halo orbit is smaller (Figures 3.3 and 3.4). The same
constraints are applied with different starting ranges between the two objects for both the

spacecraft trailing and leading the asteroid. It should also be noted that the plots for the relative
positions and velocities occur in the T — j — k frame where the coordinate directions on the plots

are noted by X, Y, and Z, respectively.

4.1 Large Halo Orbit

The largest initial separation distance between the spacecraft and asteroid are examined
first with subsequent distances becoming smaller. The orbit propagation is shown over one
revolution (12.166 days) first, then followed by two complete revolutions. In the latter case,
stability over the long duration will be considered the examining factor. Some plots that are
examined include range between the spacecraft and asteroid, relative velocities and positions in

different coordinate directions and planes, and the difference in range between massless asteroids
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from the asteroid with mass. The latter plot is useful to establish a baseline with the massless
asteroid to show the effect of the gravitational perturbations to the case where the spacecraft has

no gravitational influences (other than from the Earth and Moon).

4.1.1 Spacecraft Trailing Asteroid Over One Revolution of Large Halo Orbit

The first initial separation range being examined is at 506 meters. At this initial
positioning, the gravitational perturbations have little effect over the one revolution duration. The
range is defined as the magnitude of the difference in the position vectors from the spacecraft to
the asteroid; this relative position is defined in Figure 2.3. From Figure 4.1, five masses are
shown; the zero ton—mass is the baseline case where the spacecraft is effectively orbiting by

itself. From this point onward, the baseline case will refer to the zero mass asteroid.



21

900 r r
200 ton mass
850 M 130 ton mass
/ 75 ton mass
800 25 ton mass
/ \ 0 ton mass
750

[\
\
/
o/

500 _"// ‘\%—

450
0

Range (m)

2 4 6 8 10 12 14
Time (days)

Figure 4.1. Range between spacecraft and asteroid with 506-m initial separation

The other cases include an asteroid with mass so it can be seen how the presence of
gravity alters the range between the spacecraft and the asteroid. Figure 4.1 shows that the
increase in the mass of the asteroid at this range has very little effect on the spacecraft’s
trajectory.

The deviation from the baseline flight path can be more easily demonstrated from Figure
4.2. This figure was generated by subtracting the baseline range vector (the range vector from the
0-ton-mass) from the range vector that had a spacecraft formation flying with an asteroid that has
mass. The resulting data shows the difference in range from a spacecraft with no accompanying

mass with a spacecraft with an additional gravitational source.
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Figure 4.2. Range difference between spacecraft and massless asteroid from asteroids of varying
mass with initial 506—m separation

At this initial range, the spacecraft formation flying with an asteroid of mass does not
deviate much from baseline case. The spacecraft barely deviates from the flight path even in the
200-ton—mass case, wherein the maximum deviation is slightly over 10— meters. To gain a better

understanding of how the spacecraft moves relative to the asteroid, the relative position vector of

a

the spacecraft and asteroid (as defined in Figure 2.3) was plotted in the I — ] - k ,and | —k

planes (Figure 2.1), in addition to the I — j—lz space. The resulting plots as seen in Figures 4.3
and 4.4 for the baseline case and the 200—ton-mass case respectively show minimal differences
between both figures. As can be seen from the 200—ton—mass, the spacecraft slightly overshoots

its orbit upon returning to the starting position.



From the previously discussed figures, it can be concluded that the spacecraft’s orbit
regardless of the mass it is flying alongside, has negligible effect on the trajectory. Over one

revolution, the orbit is stable.

23
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Next, the 303—meter initial range between the spacecraft and asteroid is analyzed. At
about 200 meters closer than the previous case, some additional gravitational effects can be seen.
Figure 4.5 again shows the range as previously defined between the spacecraft and the asteroid
for each of the masses. As the mass of the asteroid increases, more deviation from the baseline
case is starting to occur. To gain insight as to what is starting to occur, examining Figure 4.6
shows the range differences between the baseline ranges and the ranges with an asteroid of mass;
when the spacecraft orbits with asteroids of heavier mass, the spacecraft is pulled closer to the
asteroid before being sent on a trajectory farther from the asteroid. Comparing Figure 4.6 to its

counterpart from the first initial separation distance in Figure 4.2 shows that the deviation has

increased.
550 I I
200 ton mass
/~\ 130 ton mass
500 75 ton mass
25 ton mass
0 ton mass
450
B
Q400
S /
& /
350 / \
_--’ e —
300 N -
\_—/_5
250 . . . -
0 2 4 6 8 10 12 14

Time (days)

Figure 4.5. Range between spacecraft and asteroid with 303—m initial separation
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Figure 4.6. Range difference between spacecraft and massless asteroid from asteroids of varying
mass with initial 303—m separation

As the deviation from the baseline case is still relatively small, the position of the
spacecraft relative to the asteroid will be looked at for the 75—, 130—, and 200—ton—-masses only.
Figures 4.7-4.10 show the relative position vector between both objects in different planes. From
all the planes, it can be seen that the spacecraft as the mass of the asteroid increases begins to drift
from the asteroid. To get a sense of the magnitudes of these drifts, the relative position vector of
the baseline case is subtracted from the relative position vectors with asteroids of mass. This
shows how much the spacecraft drifts when formation flying with asteroids compared to when the

spacecraft is orbiting alone as in the baseline case.
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Figure 4.11 shows these results in each coordinate direction over time; the

6X,8Y,and 8Z terms are defined as the difference between the spacecraft and asteroid’s position
vectors in each coordinate direction. It becomes clear that, in the I and Izdirections, the

spacecraft moves further away compared to the baseline case. However in the ] direction, the

spacecraft moves closer. Examining the various planes in Figures 4.7— 4.10 shows these trends.

Inthe T — j plane, the spacecraft is further in the positive I direction than it would have been
without an asteroid and a bit lower in the ] direction. The | —K plane shows the relative positon
grow in each direction and the j—lz plane shows the relative position closer in the j direction

but further apart in the K direction. The net effect as seen in the ranges of Figure 4.4 is that the
spacecraft initially moves closer to the asteroid but, instead of heading for an impact, the

spacecraft is propelled away. It can also be seen especially with the larger masses that the
spacecraft is overshooting its initial orbital starting position inthe i — j and j—K planes. Even

at this initial distance, the orbit is still relatively stable over the duration of the period.
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At an initial range of 202— meters, the spacecraft still is not impacting the asteroid; the
spacecraft again moves closer towards the end of the orbit but, as the orbit completes, the
spacecraft has roughly returned to the same range as the base case for all masses except the 200
ton—mass. As shown in Figure 4.12, the spacecraft counterintuitively is moving further from the

higher massed objects rather than closer.

360 r r
200 ton mass
340 130 ton mass
75 ton mass
320 \ 25 ton mass
300 0 ton mass

280 \\
260 ‘

240

220 \
200

Range (m)

7
\\ 7
/
180 \
160 : . . - .
0 2 4 6 8 10 12 14

Time (days)

Figure 4.12. Range between spacecraft and asteroid with 202—m initial separation
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Figure 4.13. Range difference between spacecraft and massless asteroid from asteroids of
varying mass with initial 202—m separation

Again looking at the differences in the range compared to the baseline range, Figure 4.13
shows how the spacecraft is ultimately moving away from the asteroid towards the end of the
orbit. There are two points at which the spacecraft moves closer to the asteroid; the first is a
relatively small deviation that ends with the spacecraft roughly returning to the zero a little over 6
days into the orbit. At this point, the spacecraft moves much closer to the asteroid without hitting
it and again heads away. However, the motion back away from the asteroid is much faster than
the previous movement earlier in the orbit. The— 200-ton—mass clearly begins to sharply increase
in range from the baseline ranges with the other masses looking to do the same if the orbit were to

continue.
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Looking at the difference in the relative velocity vectors of the asteroid and the spacecraft

from the baseline case (difference defined by the §X/6t, §Y /6t, and 6Z /&t terms in each
coordinate direction), Figure 4.14 shows a general increase in speed in the i and K directions

and a decrease in speed in the j direction. As the spacecraft moves closer to the asteroid

towards the end of the orbit, the spacecraft has a net increase in speed that propels it away from
the asteroid instead of impact. The speed increase is directly related to the mass of the asteroid;
the higher the mass, the greater the change in velocity when compared to the baseline case.

The relative position vector shows the continuing trend. Figures 4.15—4.19 show how
the spacecraft formation flying with the asteroid of 25-tons still does not have too much of a
change in trajectory. However as the mass increases, the effects are starting to become
pronounced. The increase in speed in a non-collision course with the asteroid is causing the
spacecraft to propel further away the closer the spacecraft initially starts relative to the asteroid.
Though the relative range from the baseline as shown in Figure 4.13 is roughly the same for the
130-ton—mass case, Figure 4.18 clearly shows that the actual position is quite different. Though

the range is similar, the spacecraft is clearly in a different position from the baseline.
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At 172 and 151 meters respectively, the trend of the asteroid moving away from the
asteroid towards the end of the orbit continues. Both Figures 4.20 and 4.21 show how the range
between the asteroid and the spacecraft decreases a bit before the 8—-day mark and then rapidly

continues as the orbit completes. However, the case with the 25-ton—mass is still somewhat

stable.
300 [ [
200 ton mass
280 130 ton mass
75 ton mass
260 25 ton mass
0 ton mass
240 I
E /
g 220
c
g /
|

200

. A\av

140

0 2 4 6 8 10 12 14
Time (days)

Figure 4.20. Range between spacecraft and asteroid with 172—-m initial separation
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Figure 4.21. Range between spacecraft and asteroid with 151-m initial separation

Now, at an initial separation distance of 101 meters, the effects of the gravity are
becoming more pronounced. The ranges depicted in Figure 4.22 show that the range starts
dramatically increasing for the heavier masses a couple days earlier in the orbit than at previous
initial ranges of separation. From examination of Figure 4.23, the relative ranges compared to the
baseline range show that, after the initial movement towards the asteroid, the spacecraft heads

away from the asteroid and does not return again like at previous initial separation distances.
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Figure 4.22. Range between spacecraft and asteroid with 101-m initial separation
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Figure 4.23. Range difference between spacecraft and massless asteroid from asteroids of varying
mass with initial 101-m separation

The difference in range vectors shows the dramatic changes in the orbits, especially those
with the heavier masses. Figures 4.24—4.28 demonstrate the instability of the orbits with the
larger masses. As soon as the spacecraft is drawn closer to the asteroid, the net velocity
dramatically increases as seen in Figure 4.29, causing the spacecraft to be sent on an outward
bound trajectory. The integrity of the orbit is now lost as the spacecraft is sent on a trajectory
away from the asteroid. Even the case for the 25-ton—mass asteroid is becoming unstable at this
initial separation distance. Though the range from the asteroid is not too different from the
baseline case as seen in Figure 4.23, the position relative to the asteroid from Figure 4.25 shows

how the spacecraft has drifted from its baseline trajectory.
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