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ABSTRACT 
 

Studying an asteroid up close has been up until more recently nothing more than wishful 

thinking.  With NASA’s Asteroid Redirect Mission in the planning stages, the prospect of 

bringing an asteroid back to the vicinity of the Earth is tantalizing.  Once an asteroid has been 

retrieved and brought back to the Earth–Moon system and placed into orbit for study, human 

crews will visit it and study it up close.  This thesis explores the orbital dynamics of an asteroid in 

orbit around the Earth–Moon libration point, EML1.  The dynamics of the motions for a 

spacecraft in close proximity to an asteroid are found using the circular restricted four-body 

problem (CR4BP).  Treating the problem as the superposition of two circular restricted three-

body problems (CR3BP), the asteroid becomes an additional gravitational perturbation to a 

spacecraft close to the asteroid.  Two sets of coupled equations of motion, one for the asteroid 

and one for the spacecraft are derived and solved simultaneously.  A trade study to examine the 

near-term behavior of a spacecraft’s orbit relative to the asteroid is conducted via a series of 

simulations utilizing a variety of variables such as the asteroid’s location and mass relative to the 

spacecraft, the size of orbit, and the varying of initial conditions.  The characteristics being 

studied are the stability of the spacecraft’s orbit over a short duration as well as the range between 

the spacecraft and its target asteroid over the mission duration.  In addition, the minimum safe 

stand-off distance between both objects is determined to ensure no collisions or orbital instability.  

The ultimate goal is to obtain various datasets to deduce the most stable conditions for placing an 

asteroid and to determine where to fly a spacecraft in formation with the asteroid in orbit about 

the EML1 libration point.  The results show the viability of a couple orbits as well as the 

prevalence of impacts.  How the data can be utilized for future missions was also studied. 
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Chapter 1  
 

Introduction 

The desire to study an asteroid has long been a aspiration of scientists in many different 

disciplines.  Questions ranging from determining the early formation of the solar system to the 

potential for future mining of vital mineral elements have all been posed as rationale for 

retrieving a complete asteroid.  NASA has been planning for several years now to capture an 

asteroid for study under their Asteroid Redirect Mission.
*
  While the design of the capture device 

and overall mission design is still in the planning phases, one of the basic ideas is to place the 

asteroid in a lunar distant retrograde orbit once the asteroid has been brought back.  This thesis 

seeks to look at alternative prospects around the Earth – Moon libration point L1, hereafter 

referred to as EML1.  The location of the aforementioned libration point may be viewed in Figure 

1.1. 

To examine the dynamics of both an asteroid and a spacecraft in the Earth–Moon system, 

one needs to take into account the gravitational effects from all sources.  However, this can be 

difficult and it can easily be stated that the gravitational perturbations resulting from the asteroid 

and spacecraft are negligible.  As such, it is useful to utilize the classical restricted three-body 

problem similar to Bando [1] et al. and Gurfil et al. [2].  It is a widely studied problem in 

astrodynamics in which three bodies move about a common center-of-mass (henceforth referred 

to as the barycenter) where the third smaller mass moves relative to the other larger masses.  This 

smaller body has negligible gravitational effects on the motion of the other more massive objects. 

                                                      
*
 http://www.nasa.gov/sites/default/files/atoms/files/nasa-tm-2016-219011-arm-fast-final-report_0.pdf  

March 20, 2016 

http://www.nasa.gov/sites/default/files/atoms/files/nasa-tm-2016-219011-arm-fast-final-report_0.pdf
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The system that this thesis examines, however, is considering four masses in which two 

of the masses are much more massive than the remaining two.  

 

 

 

Figure 1.1.  Graphical representation of the location of the libration points 

 

Thus, the restricted four-body problem model will be used.  This can be achieved by starting with 

the restricted three-body problem and adding an additional gravitational perturbation.  In this 

scenario, where the spacecraft is moving relative to the asteroid, the effects of the asteroid’s 
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gravity on the spacecraft is the additional gravitational source within the restricted three-body 

problem wherein the Earth and Moon are the major sources of gravity.  The masses are 

considered to be point masses though other models are viable as outlined in Wang et al. [3], 

wherein the spacecraft is treated as a rigid body.  The model being used here is the circular 

restricted four body-problem (CR4BP) as circular orbits will be assumed for the Earth–Moon 

system.  This is a good mathematical approximation to study the general behavior of the smaller 

mass (the spacecraft) relative to the larger bodies. 

In effect, two coupled circular restricted three-body problems (CR3BP) are solved 

simultaneously.  The first problem considers the asteroid in the Earth–Moon system and the 

second problem considers the spacecraft in the same system except with the addition of an extra 

term containing the gravitational effects of the asteroid onto the spacecraft’s orbit.  Both of these 

systems of equations are coupled and solved simultaneously.  A more rigorous explanation and 

derivation of these equations is discussed in Chapter 2. 

Once the governing equations of motion are obtained, the idea is to then conduct a trade 

study in which a variety of orbits and other scenarios are simulated to determine the safest 

optimal standoff distance between the spacecraft and asteroid.  Stability of the orbits is also a key 

factor, though long-term stability of the spacecraft’s orbit is not an issue as the mission would 

take place over a short duration.  Stability is defined as how much the spacecraft drifts closer or 

further from the asteroid.  For larger bodies like 433 Eros, stable orbits are viable roughly 31 km 

from the surface [4].  The only perturbation being considered in this thesis is the effect of gravity.  

Other sources of perturbations such as gravity-gradient torques produced by the Sun and Earth [5] 

solar radiation pressure, solar tides, as well as other variables as seen in Scheeres [6] are factors 

in this problem but are not considered here.  When in close proximity to the asteroid, the effect 

from the gravity is the largest perturbation as mentioned by Scheeres [7].   
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Other variables being examined in this thesis include the initial proximity of the 

spacecraft to the asteroid as well as the mass of the asteroid itself.  The Moon’s orbit around the 

Earth is not circular so the position of the libration point will oscillate back and forth as the Moon 

completes its revolution around the Earth.  A more rigorous overview of the stability of libration 

points can be viewed in texts such as Szebeheley [8] and Curtis [9].  Generating this type of data 

is important as it can be used to develop better control laws for spacecraft operation close to 

asteroids.  Guelman [10], Mok et al. [11], and Broschart et al. [12] all describe various methods 

of control schemes near small bodies such as asteroids.  The need to develop control laws for 

spacecraft is vital and thus the need to understand the underlying dynamics is a first step.  Other 

applications of this data involve designing a trajectory to land on an asteroid as per Tardivel et al. 

[13] or to operate around an asteroid using solar sails as detailed by Morrow [14]. 

The various scenarios of the trade study are discussed in more detail in Chapter 3, 

whereas the results are presented and analyzed in Chapter 4.  Lastly, the conclusions and 

proposed future work are discussed in Chapter 5. 
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Chapter 2  
 

Astrodynamics of the N-Body Problem 

The astrodynamics of the circular restricted four-body problem can be broken up into 

several sections.  To begin the derivation of the equations of motion, it is first necessary to define 

the reference frames used as seen in Section 2.1.  As there are four bodies, the model will be 

broken up into two coupled circular restricted three-body-problems.  The dynamics of the CR3BP 

are discussed in Section 2.2.  Treating the asteroid has an additional gravitational source, Section 

2.3 will explore the second CR3BP with that extra term coupled with the equations of motion for 

the Earth, Moon, and spacecraft.  The N-Body problem can be studied in more detail in 

Szebeheley [8]. 

2.1  Inertial and Rotational Reference Frames 

Within the inertial reference frame ( Î , Ĵ , K̂ ), one can define a rotating reference frame as î , ĵ ,

k̂ as seen in Figure 2.1.  As can be seen from the figure, inertial and rotating reference frames are 

coplanar in the ( Î , Ĵ ) and ( î , ĵ ) planes.  The rotating frame being initially aligned rotates 

relative to the inertial frame at a rate over a time interval 0t t where 0t  is the time where both 

frames are initially aligned.  The resulting angle 0( )t t   is swept out over the interval.  Masses 

1m  and 2m  are positioned relative to the smaller mass by their respective vectors 1r and 2r .  The 

equations of motion for the restricted three-body-problem will be found in the rotating frame.                      
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Figure 2.1.  Geometry of the Inertial and Rotational Reference Frames 

2.2  The Circular Restricted Three-Body Problem (CR3BP) 

It is common in orbital mechanics problems such as this to non-dimensionalize the 

physical parameters to determine a clear relationship between the properties being examined; 

within the scope of this problem, this would be between the masses.  In astrodynamical terms, 

these are called canonical units.  The following derivations are done in a similar manner to 
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Prussing et al. [15] and Curtis [9].  By letting the sum of the major masses ( 1m and 2m ) equal one, 

the smaller mass ( 1m >> 2m ) becomes defined proportionally to the larger mass, i.e., 

 
2

1 2

m

m m
 


. (2.1) 

The smaller mass becomes 

 2m  . (2.2) 

The masses being normalized results in the larger mass being 

 1 1m   . (2.3) 

Within the scope of the CR3BP, it is necessary to begin with Newton’s second law which 

relates the force to the mass of an object and its rate of change in velocity.  In the restricted three-

body problem, the equations-of-motion are 

 
3 1 3 2

3 31 323 3

31 32

m m m m
m r G r G r

r r

   
    

   
. (2.4) 

The meaning of the variables can be seen from Figure 2.2.   

 

Figure 2.2.  Geometry of the CR3BP 
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It is now necessary to introduce the position vector of the third mass in the rotational frame and 

its corresponding velocity and acceleration vectors as 

 ˆˆ ˆr xi yj zk   . (2.5) 

 

The velocity in the rotating frame is 

 ˆˆ ˆdr dx dy dz
i j k

dt dt dt dt
    (2.6) 

and the acceleration is 

 
2 2 2 2

2 2 2 2
ˆˆ ˆd r d x d y d z

i j k
dt dt dt dt

   . (2.7) 

 

From examining Figure 2.2, the relative positions between the smallest mass and both the 

larger ones are determined.  These vectors are found to be 

 
31 1

ˆˆ ˆ( )r x a i yj zk    , (2.8) 

 
32 2

ˆˆ ˆ( )r x a i yj zk    , (2.9) 

where a1 and a2 are the locations of m1 and m2, respectively. 

The motion of the Earth and Moon around their barycenter has an acceleration in the 

rotational reference (Figure 2.1) frame of 

 

 

2 2 2
( )

2 2 2
ˆˆ ˆ2 2R d x dy d y dx d z

r x i y j k
dt dt dt dt dt

   
         
   

 (2.10) 

  

This acceleration is equivalent to the gravitational acceleration 
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 31 323 3

31 32

(1 )
r r r

r r

 
   . (2.11) 

 

Equating Equations (2.10) and (2.11) and substituting the relative position vectors from Equations 

(2.8) and (2.9), the rotational acceleration (
( )Rr ) becomes 

 

 
( )

31 323 3

31 32

(1 ) ˆ ˆˆ ˆ ˆ ˆ( ) ( 1 )Rr r x i yj zk r x i yj zk
r r

 
 


            
   

 (2.12) 

 

Finally, equating Equation (2.12 ) with (2.10) while also separating the î , ĵ , k̂ components yields 

three non-linear differential equations. 

 

2

2 3 3

31 32

(1 )( ) ( 1 )
2

d x dy x x
x

dt dt r r

      
     , (2.13) 

 

2

2 3 3

31 32

(1 )
2

d y dx y y
y

dt dt r r

 
     , and (2.14) 

 

2

2 3 3

31 32

(1 )d z z z

dt r r

 
   . (2.15) 

Equations (2.12) through (2.14) describe the motion of the asteroid relative to both the Earth and 

Moon in three dimensions.  These equations do not take into account the spacecraft (the fourth 

body) in our system.  Expanding upon the restricted three-body problem and considering the 

asteroid as an additional gravitational source is the fundamental model used in this research. 
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2.3  The Circular Restricted Four-Body Problem (CR4BP) 

Consider the system described in the previous section.  In this section, a fourth body will 

be added:  the spacecraft.  As mentioned in Chapter 1, the problem will be treated as two coupled 

circular restricted three-body problems.  To accomplish this task, the moon is treated as an 

additional term in the equations of motion providing the additional gravitational acceleration.   

The analysis begins in the same manner as the previous section.  Equations (2.1) – (2.7) 

are derived in the same way.  An additional normalized mass parameter is needed for the third 

body as the previous Equations (2.1) – (2.3) relate µ to m1 and m2.  The expression for the third 

body (the asteroid) is 

 

 
3

3

1 2

Gm


 



 (2.16) 

 

where G is the gravitational constant and µ1 and µ2 are the gravitational parameters for the Earth 

and Moon, respectively. 

The derivation deviates from this point as Figure 2.3 is considered.  Similar to the 

previous section, the relative position vectors are taken between the smallest mass (this time the 

spacecraft) and the larger two masses m1 and m2.   
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Figure 2.3.  Geometry of the CR4BP 

 

 

However, an additional vector is derived (𝑟43) in a similar manner to Huang [16], which is the 

position vector between the spacecraft (m4) and the moon (m3). 

 
41 1

ˆˆ ˆ( )s s sr x a i y j z k    , (2.17) 

 
42 2

ˆˆ ˆ( )s s sr x a i y j z k    , and (2.18) 

 
43

ˆˆ ˆ( ) ( ) ( )s a s a s ar x x i y y j z z k      , (2.19) 

where xs, ys, and zs are the coordinates of the satellite and xa, ya, and za are the coordinates of the 

asteroid.  The acceleration of the Earth and Moon around the barycenter is the same as the one in 

Equation (2.10).  The acceleration due to the gravity differs from Equation (2.11) as it now has an 

extra term 
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3

41 42 433 3 3

41 42 43

(1 )
r r r r

r r r

 
     (2.20) 

Equating Equations (2.10) and (2.20) and substituting the relative position vectors (2.17-

2.19) yields the rotational acceleration  

  

( )

41 423 3

41 42

(1 ) ˆ ˆˆ ˆ ˆ ˆ( ) ( 1 )I

s s s s s sr r x i y j z k r x i y j z k
r r

 
 


            
   

 

 
3

3

43

ˆˆ ˆ( ) ( ) ( )s a s a s ax x i y y j z z k
r


      
 

 (2.21) 

Finally, relating Equations (2.10) and (2.21) with each other and separating the î , ĵ , k̂

components yields three non-linear differential equations for the spacecraft 

 

2

3

2 3 3 3

41 42 43

(1 )( ) ( 1 ) ( )
2s s s s s a

s

d x dy x x x x
x

dt dt r r r

        
       (2.22) 

 

2

3

2 3 3 3

41 42 43

(1 ) ( )
2s s s s s a

s

d y dx y y y y
y

dt dt r r r

   
       (2.23) 

 

2

3

2 3 3 3

41 42 43

(1 ) ( )s s s s ad z z z z z

dt r r r

   
     (2.24) 

Equations (2.22) – (2.24) show the governing equations of motion for the spacecraft in 

three dimensions.  These equations are coupled with the asteroid via the xa, ya, and za terms.  

These relations along with Equations (2.13) – (2.15) are the governing equations for the very 

restricted four-body problem [16].  The parameters for the trade study will be examined in the 

following chapter. 

                      



13 

 

 

Chapter 3  
 

Trade Study Parameters 

This chapter discusses the various scenarios and metrics of the trade study.  These 

include the libration point orbits, the relative positions of the spacecraft with respect to the 

asteroid, and both the size and mass of the asteroid itself.   

3.1  Libration Point Orbits 

The trade study begins by looking at two halo orbits of different sizes; Figures 3.1 and 

3.2 show the generated large halo orbit where Figures 3.3 and 3.4 show the small halo orbit.  It 

should be noted that the small halo orbit has a slight discontinuity that is viewable in Figure 3.4; 

this will be explored in Chapter 4.  Both orbits have roughly the same orbital period.  Halo orbits 

of different sizes were chosen over roughly the same orbital period to determine if the size of the 

given orbit has any effect on the stability or prevalence of impacts.  The initial conditions for each 

starting position in the orbits are supplied in Table 3.1 for the large and small halo orbits.  

Subsequent starting positions were obtained from the original initial conditions by integrating 

over a very small time step.   

 

 



14 

 

  

Figure 3.1.  Large halo orbit generated from initial conditions 

 

Figure 3.2.  Large halo orbit generated from initial conditions in x-y plane 
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Figure 3.3.  Small halo orbit generated from initial conditions 

 

Figure 3.4.  Small halo orbit generated from initial conditions in x-y plane 
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Table 3.1.  Initial conditions for halo orbits (µ = 0.01215058162343) 

 Large Halo Orbit 

(DU) 

Small Halo Orbit 

(DU) 

x -0.84225833074 

 

-0.823445341829 

 

y 0 0 

z 0.163024589129 

 

0.030939510780 

 

ẋ 0 0 

ẏ -0.263218103238 -0.140698846709 

ż 0 0 

 

 

As can be seen from Table 3.2, the initial ranges are listed from the spacecraft to the 

center of the asteroid.  The initial range is defined as the initial separation distance between the 

spacecraft and the center of the asteroid at the beginning of the orbit.  These ranges were chosen 

for each sized halo orbit due to the effects that occur through those initial distances.  The specific 

numbers are arbitrary as there would not be much difference between 506 meters versus 500 

meters.  The differences in the initial ranges between the large and small halo orbits are explained 

in Chapter 4. 
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Table 3.2.  Initial ranges between spacecraft and asteroid 

Case Initial Separation Distance 

(m) 

1 910
†
 

2 811
‡
 

3 506 

4 303 

5 270
§
 

6 202 

7 172 

8 151 

9 101 

10 71 

11 50 

12 38  

 

Lastly, whether the spacecraft is trailing or leading the asteroid will be examined.  This 

was done to see if that has any effect on the stability or impacts.  

 

 

 

                                                      
†
 Range conducted for the two revolution case only 

‡
 Range conducted for small halo orbit case only 

§
 Range conducted for small halo orbit case only 
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3.2  The Asteroid 

The size and masses of the asteroids were chosen based on NASA’s mission documents 

for the Asteroid Redirect Mission.
**

  The asteroid masses and diameters seen in Table 3.3 were 

chosen within the range of mission parameters.  It will be assumed that the asteroids are spherical 

objects with diameters of the upper bound of the values seen in Table 3.3.  The diameters were 

determined based on the densities of granite and pumice. 

 

Table 3.3.  Asteroid masses being examined in all cases
††

 

Mass 

(tons) 

Diameter 

(m) 

25 3 – 4  

75 4 – 7  

130 5 – 10  

200 5.5 – 13  

 

These diameters will be used in determining whether or not the spacecraft collides with the 

asteroid.  If the minimum distance between the spacecraft and the asteroid drops below the radius 

of the asteroid, then it is assumed an impact has occurred.  Near-misses will also be noted as the 

spacecraft passing within 25 meters of the surface of the asteroid.  While not directly impacting 

the asteroid, the spacecraft will be too close based on numerical accuracy.  Anything beyond the 

25–meter range will be considered safe formation flying.  The results of these scenarios are 

examined in Chapter 4.

                                                      
**

 http://www.nasa.gov/feature/asteroid-redirect-mission-documents  March 30, 2016 
††

 http://www.nasa.gov/sites/default/files/files/Chodas-ARRM-Obs-Status-Dec-2013.pptx.pdf  April 3, 

2016 

http://www.nasa.gov/feature/asteroid-redirect-mission-documents
http://www.nasa.gov/sites/default/files/files/Chodas-ARRM-Obs-Status-Dec-2013.pptx.pdf
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Chapter 4  
 

Results and Discussion 

This chapter focuses on the results based off the scenarios elaborated upon in the 

previous chapter.  The first test case involves the large halo orbit previously shown in Figures 3.1 

and 3.2.  Within this orbit, several cases are examined at different initial conditions where the 

spacecraft trails the asteroid initially over several different ranges.  Then the spacecraft is 

positioned so that it leads the asteroid over the same initial ranges.  Furthermore, the dynamics of 

the situations are examined over both one and two revolutions of the orbit.  The second case 

imposes a similar set-up except the halo orbit is smaller (Figures 3.3 and 3.4).  The same 

constraints are applied with different starting ranges between the two objects for both the 

spacecraft trailing and leading the asteroid.  It should also be noted that the plots for the relative 

positions and velocities occur in the ˆˆ ˆi j k  frame where the coordinate directions on the plots 

are noted by X, Y, and Z, respectively.  

4.1  Large Halo Orbit 

The largest initial separation distance between the spacecraft and asteroid are examined 

first with subsequent distances becoming smaller.  The orbit propagation is shown over one 

revolution (12.166 days) first, then followed by two complete revolutions.  In the latter case, 

stability over the long duration will be considered the examining factor.  Some plots that are 

examined include range between the spacecraft and asteroid, relative velocities and positions in 

different coordinate directions and planes, and the difference in range between massless asteroids 
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from the asteroid with mass.  The latter plot is useful to establish a baseline with the massless 

asteroid to show the effect of the gravitational perturbations to the case where the spacecraft has 

no gravitational influences (other than from the Earth and Moon). 

4.1.1  Spacecraft Trailing Asteroid Over One Revolution of Large Halo Orbit 

The first initial separation range being examined is at 506 meters.  At this initial 

positioning, the gravitational perturbations have little effect over the one revolution duration.  The 

range is defined as the magnitude of the difference in the position vectors from the spacecraft to 

the asteroid; this relative position is defined in Figure 2.3.   From Figure 4.1, five masses are 

shown; the zero ton–mass is the baseline case where the spacecraft is effectively orbiting by 

itself.  From this point onward, the baseline case will refer to the zero mass asteroid. 



21 

 

 

Figure 4.1.  Range between spacecraft and asteroid with 506–m initial separation 

 

 The other cases include an asteroid with mass so it can be seen how the presence of 

gravity alters the range between the spacecraft and the asteroid.  Figure 4.1 shows that the 

increase in the mass of the asteroid at this range has very little effect on the spacecraft’s 

trajectory. 

The deviation from the baseline flight path can be more easily demonstrated from Figure 

4.2.  This figure was generated by subtracting the baseline range vector (the range vector from the 

0–ton–mass) from the range vector that had a spacecraft formation flying with an asteroid that has 

mass.  The resulting data shows the difference in range from a spacecraft with no accompanying 

mass with a spacecraft with an additional gravitational source.   
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Figure 4.2.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 506–m separation 

 

At this initial range, the spacecraft formation flying with an asteroid of mass does not 

deviate much from baseline case.  The spacecraft barely deviates from the flight path even in the 

200–ton–mass case, wherein the maximum deviation is slightly over 10– meters.  To gain a better 

understanding of how the spacecraft moves relative to the asteroid, the relative position vector of 

the spacecraft and asteroid (as defined in Figure 2.3) was plotted in the ˆ ˆi j , ˆî k , and ˆĵ k  

planes (Figure 2.1), in addition to the ˆˆ ˆi j k   space.  The resulting plots as seen in Figures 4.3 

and 4.4 for the baseline case and the 200–ton–mass case respectively show minimal differences 

between both figures.  As can be seen from the 200–ton–mass, the spacecraft slightly overshoots 

its orbit upon returning to the starting position. 
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From the previously discussed figures, it can be concluded that the spacecraft’s orbit 

regardless of the mass it is flying alongside, has negligible effect on the trajectory.  Over one 

revolution, the orbit is stable. 
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Next, the 303–meter initial range between the spacecraft and asteroid is analyzed.  At 

about 200 meters closer than the previous case, some additional gravitational effects can be seen.  

Figure 4.5 again shows the range as previously defined between the spacecraft and the asteroid 

for each of the masses.  As the mass of the asteroid increases, more deviation from the baseline 

case is starting to occur.  To gain insight as to what is starting to occur, examining Figure 4.6 

shows the range differences between the baseline ranges and the ranges with an asteroid of mass; 

when the spacecraft orbits with asteroids of heavier mass, the spacecraft is pulled closer to the 

asteroid before being sent on a trajectory farther from the asteroid.  Comparing Figure 4.6 to its 

counterpart from the first initial separation distance in Figure 4.2 shows that the deviation has 

increased. 

 

Figure 4.5.  Range between spacecraft and asteroid with 303–m initial separation 
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Figure 4.6.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 303–m separation 
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 Figure 4.11 shows these results in each coordinate direction over time; the 

𝛿𝑋, 𝛿𝑌, and 𝛿𝑍 terms are defined as the difference between the spacecraft and asteroid’s position 

vectors in each coordinate direction.  It becomes clear that, in the î and k̂ directions, the 

spacecraft moves further away compared to the baseline case.  However in the ĵ  direction, the 

spacecraft moves closer.  Examining the various planes in Figures 4.7– 4.10 shows these trends.  

In the ˆ ˆi j  plane, the spacecraft is further in the positive î direction than it would have been 

without an asteroid and a bit lower in the ĵ direction.  The ˆî k  plane shows the relative positon 

grow in each direction and the ˆĵ k  plane shows the relative position closer in the ĵ  direction 

but further apart in the k̂  direction.  The net effect as seen in the ranges of Figure 4.4 is that the 

spacecraft initially moves closer to the asteroid but, instead of heading for an impact, the 

spacecraft is propelled away.  It can also be seen especially with the larger masses that the 

spacecraft is overshooting its initial orbital starting position in the ˆ ˆi j  and ˆĵ k  planes.  Even 

at this initial distance, the orbit is still relatively stable over the duration of the period. 
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At an initial range of 202– meters, the spacecraft still is not impacting the asteroid; the 

spacecraft again moves closer towards the end of the orbit but, as the orbit completes, the 

spacecraft has roughly returned to the same range as the base case for all masses except the 200–

ton–mass.  As shown in Figure 4.12, the spacecraft counterintuitively is moving further from the 

higher massed objects rather than closer.   

 

 

Figure 4.12.  Range between spacecraft and asteroid with 202–m initial separation 
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Figure 4.13.  Range difference between spacecraft and massless asteroid from asteroids of 

varying mass with initial 202–m separation 

 

 Again looking at the differences in the range compared to the baseline range, Figure 4.13 

shows how the spacecraft is ultimately moving away from the asteroid towards the end of the 

orbit.  There are two points at which the spacecraft moves closer to the asteroid; the first is a 

relatively small deviation that ends with the spacecraft roughly returning to the zero a little over 6 

days into the orbit.  At this point, the spacecraft moves much closer to the asteroid without hitting 

it and again heads away.  However, the motion back away from the asteroid is much faster than 

the previous movement earlier in the orbit.  The– 200–ton–mass clearly begins to sharply increase 

in range from the baseline ranges with the other masses looking to do the same if the orbit were to 

continue.   
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Looking at the difference in the relative velocity vectors of the asteroid and the spacecraft 

from the baseline case (difference defined by the 𝛿𝑋/𝛿𝑡, 𝛿𝑌/𝛿𝑡, and 𝛿𝑍/𝛿𝑡 terms in each 

coordinate direction), Figure 4.14 shows a general increase in speed in the î  and k̂  directions 

and a decrease in speed in the ĵ  direction.  As the spacecraft moves closer to the asteroid 

towards the end of the orbit, the spacecraft has a net increase in speed that propels it away from 

the asteroid instead of impact.  The speed increase is directly related to the mass of the asteroid; 

the higher the mass, the greater the change in velocity when compared to the baseline case. 

The relative position vector shows the continuing trend.  Figures 4.15– 4.19 show how 

the spacecraft formation flying with the asteroid of 25–tons still does not have too much of a 

change in trajectory.  However as the mass increases, the effects are starting to become 

pronounced.  The increase in speed in a non-collision course with the asteroid is causing the 

spacecraft to propel further away the closer the spacecraft initially starts relative to the asteroid.  

Though the relative range from the baseline as shown in Figure 4.13 is roughly the same for the 

130–ton–mass case, Figure 4.18 clearly shows that the actual position is quite different.  Though 

the range is similar, the spacecraft is clearly in a different position from the baseline. 
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At 172 and 151 meters respectively, the trend of the asteroid moving away from the 

asteroid towards the end of the orbit continues.  Both Figures 4.20 and 4.21 show how the range 

between the asteroid and the spacecraft decreases a bit before the 8–day mark and then rapidly 

continues as the orbit completes.  However, the case with the 25–ton–mass is still somewhat 

stable.   

 

Figure 4.20.  Range between spacecraft and asteroid with 172–m initial separation 
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Figure 4.21.  Range between spacecraft and asteroid with 151–m initial separation 

 

Now, at an initial separation distance of 101 meters, the effects of the gravity are 

becoming more pronounced.  The ranges depicted in Figure 4.22 show that the range starts 

dramatically increasing for the heavier masses a couple days earlier in the orbit than at previous 

initial ranges of separation.  From examination of Figure 4.23, the relative ranges compared to the 

baseline range show that, after the initial movement towards the asteroid, the spacecraft heads 

away from the asteroid and does not return again like at previous initial separation distances.   
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Figure 4.22.  Range between spacecraft and asteroid with 101–m initial separation 
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Figure 4.23.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 101–m separation 

 

The difference in range vectors shows the dramatic changes in the orbits, especially those 

with the heavier masses.  Figures 4.24–4.28 demonstrate the instability of the orbits with the 

larger masses.  As soon as the spacecraft is drawn closer to the asteroid, the net velocity 

dramatically increases as seen in Figure 4.29, causing the spacecraft to be sent on an outward 

bound trajectory.  The integrity of the orbit is now lost as the spacecraft is sent on a trajectory 

away from the asteroid.  Even the case for the 25–ton–mass asteroid is becoming unstable at this 

initial separation distance.  Though the range from the asteroid is not too different from the 

baseline case as seen in Figure 4.23, the position relative to the asteroid from Figure 4.25 shows 

how the spacecraft has drifted from its baseline trajectory. 
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When approaching an initial range of 71 meters, the previous trend continues as seen in 

the ranges of Figure 4.30.  However, at this range, a near-miss of the asteroid takes place (as 

defined in Chapter 3) for the 200–ton–mass.  A zoomed-in view of Figure 4.30 can be seen in 

Figure 4.31.  In this figure, the radius of each asteroid is denoted by a dashed line.  The exact 

values of the radii can be determined from Table 3.3, where half the upper limit of the diameter 

corresponds to the position of r200 through r25 in Figure 4.30.  While it is not a direct hit with the 

asteroid, the spacecraft does pass very close to the asteroid such that it might be considered to be 

too close, based on the numerical accuracy for a mission.  It should also be noted that at this 

initial range, the 25–ton–mass is finally having a dramatic effect on the spacecraft.  This is not 

surprising given the trends for the heavier masses.  The range for the 25–ton–mass can be viewed 

in Figure 4.32 without the other masses distorting the plot. 

 

Figure 4.30.  Range between spacecraft and asteroid with 71–m initial separation 
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Figure 4.32.  Range between spacecraft and asteroid with 71–m initial separation for the 25–and–0– 

ton–masses 

 

Beginning at an initial separation distance of 50 meters, an impact occurs for the 200–
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Getting any closer to the asteroid is superfluous as impacts will continue to occur and 

even the orbit for the 25–ton–mass at this range is unstable (Figure 4.35).  At this juncture, the 

next section explores orbits over two. 

 

Figure 4.35.  Range between spacecraft and asteroid with 38–m initial separation for 25-and 0–ton–

masses 
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masses.  Figure 4.36 shows that the range between the spacecraft and the asteroid, while stable 

for the first period, begins to deviate at the start of the next period.  Ultimately, part way through 

the second period, the spacecraft in the 200–, 130–, and 75–ton–mass cases is sent on an outward 

bound trajectory.  The trend that developed in the previous section is already developing much 

earlier over two orbital periods. 

 

Figure 4.36.  Range between spacecraft and asteroid with 506–m initial separation over two orbital 

periods 
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asteroid is enough to send the spacecraft on an outward bound trajectory relative to the asteroid.  

There is also a general instability in the halo orbit itself with no asteroid as seen in Figure 4.38.  

Over two revolutions, the stability of the orbit is naturally decaying due to the natural instability 

of libration point orbits.  As in the case with only one orbital period, the net velocity of the 

spacecraft (Figure 4.44) increases within the second orbit driving the spacecraft away from the 

asteroid. 

 

Figure 4.37.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 506–m separation over two orbital periods 
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To obtain stability over two periods, the spacecraft and asteroid need to be initially 

farther apart.  At 910 meters, the orbits for all masses are stable as seen in the ranges of Figure 

4.44.  Looking at the relative ranges from the baseline range, Figure 4.45 shows that the 

deviations are not incredibly large at this range. 

 

Figure 4.44.  Range between spacecraft and asteroid with 910–m initial separation over two orbital 

periods 
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Figure 4.45.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 910–m separation over two orbital periods 
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Figure 4.46.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 202–m separation over two orbital periods 

 

4.1.3  Trailing versus Leading Spacecraft in Large Halo Orbits 
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and 4.54) vectors, but that is only a sign change depending on which object is leading the other.  

Comparing these figures to their counterparts in Section 4.1.1 shows that the relative positions 

and velocities are the same except that they head in the opposite direction.  As it doesn’t matter 

which object trails or leads, it is up to the mission planner’s preference as to the position of each 

object. 

 

 

Figure 4.47.  Range between leading spacecraft and asteroid with 506–m initial separation 
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Figure 4.48.  Range between leading spacecraft and asteroid with 101–m initial separation 
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Figure 4.49.  Range difference between leading spacecraft and massless asteroid from asteroids of 

varying mass with initial 506–m 
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Figure 4.50.  Range difference between leading spacecraft and massless asteroid from asteroids of 

varying mass with initial 101–m 
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4.2  Small Halo Orbit 

 

In this section, as with the Section 4.1, the initial distances will be examined from largest 

to smallest.  The dynamics covered in the aforementioned previous section will be the same 

except they will occur in a smaller orbit as seen in Figures 3.3 and 3.4.  Again, the spacecraft 

trailing the asteroid over one period (11.948 days) will be examined first followed by the same 

case but over two periods. Lastly, the question of whether the spacecraft trailing or leading 

having any effect on the orbit is examined. 

 

4.2.1  Spacecraft Trailing Asteroid over One Revolution of Small Halo Orbit 

Looking at an initial separation distance of 811 meters, it can already be seen that small 

orbits are not optimal.  The ranges between the spacecraft and asteroid as seen in Figure 4.55 are 

already deviating from the baseline case at a range of slightly over 300 meters over the maximum 

initial range from the large halo orbit.  Furthermore, from examining the relative ranges compared 

to the baseline, Figure 4.56 demonstrates that the difference in range of the asteroids with mass 

from the baseline case is already greater than that of the initial 506–meter case for the large halo 

orbit (Figure 4.2).   
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Figure 4.55.  Range between spacecraft and asteroid with 811–m initial separation 
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baseline case.  Because of the fact that the small halo orbit at a large initial distance already has 

the early signs of instability shows that this orbit is not optimal.  

 

 

Figure 4.56.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 811–m 
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From examining the relative position vectors in Figures 4.57–4.61, it can be seen that 

even in the 0–ton–mass case, the orbit is discontinuous as there is a small gap.  Having used the 

smallest tolerances that MATLAB will allow, the conclusion that was reached is that the orbit is 

unstable which, is seen in the following section where the orbit over two periods will be 

examined.  From the baseline case, the problem only worsens; a more sizable gap appears in the 

25–ton–mass case and in the 75–ton case, the position in the ĵ direction increases.  The later cases 

with the heavier masses have even more pronounced effects.  These changes in position are more 

easily seen in Figure 4.62, which shows the relative position vector.  Instead of completing the 

orbit properly, the component in the î  direction does not move toward the beginning of the 

orbital position relative to the baseline; this is shown by the negative values in the î  direction.  In 

the ĵ  direction, it can be seen that the position increases relative to the baseline, which is easily 

viewable in Figures 4.57–4.61 in the various planes as the spacecraft starts to change orbit.  The 

component in the k̂  direction increases but is followed by a sharp decline relative to the baseline.  

This behavior contrasts from the large halo orbit in which the spacecraft would have an 

increase in the î and k̂  components and a decrease in the ĵ  component.  In other words, the 

spacecraft would complete the orbit but overshoot the initial start position in the î  direction by a 

large margin especially at closer separation distances.  The small halo orbit in contrast has an 

opposite effect where the spacecraft is undershooting its initial starting orbital position relative to 

the baseline. 
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The trends developing at the initial separation distance of 811 meters continue at an 

initial separation distance of 270 meters.  Figure 4.63 depicting the range between the spacecraft 

and the asteroid show the ranges growing over the orbit. 

 

 

Figure 4.63.  Range between spacecraft and asteroid with 270–m initial separation 
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Figure 4.64.  Range difference between spacecraft and massless asteroid from asteroids of varying 

mass with initial 270–m 
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At this juncture, it becomes clear that examining any cases with closer initial separation 

distances is superfluous.  The orbital stability has already degraded to the point of uselessness.  

Finding the point at which the spacecraft might have a near-miss or collision with the asteroid is 

no longer pertinent as the stability is completely lost and the larger halo orbit is clearly the 

superior option. 

 

4.2.2  Spacecraft Trailing Asteroid over Two Revolutions of Small Halo Orbit 

As was mentioned in Section 4.2.1, the stability of the small orbit was in question even in 

the baseline case.  Recalling back to the previous section, it was noted that a discontinuity existed 

in the relative position vector of the baseline case.  Even further back in Chapter 3, it was noted 

that the orbit itself possessed a minor but noticeable gap hinting at the potential issues.  

Integrating over twice the orbital period greatly exacerbates the problem.  From Figure 4.66, it 

can be seen that the orbit of the spacecraft is completely unstable over two periods.  The 

spacecraft is flying alone with no asteroid and is simply moving under the principles of the 

circular three-body problem.  The instability is not due to the asteroid but rather due to the 

instability of the libration point orbit.   

Conducting a trade study over two periods for the small halo orbit is thus unnecessary as 

the orbit is inherently unstable and thus would not be a good candidate for a mission. 
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Figure 4.66.  Orbit of spacecraft over two periods 
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Figure 4.67.  Range between leading spacecraft and asteroid with 811–m initial separation 
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Figure 4.68.  Range difference between leading spacecraft and massless asteroid from asteroids of 

varying mass with initial 811–m 
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Chapter 5  
 

Conclusions and Future Work 

5.1  Conclusions 

 

Clearly the size of the orbit has a profound effect on the stability.  Larger orbits produce 

better results and thus should be the only ones considered for this libration point orbit.  In 

addition, it does not matter whether the spacecraft leads or trails the asteroid, so this aspect is 

purely up to mission planners’ preference. 

The possibility of impacts as seen in the large halo orbits only occur when the orbit is 

already unstable.  The orbits generated between the 101 and 50 meters were already becoming 

unstable before impacts started occurring at the later initial separation distance.  As a result, any 

stable orbit that is chosen will not be in any danger of impacts or near-misses which is good for 

mission planning.  Given these range of masses, the spacecraft in the stable orbits would have 

their trajectories altered more for the higher masses within the range studied.  The orbits were 

quite stable within the 300–500 meter range and thus would be viable depending on how 

conservative the mission planning would be.  In the 200–meter range, the largest deviation from 

the baseline range was the 200–ton–mass asteroid at around 35 meters closer to the asteroid 

relative to the baseline.  However, at this range, the larger masses began to have noticeable 

stability issues.  At 300 meters, this shrinks to less than 25 meters and at the 500–meter range, the 

effects are practically negligible.  An initial separation of 303 meters had minimal stability issues 

for the largest asteroid and thus would be an acceptable range for the spacecraft relative to the 
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asteroid for all masses.  The bottom line is that it is up to the mission planner to decide as to how 

much deviation from the baseline orbit is acceptable.   

Within the aforementioned ranges at which the orbits are stable, the resulting trajectory of 

the spacecraft is fairly independent of the mass of the asteroid (within the range of masses used) 

except for the borderline 200–meter case for the largest asteroid only.  This is counterintuitive 

and an interesting result of the trade study.  This gives mission planners the flexibility in 

designing orbits independent of the mass of the asteroid. 

The length of the orbit also has a dramatic effect on the stability.  As seen from 

integrating over twice the orbit, stability was only viable over a 900–meter range between the 

spacecraft and the asteroid.  It was also found that the orbit itself with no asteroid mass was 

completely unstable for a small halo orbit.  As a result, the size of the orbit is especially 

imperative for a mission over this duration.  Furthermore, if a mission were designed so that it 

took place over less than one orbital period, then closer initial distances could be considered.  

Orbits such as the one generated with an initial distance of around 150 meters were stable for 

roughly a week before stability started to become an issue.  Basically, the longer the mission, the 

further the initial distance between the spacecraft and the asteroid needs to be. 

The minimum stand-off distance is dependent on the stability of the orbit.  While the 

spacecraft had safe trajectories within an initial separation distance of 100 meters from the 

asteroid, the orbits were unstable.  As a result, only the minimum ranges from the surface of the 

asteroid for the stable orbits are considered for the minimum stand-off distance.  At an initial 

separation distance of 506 meters, the spacecraft formation flying with the 200–ton asteroid 

approaches 485 meters from the asteroid’s surface.  For the initial separation distance of 303 

meters, the spacecraft comes to within 270 meters of the asteroid.   

Due to the fact that the mass of the asteroid has predictable effects on the motion of the 

spacecraft, the accumulated data can be used to determine the mass of an asteroid if the mass is 
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unknown.  Given the range data from an asteroid, the mass can be determined based on the 

trajectory of the spacecraft using similar methods described by Tapley et al. [17]. 

 

5.2  Future Work 

This research only considered the circular restricted four-body problem (CR4BP); further 

work could be done using the elliptical restricted four-body problem (ER4BP).  In this paradigm, 

the orbits of the Earth–Moon system are not considered to be circular but rather their realistically 

elliptical motion.  This would also create more instability in the libration point as it would 

oscillate in this model as the Moon changes its range relative to the Earth. 

Future work could also look at even larger halo orbits; it was clearly shown that the large 

halo orbit was clearly the more viable option over a smaller orbit.  Perhaps many different orbits 

of various sizes and orbital periods can be examined to determine the most optimal orbit.  In 

addition, different types of orbits could be analyzed; the viability of orbits like lissajous orbits 

could be analyzed. 

Perhaps another avenue of future work could be a study of how much ΔV would be 

required to maintain more stable orbits at closer initial separation distances.  An entire trade study 

could be conducted on this aspect alone to determine the most optimal use of ΔV over a given 

range 
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