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Abstract

A spacecraft in one orbit may need to move to another orbit. Apoapsis orbit raising, in

particular, takes a spacecraft from a circular orbit to an elliptical orbit by thrusting at a periapsis.

This technique was applied as the initial stage for the lunar (LADEE), GEO (ARTEMIS), and

interplanetary (Mangalyaan) missions to save propellant usage and raise the apoapsis distance of

the orbits. These projects show that the apoapsis orbit raising can be applied to various types of

missions.

In this thesis, by applying the Particle Swarm Optimization (PSO) algorithm to the five finite

thrust maneuvers, evaluation of an optimal solution that derives optimized propellant usage is

presented. Each transfer orbit pushes out the apoapsis of the trajectory, depending on the thrust

duration and the thrust-on location. The final orbit of the optimal solution of the problem should

meet two criteria: the line of apside (LOA) alignment and the apoapsis distance.

The PSO is a computational method that is inspired by a swarm movement. By sharing

information obtained by each member, the entire swarm (set of possible solutions) can find the

best location efficiently and rapidly. This algorithm highly depends on size of a swarm and number

of iterations as well as an initial solution set. In this thesis, a modification is applied to the PSO

to handle equality constraints.

The PSO application to apoapsis orbit raising shows the feasibility of determining an optimized

trajectory to reach a target orbit and gives required propellant for each maneuver in terms of a

thrust duration. The optimal results are acquired by the PSO algorithm and all the requirements

are satisfied.
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Chapter 1 |

Introduction

For orbit transfer, minimizing propellant usage is one of the major concerns. To achieve

the best possible result, impulsive maneuvers would be optional since they do not lose any

velocity (gravity loss). Unlike the impulsive maneuver, the finite thrust has two different velocity

components, the radial and the transverse, which cause loss. However, a true impulsive maneuver

is a mathematical model and finite burns are performed in a real world situation, which implies a

shorter thrust has better efficiency. Therefore, employing short several thrusts model could be a

solution to save propellant [1–3].

Particle Swarm Optimization (PSO) is a heuristic and swarm intelligence method that was

first introduced by Eberhart and Kennedy in 1995. To optimize a solution, this technique mimics

behavior of birds flocking. Each bird in a flock or a swarm is called a particle and all the particles

have individual position and velocity vectors. The position vector is associated with unknown

parameters that determine a possible solution and the velocity vector updates the position vector

over iterations. The optimal solution is defined by the social behavior which is represented by

a local best position (pBest) and a global best position (gBest). All the swarm members share

the information about the best positions ever visited and the global best position is selected

among the positions collected. The random generation process and the iteration dependency

are a stochastic characteristic of an evolutionary programming. The movement of the particle

depends on the inertial and the cognitive effects which attract the particle toward either the local

or the global best position respectively based on the weight of the effects. Though it is possible

to land on a local solution or a random bad solution, the advantages of the PSO algorithm are

simplicity of coding and relatively low computational cost [4–10].
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Transferring a spacecraft from one orbit to another is an essential part of most space missions.

When an initial orbit is a circular or an elliptical and a spacecraft transfers to an elliptical orbit,

either an apoapsis or a periapsis burn technique can be applied. Both techniques use a very

similar concept which is turn the thruster on only at the apoapsis or the periapsis. In this thesis,

only the apoapsis orbit raising, or periapsis burn, method is covered. However, work related to

apoapsis burn technique applied to circular orbit transfers are also reported [11,12]. The apoapsis

orbit raising concept was used in couple of space missions such as the Lunar Atmosphere and Dust

Environment Explorer (LADEE) of the National Aeronautics and Space Administration (NASA),

the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with

Sun (ARTEMIS) of European Space Agency (ESA), and the Mangalyaan of Indian Space Research

Organization (ISRO) [13–19]. The method was applied in the first stage of the maneuvers to save

propellant usage before the spacecraft begins to move further. The application in the LADEE

mission raised the orbit to reach the moon then the spacecraft inserted into the lunar orbit [13,14].

For ARTEMIS, apoapsis orbit raising pushed the satellite out to the Geosynchronous Equatorial

Orbit (GEO) and then it made another propulsive maneuver to circularize the orbit [15–17]. The

Mangalyaan mission used a periapsis burn technique before the spacecraft departed to Mars using

a Hohmann transfer [18,19].

The work done by Pontani and Conway on the use of a PSO algorithm in trajectory design

forms the basis for the method in this thesis [6]. The paper was published in 2010 and it gives

idea of optimization of several different type of orbits. Especially, this thesis is influenced by the

Chapter 5 which is ‘Optimal Finite Thrust Orbital Transfer Between Two Circular Orbits’ since

the chapter is introducing finite thrust orbit maneuver between orbits. The initial conditions and

elliptical thrust arc are applied into the thesis method. Some equations are modified from the

original paper and employed.

The objective of this work is to optimize propellant usage while trasferring a spacecraft from

a circular orbit to an elliptical orbit. To get an optimized solution, a few assumptions are made:

2



1) no perturbation effects, 2) only a central gravitational force exists (2-body problem), 3) the

engines on the spacecraft have no throttling capability, and 4) the transfer and the final orbits

have semi-major axes larger than that of the initial orbit. The minimum line of apsides (LOA)

rotation is considered since that is critical for combined LEO-GEO transfers with a plane-change

maneuver [1]. The PSO gives some large LOA rotations on the intermediate ellipses, but the final

elliptical path has very small rotation.

3



Chapter 2 |

Particle Swarm Optimization and Apoapsis Orbit Raising

2.1 Particle Swarm Optimization

The basic Particle Swarm Optimization (PSO) algorithm is based upon the behavior of

swarms of birds searching for food or shelter. Each member of a swarm is called a particle and

is represented by a vector of n number of parameters that essentially define the solution. Each

particle chases two different targets, one that the particle set by itself and another by the entire

swarm. Each particle moves toward one target that weighs more than the other. The objective

function (or cost function) gives a reference to tell whether the outcome is considered to be

optimal or not. Achieving the minimized objective function value without violating constraints is

the goal of the PSO. Details about the PSO algorithm are described in the following paragraphs.

Particle Swarm Optimization requires the initial position of each particle to begin with. The

initial position, Pk, of each particle with n unknown parameters is randomly generated within

the range of the lower and the upper bound, BL,Pk
and BU,Pk

:

BL,P k ≤ Pk ≤ BU,P k (k = 1, . . . , n) (2.1)

The number of particles in a swarm (N ) gives the population size of a position vector and a

velocity vectors, and i-th particle of each vector is represented by P(i) and V(i), respectively.

P (i) , [P1(i) . . . Pn(i)]T (i = 1, . . . , N) (2.2)

Each velocity vector component Vk(i) has minimum and maximum values that come from limits

of position vector components in Eq. (2.1). The range of the velocity vector components is defined

4



as:

−(BU,P k −BL,P k) ≤ Vk ≤ (BU,P k −BL,P k) (2.3)

BL,V k ≤ Vk ≤ BU,V k (2.4)

Since PSO is mimicking dynamic movement of a swarm, both position and velocity of every

particle change over iteration j, where j = 1, . . . , NIT . The new position of a particle P (j+1)
k (i) is

defined by adding its velocity to the current position:

P
(j+1)
k = P

(j)
k + V

(j)
k (j = 1, . . . , NIT ) (2.5)

In this context, velocity is the rate of change of a particle per iteration. If an updated position

violates Eq. (2.1), the new position is set to the lower bound if a value is smaller than the lower

limit, or the upper bound if a value is greater than the upper limit . The same process is applied

to velocity components to keep values within the proper range [5–7].

Each particle of the swarm has both global and particle optimal positions which are related to

global and particle optimal solution of a problem. The particle optimal or particle best position

(pBest) relies on the best position that a particle has ever visited before. The global best position

(gBest) is, then, one of the pBest values of the swarm that minimizes the objective function [4–7].

The global best position of the swarm is shared with all the particles in the swarm [4, 6]. Finding

optimal positions, pBest and gBest, are based upon the objective function J, where the objective

function is minimized such that the position that gives minimized value is picked as the best

position [4, 6, 7]. The objective function J (j)(i) for pBest of particle i at j-th iteration is:

J (j)(i) = min J (1,...,j)(i) (2.6)

where (i=1, . . . , N ) then, pBest is determined as:

pBest(j)(i) = P(l)(i)
(
l = arg minp=1,...,j J

(p)(i)
)

(2.7)

5



Similarly, the best J among all the swarm is:

J
(j)
Best(i) = min J (1,...,j)(i) (2.8)

and the gBest is:

gBest(j) = pBest(j)(q)
(
q = arg mini=1,...,N J

(j)
Best(i)

)
(2.9)

The velocity vector also needs to be updated after each iteration by combining three effects:

inertial, cognitive, and social. The inertial component tends to keep a particle’s velocity unchanged,

while the cognitive effect tries to move a particle toward its pBest and the social effect leads a

particle toward the gBest of a swarm [6, 7, 10]. Each of them has its own weight expressed in

order:

cI = 1 + r1(0, 1)
2 cC = 1.49445 r2(0, 1) cs = 1.49445 r3(0, 1) (2.10)

where r1(0,1), r2(0,1), and r3(0,1) are random numbers with uniform probability distribution

between 0 and 1. Then, the velocity component of a particle is updated by:

V
(j+1)
k (i) = cIV

(j)
k (i) + cC

[
pBest

(j)
k (i)− P (j)

k (i)
]

+ cS

[
gBest

(j)
k − P

(j)
k (i)

]
(2.11)

The next step is updating the position vector of N particles for all Pk(i) as Eq. (2.5). However,

if a new position violates the limits in Eq. (2.1), the velocity of the iteration is set to 0 as [6]:

P
(j+1)
k =


BL,Pk

if P
(j+1)
k < BL,Pk

BU,Pk
if P

(j+1)
k > BU,Pk

 and V
(j+1)
k (i) = 0.

Evaluating gBest and pBest and updating position and velocity vectors are repeated until the

number of iteration, NIT , is reached [4–7]. The process of the basic PSO algorithm mentioned

above is illustrated in Figure 2.1.

The basic PSO algorithm is able to optimize an unconstrained problem but cannot be used

to solve constrained problems. Since engineering problems are mostly constrained optimization

6



Start

Random initial vector of swam with n parameters

Begin iteration

Evaluate gBest and pBest

Update V = inertial + cognitive + social

Update P j+1
k = P jk + V jk

Number of iteration reached?

Stop

yes

no

Figure 2.1. Flow chart of basic PSO algorithm

problems, ways to solve constrained problems should be introduced [5,6]. The basic algorithm

requires modification to solve such problems.

An evolutionary computation method, such as PSO, does not easily handle equality constraints.

Since the degree of freedom of a problem is reduced by the number of equality constraints m, the

number of parameters n is restricted to m = n even if (m ≤ n) [6]. Equality constraints would

7



have the form

dr(P) = 0 (r = 1, . . . ,m) (2.12)

and would require reformulating the problem to make each particle have only m elements.

Penalizing constraint violations by adding extra terms to the objective function is a widely used

method to deal with constraints, and is also used in this work. Weighting coefficients multiply

the constraints and are added to the original objective function:

J̃ = J +
m∑
r=1

αr|dr (P) | (2.13)

Coefficients αr are problem-dependent and one may find suitable values empirically. Bigger αr

value indicates more weighting on a constraint, and smaller αr means it is less weighted [6]. A

similar method can be used to handle inequality constraints.

8



Chapter 3 |

Apoapsis Orbit Raising Application

Apoapsis orbit raising is an orbit maneuver that is possible using periapsis burns. Instead of

a single burn technique, the method in this thesis employs multiple finite thrusts. Optimal thrust

duration and location to turn on the propulsion system to achieve the target orbit is obtained by

using a PSO algorithm.

3.1 Orbit Raising with various final radii

Periapsis-burn orbit raising in this work involves pushing out the apoapsis location while a

spacecraft is orbiting around one focal point. The initial orbit of the problem is circular and has

radius of 1 (all distance are scaled by the initial circular radius). After passing through several

transfer orbits, the spacecraft reaches the elliptical target orbit. Assume the focal point is located

at the center of the x-y plane, Ra refers to the distance between the center and the apoapsis of

the elliptical orbit. Then, let β equal the ratio of Ra of the target orbit to Ra of the initial orbit.

β = Ra,target
Rp,initial

= atarget (1 + etarget)
ainitial (1− einitial)

(3.1)

when e is the eccentricity 0 ≤ e ≤ 1 and a is the semi-major axis. The line of apside (LOA) of

transfer orbits may or may not rotate in order to get some optimal result and also Ra of the

transfer orbit may not increase constantly. However, the amount of LOA rotation and rate of

Ra increment are possibly specified based on the problem definition. Figure 3.1 gives the basic

idea of two different types of trajectories with different limitations. The right side of the Fig 3.1

describes the apoapsis orbit raising technique studied in this thesis, when intermediate transfer

ellipses have significant roration of the LOA. Table 3.1 is the range of β values studied in this

9



work.

Figure 3.1. Line of apsides for two types of transfer orbits

Table 3.1. Initial and target orbit relationship with β

β Initial orbit Target orbit
1.5 1 1.5
2 1 2
5 1 5
8 1 8
10 1 10

3.2 Problem definition

This section deals with optimization of multi-path finite thrust transfer between initial and

target orbits using a PSO algorithm. Several equations and conditions come from Pontani and

Conway [6].

Beginning with a circular orbit with radius R1, the spacecraft moves along four transfer orbits

and reaches the final orbit with Ra,target represented as R2, where R2 > R1 and β , R2/R1 > 1.

When r, vr, ξ, and vθ denote radius, radial velocity component, angular displacement from x-axis,

and transverse velocity component, respectively, initial and final conditions at t0 and tf are given

by:

r(t0) = R1 vr(t0) = 0 ξ(t0) = 0 vθ(t0) =
√

µ

R1
(3.2)

r(tf ) = R2 vr(tf ) = 0 vθ(tf ) =
√

µ

R2
(3.3)

10



µ in Equation (3.2) and (3.3) are a normalized gravitational parameter of body at the center

(µ = 1 DU3/TU2). The system of units employed here is as follows: 1) distance unit (DU) = the

radius of the initial circular orbit and 2) time unit (TU) = period of the initial circular orbit
2π .

A spacecraft flying on this trajectory experiences a total of five propulsive and five non-

propulsive maneuvers. A spacecraft employing engines without throttling capability is assumed.

So, they are only turned on at maximum thrust or completely off. The thrust-to-mass ratio (T/m)

of the engine with thrust level T is:

T

m
=


T

m0 − (T/c)(ttotal + t) = cn0

c− n0(ttotal + t) if 0 ≤ t ≤ ∆ti (i = 1, . . . , 5)

0 if spacecraft is coasting

(3.4)

In Equation (3.4), ttotal is the sum of all previous thrust durations ∆ti (if i = 1, ttotal = 0), c

represents the effective thrust exhaust velocity, and n0 and m0 denote the thrust-to-mass ratio

and the mass of the spacecraft at t0. The state-space equations for r, vr, ξ, and vθ for the motion

of the spacecraft are:

ṙ = vr (3.5)

v̇r = −µ− rv
2
θ

r2 + T

m
sin δ (3.6)

ξ̇ = vθ
r

(3.7)

v̇θ = −vrvθ
r

+ T

m
cos δ (3.8)

and the state vector is x = [r vr ξ vθ]T. In order to apply finite thrust along the path, a

thrust vectoring technique is used, and the angle δ in Equation (3.6) and (3.8) is the thrust angle

defined in Figure 3.2 represented as a third degree polynomial as a function of time. The equation

for δ has four coefficients ϑ0, ϑ1, ϑ2, and ϑ3 and the PSO algorithm gives optimal values of ϑk,i

(k = 0, . . . , 3).

δi = ϑ0,i + ϑ1,i t+ ϑ2,i t
2 + ϑ3,i t

3 if 0 ≤ t ≤ ∆ti (3.9)
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Figure 3.2. Definition of thrust angle δ

Thus, during each thrust arc, δi gives the thrust angle.

The flight time on a coasting arc tCO is assumed to be equal to the time duration of the

previous thrust arc Ti unless the thrust is turned off below or above the x-axis by a certain

amount. The period of i-th thrust arc, Ti, is initially guessed as:

Ti = 2π

√
a3

µ
(3.10)

where the semi-major axis a is:

a = µri
2µ− ri(v2

r,i + v2
θ,i)

(3.11)

when ri, vr,i, ξi, and vθ,i refer to values of each variable at time ∆ti. If the thrust-off location ξi

is within ± 5 degree range, tco is set to Ti but if it is either 5 - 60 degrees or 300 - 355 degrees

range, adjustment is applied as:

tCO =



Ti −
M

2π Ti
if 5◦ ≤ ξi ≤ 60◦ or π/ 36 ≤ ξi ≤ π/ 3

Ti + M

2π Ti
if 300◦ ≤ ξi ≤ 355◦ or − π/ 3 ≤ ξi ≤ −π/ 36

Ti if 355◦ ≤ ξi ≤ 5◦ or − π/ 36 ≤ ξi ≤ π/ 6

(3.12)

Mean anomaly M in Eq (3.12) is evaluated by eccentricity e, true anomaly f, and eccentric
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anomaly E as follows:

e =

√
1−

r2
i v

2
θ,i

µa
(3.13)

f = tan−1
(
sin f
cos f

)
=

vr,i

√
a(1− e2)

µ

vθ,i

√
a(1− e2)

µ
− 1

(3.14)

E = tan−1
(
sinE
cosE

)
= 2 tan−1

(
tan

(
f

2

)√
1− e
1 + e

)
(3.15)

M = E − e sinE (3.16)

The simplified equations (3.14) and (3.15) are derived from

sin f = vr,1
e

√
a(1− e2)

µ
and cos f = vθ,1

e

√
a(1− e2)

µ
− 1
e

(3.17)

and

sinE = sin f
√

1− e2

1 + e cos f and cosE = cos f + e

1 + e cos f (3.18)

The objective function J is directly related to the thrust duration ∆ti and defined as:

J = ∆t1 + ∆t2 + ∆t3 + ∆t4 + ∆t5 (3.19)

Since the value of the objective function depends only on the thrust duration, minimization of

J means minimization of total propellant consumption. In addition, the value of the objective

function must be assigned to the infinity if condition a ≤ 0 is violated in any case.
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Chapter 4 |

Result and Discussion

4.1 Results

The PSO algorithm in this study is written in MATLAB. C++ or Compute Unified Device

Architecture (CUDA) may outperform MATLAB in terms of computing time but for this study,

the performance of MATLAB is sufficient [9, 20, 21]. MATLAB is well suited for the problem

and it shows acceptable performance. The number of iterations (NIT ) and particles (N ) are set

to 150 and 50 respectively in this work. Computing time for a loop of five complete runs takes

approximately one hour (3500 - 4200 seconds). Each particle in the swarm is formed with 30

different parameters:

P = [ϑ0,1 ϑ1,1 ϑ2,1 ϑ3,1 ϑ0,2 ϑ1,2 ϑ2,2 ϑ3,2 ϑ0,3 ϑ1,3 ϑ2,3 ϑ3,3

ϑ0,4 ϑ1,4 ϑ2,4 ϑ3,4 ϑ0,5 ϑ1,5 ϑ2,5 ϑ3,5 ∆t1 ∆t1 ∆t2 ∆t3 ∆t4 ∆t5]T
(4.1)

Only thrust pointing angle and duration are considered as parameters because other factors

can be calculated from components of thrust arcs. Each unknown parameter has minimum and

maximum bounds as Eq. (4.2). A narrow range of thrust durations is empirically determined to

manage all five thrusts. A non-zero lower bound is set for ∆t to avoid a non-propulsive maneuver

while the spacecraft is transferring to the target orbit. All values used in this thesis are presented

as canonical units: distance unit (DU) and time unit (TU).

− 1 ≤ ϑj,i ≤ 1 0.00001 TU ≤ ∆ti ≤ 0.1 TU (j = 0, . . . , 3 and i = 1, . . . , 5) (4.2)

The value of standard gravitational constant µ is 1 DU3/TU2. The effective exhaust velocity c

and thrust-to-mass ratio at initial time n0 vary with the semi-major axis of the target orbits and
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their values are shown in Table 4.1. Penalty terms are introduced to the original cost function

Table 4.1. c and n0 with respect to β

β c n0
1.5 0.5 0.3
2 1.5 0.6
5 2.5 1
8 3 1.5
10 5.5 2.2

due to the four equality constraints of the problem which are:

d1 = |r(tapo)−R2| d2 = vr(tapo) d3 =
∣∣∣∣vθ(tapo)− hf

r(tapo)

∣∣∣∣ d4 = ξ(tapo) (4.3)

where tapo is time at apoapsis of final orbit and hf is a angular momentum of final orbit defined

as following:

h =
√

2µ
√

rarp
ra + rp

(4.4)

By adding penalty terms, the objective function is updated from Equation (3.19) and becomes:

J̃ = J +
4∑
k=1

αk |dk| = ∆t1 + ∆t2 + ∆t3 + ∆t4 + ∆t5 +
4∑
k=1

αk |dk| (4.5)

The tolerance of each equality constraint is set to 10−3, so any absolute value of constraint greater

than the tolerance is considered as a violation. When they fail to meet the tolerance, the objective

function is penalized by adding extra terms. Weighting coefficients αk are defined as:

αk =


150 if |dk| > 10−3 (k = 1, . . . , 3)

500 if |dk| > 10−3 (k = 4)

0 if |dk| < 10−3 (k = 1, . . . , 4)

(4.6)

The reason why constraints are not weighted equally is because they represent two different

criteria. Weightings on d1, d2, and d3 affect apoapsis distance of final orbit and d4 adjusts LOA

rotation. In case a ≤ 0, which also violates the condition of an elliptical orbit, the objective

function becomes infinity. Figure 4.1 illustrates behaviors of objective function values for β = 1.5.
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Plots for other β values are attached in Appendix A. Plot shows that as the number of iteration

increases, the value of the objective function tends to go down and plateau out. Sharp drops

shown in the plot occur when the number of equality constraints are satisfied. Average percent
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7000
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Figure 4.1. Value of objective function over number of iteration for β = 1.5 with 5 independent orbits

errors of LOA alignment and apopasis distance are calculated to analyze the performance of

optimization as seen in Table 4.2. The percent LOA alignment error is calculated as:

Percent LOA alignment error = |180− LOA of final orbit|
180 × 100 (4.7)

and the equation for the percent distance error is:

Percent distance error = |Ra of target orbit−Ra of final orbit|
Ra of target orbit × 100 (4.8)

Average errors obtained by the PSO are less than 3 percent and mostly less than 1 percent,

and the objective functions give reasonably small values. Tables of individual β are attached in

Appendix A and Table 4.3 only represents case for β = 1.5. The objective function values and

error rates are mostly linearly related to each other and this tendency indicates that the optimal
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Table 4.2. Average percent error of LOA alignment and distance and objective function value

β Percent LOA alignment error (%) Percent distance error (%) Objective function
1.5 0.2670 2.3444 6.2021
2 0.2225 2.6669 8.2543
5 0.2489 0.2688 4.2237
8 0.4515 0.0135 10.6294
10 1.0641 0.0183 18.0720

solution is derived when the objective function value is minimized. Therefore, the result with the

minimum objective function is picked as the best result of five runs. However, if either maximum

or minimum burn time is recorded, the result is ignored since that implies the thrust duration is

insufficient or surpasses the required amount of time.

Table 4.3. Error rate of LOA alignment and distance and objective function value for β = 1.5

No. run LOA alignment error (%) Distance error (%) Objective function
1 0.4044 0.0666 0.5975
2 0.1699 2.97189 6.9936
3 0.3976 0.0693 0.5944
4 0.0356 0.0425 3.5972
5 0.3272 8.5718 19.5279

The trajectory of each orbit is evaluated from the final position P updated throughout the

iterations. The best particle location is selected among all the particles in the swarm based on

the objective values. Following data are results of the best particle of the swarm. The path of the

full trajectory for β = 1.5 is shown in Figure 4.2 and other plots with different β can be found in

Appendix B. Thrust-on locations are also presented in Figure 4.2 with dots and thrust paths are

illustrated in Figure 4.4. The trajectory in Figure 4.2 may not give good intuition of the LOA

rotation due to the small eccentricity though it is more obvious for higher β. The LOA rotation,

which is not clearly observed in Fig. 4.2, is found in Table 4.4. Figure 4.3 represents change in

both the LOA rotation angles and the apoapsis distance for each thrust. The zero degree mark in

Fig 4.4 represents either 0 or 360 degrees since coordinates of the plot shown are transformed from

polar to Cartesian. The location of burn arcs are near 1 DU because transfer orbits tend to keep
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the same periapsis location. Individual plots of thrust pointing angles are presented in Figure 4.5.

Due to the correlation between thrust pointing angle and burn arc trajectory, they have similar

patterns. The paths of burn arcs and the thrust pointing angles present the movement of the

spacecraft while in propulsive maneuvers. The paths shown in Fig. 4.4 show the exact location

and behavior of the spacecraft in the burn arcs. Table 4.4 represents thrust duration and LOA

displacement from the x-axis of each transfer orbit and more tables are included in Appendix

B. The LOA displacement column shows how much each transfer orbit is tilted. The final orbit

reaches at apoapsis distance of 1.5010 DU which is reasonably close to the target distance of 1.5

DU.

Table 4.4. Thrust duration and LOA displacement for β = 1.5

No. thrust Thrust duration [TU] LOA displacement [deg.]
1 0.0316 15.2930
2 0.0506 -3.9145
3 0.0771 -1.7912
4 0.0946 4.4879
5 0.0643 -0.7157
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Figure 4.2. Trajectory of orbit for β = 1.5 with thrust-off locations
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Figure 4.3. Angular displacement and apoapsis distance for thrusts
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Figure 4.4. Paths of burn arcs for β = 1.5
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Figure 4.5. Thrust pointing angle of burn arcs for β = 1.5

4.2 Discussion

According to the results in the previous section, the PSO algorithm gives reasonably good

results. Due to the nature of heuristic methods, the PSO gives only rough estimates and requires

other methods, i.e. pseudospectral or direct collocation, to achieve precise solutions. Also, the

amount of error varies over iteration and results are easily influenced by initial conditions. Figure

4.6 shows how error rates change with number of iteration. Excluding few outliers, errors in

both plots decrease drastically after approximately 100 iterations. Yet, percent errors seem to

fluctuate even at the higher iterations. This tendency indicates that higher numbers of iterations

are definitely recommended to avoid error but cannot always guarantee an optimized solution.

Additionally, the PSO easily falls into local or random solution which may not be close to the

target solution and the PSO sometimes gets stuck (stagnation effect). However, the PSO is
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Figure 4.6. Percent error of LOA alignment and distance of final orbit over number of iteration

computationally highly cost effective and easy to code. In addition, PSO does not require any

initial estimate of the solution since the program can generate a random solution set to begin

with. While there are some limitations of PSO algorithm, results are reasonably satisfactory.
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Chapter 5 |

Conclusion and Future Work

5.1 Conclusion

This thesis deals with the application of particle swarm optimization (PSO) to apoapsis orbit

raising. The PSO algorithm is a fairly new and popular method for trajectory optimization with a

broad range of applications. Apoapsis orbit raising also has been applied to several space missions

including, LADEE by NASA, ARTEMIS by ESA, and Mangalyaan by ISRO [13–19].

The PSO is well suited for the apoapsis orbit raising problem and an effective tool to find

optimized solution for each problem. Constraints are addressed via the use of penalty functions

added to the objective function. At the end of 150 iterations, in most cases the four equality

constraints are satisfied to within specified tolerances. Therefore, the best run and the particle

are selected according to the value of the objective function. However, if the spacecraft employs

the maximum or the minimum thrust duration, the case is rejected due to the possibility that the

spacecraft needs more or less thrust than is allocated.

The result of apoapsis orbit raising with 5 finite propulsive maneuvers meets all the requirements

for optimizing trajectory: target distance, line of apside (LOA) alignment of the final orbit, and

less propellant consumption. The percent errors of LOA alignment and distance gap found in the

optimal results are less than 1 percent which indicates the PSO applied to apoapsis orbit raising

provides acceptable solutions for this problem.

In conclusion, application of the PSO algorithm to apoapsis orbit raising is an effective

approach. The trajectory obtained shows gradual increase in apoapsis distance and small final

LOA displacement being the optimized solution to the problem.
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5.2 Future Work

In this study, only PSO is used to optimize trajectory. However, there are multiple ways to

optimize orbital trajectories. Comparing results and optimization capability on apoapsis orbit

raising could be useful. According to Hassan et al., a genetic algorithm (GA) shows better

performance than the PSO when the problem is constrained and nonlinear [22]. Since the orbit

raising in this thesis has constraints and nonlinear equations of motion, GA may show a better

performance than the PSO. Additionally, pseudospectral or direct collocation methods could be

interesting since they are considered to be much more accurate than heuristic methods. Solutions

of the PSO can be fed into the pseudospectral or direct collocation method if the latter requires

an initial solution to begin. Efficiency of the method can be compared by increasing or decreasing

the number of iterations. A no LOA rotation or a symmetric rotation could be another technique

to optimize propellant consumption. To simulate real situations, adding perturbation effects or

three-body problem would be required.
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Appendix A|

Plots of objective function vs. iteration

This Appendix presents the change in the objective function value over iterations. The

objective function values of 5 runs are illustrated in each plot based upon final apoapsis distances.

Most of the cases, the objective functions drop down to a single value as shown in the Table 4.3.

Detailed J values are also provided in the Appendix A.

A.1 Objective function over iterations at β = 1.5
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Figure A.1. Value of objective function over number of iterations for β = 1.5 with 5 independent orbits
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Table A.1. Error rate of LOA alignment and distance and objective function value for β = 1.5

No. run LOA alignment error (%) Distance error (%) Objective function
1 0.4044 0.0666 0.5975
2 0.1699 2.9718 6.9936
3 0.3976 0.0693 0.5944
4 0.0356 0.0425 3.5972
5 0.3272 8.5718 19.5279

A.2 Objective function over iterations for β = 2
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Figure A.2. Value of objective function over number of iterations for β = 2 with 5 independent orbits

Table A.2. Error rate of LOA alignment and distance and objective function value for β = 2

No. run LOA alignment error (%) Distance error (%) Objective function
1 0.2091 0.0489 0.2884
2 0.0125 0.0227 0.2660
3 0.0229 0.0248 0.2686
4 0.5982 13.2370 40.1784
5 0.2698 0.0009 0.2699
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A.3 Objective function over iterations for β = 5
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Figure A.3. Value of objective function over number of iterations for β = 5 with 5 independent orbits

Table A.3. Error rate of LOA alignment and distance and objective function value for β = 5

No. run LOA alignment error (%) Distance error (%) Objective function
1 0.0137 1.1157 4.0168
2 0.0955 0.0197 3.0871
3 0.0883 0.1696 2.8054
4 0.6084 0.0198 7.8444
5 0.4385 0.0194 3.3647
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A.4 Objective function over iteration for β = 8

0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of iteration

J 
va

lu
e

Figure A.4. Value of objective function over number of iterations for β = 8 with 5 independent orbits

Table A.4. Error rate of LOA alignment and distance and objective function value for β = 8

No. run LOA alignment error (%) Distance error (%) Objective function
1 0.2112 0.0006 2.7650
2 0.3695 0.0182 20.0057
3 0.3850 0.0051 5.2603
4 0.2204 0.0120 5.6907
5 1.0717 0.0318 19.4254
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A.5 Objective function over iterations for β = 10
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Figure A.5. Value of objective function over number of iterations for β = 10 with 5 independent orbits

Table A.5. Error rate of LOA alignment and distance and objective function value for β = 10

No. run LOA alignment error (%) Distance error (%) Objective function
1 1.58974 0.0099 19.2521
2 3.0236 0.0654 51.2160
3 0.0837 0.0011 2.6727
4 0.0982 0.0140 9.5088
5 0.5253 0.0011 7.7104
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Appendix B|

Trajectory plots and properties

The orbital trajectories, thrust pointing angles, and tables of percent errors of each case are

presented in this Appendix. Error tables give data for all 5 runs, though, only the best solution

among them is picked. The optimal solutions are selected by the minimum objective function

value, except for the case when the β = 2.

B.1 Properties of the trajectory for β = 1.5
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Figure B.1. Trajectory of orbit for β = 1.5 with thrust-off locations
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Figure B.2. Paths of burn arcs for β = 1.5
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Figure B.3. Thrust pointing angle of burn arcs for β = 1.5
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Table B.1. Thrust duration and LOA displacement for β = 1.5

No. thrust Thrust duration [TU] LOA displacement [deg.]
1 0.0316 15.2930
2 0.0506 -3.9145
3 0.0771 -1.7912
4 0.0946 4.4879
5 0.0643 -0.7157
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Figure B.4. Angular displacement and apoapsis distance for thrusts

B.2 Properties of the trajectory for β = 2

For β = 2, the third run is picked instead of the second run which seems to have the least

errors and the smallest objective function value referring to Table A.2 in Appendix A. The reason

why the second run result is ignored is because the thrust durations reach both maximum and

minimum bounds and that is not recommended. Once the maximum or the minimum bound

reached, that means the duration of the thrust at that maneuver is either not enough or exceeding.
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Figure B.5. Trajectory of orbit for β = 2 with thrust-off locations
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Figure B.6. Paths of burn arcs for β = 2
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Figure B.7. Thrust pointing angle of burn arcs for β = 2

Table B.2. Thrust duration and LOA displacement for β = 2

No. thrust Thrust duration [TU] LOA displacement [deg.]
1 0.0318 -6.7276
2 0.0604 1.4131
3 0.0742 -4.1888
4 0.0656 2.1840
5 0.0367 -0.0412
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Figure B.8. Angular displacement and apoapsis distance for thrusts for β = 2
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B.3 Properties of the trajectory for β = 5
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Figure B.9. Trajectory of orbit for β = 5 with thrust-off locations

Table B.3. Thrust duration and LOA displacement for β = 5

No. thrust Thrust duration [TU] LOA displacement [deg.]
1 0.0994 1.2664
2 0.0960 6.8726
3 0.0050 5.3480
4 0.0043 4.7592
5 0.0887 -0.1590
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Figure B.10. Paths of burn arcs for β = 5
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Figure B.11. Thrust pointing angle of burn arcs for β = 5
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Figure B.12. Angular displacement and apoapsis distance for thrusts for β = 5

B.4 Properties of the trajectory for β = 8

Table B.4. Thrust duration and LOA displacement for β = 8

No. thrust Thrust duration [TU] LOA displacement [deg.]
1 0.0223 7.1332
2 0.0840 -4.5236
3 0.0774 5.2871
4 0.0188 6.6776
5 0.0506 -0.3802
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Figure B.13. Trajectory of orbit for β = 8 with thrust-off locations
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Figure B.14. Paths of burn arcs for β = 8
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Figure B.15. Thrust pointing angle of burn arcs for β = 8
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Figure B.16. Angular displacement and apoapsis distance for thrusts for β = 8

39



B.5 Properties of the trajectory for β = 10
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Figure B.17. Trajectory of orbit for β = 10 with thrust-off locations

Table B.5. Thrust duration and LOA displacement for β = 10

No. thrust Thrust duration [TU] LOA displacement [deg.]
1 0.0785 6.4098
2 0.0022 5.4772
3 0.0156 3.6122
4 0.0173 3.1180
5 0.0456 -0.1506
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Figure B.18. Paths of burn arcs for β = 10
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Figure B.19. Thrust pointing angle of burn arcs for β = 10
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Figure B.20. Angular displacement and apoapsis distance for thrusts for β = 10
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